Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef builtin_temporal_Int128_h
#define builtin_temporal_Int128_h
#include "mozilla/Assertions.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/MathAlgorithms.h"
#include <climits>
#include <limits>
#include <stdint.h>
#include <utility>
namespace js::temporal {
class Int128;
class Uint128;
/**
* Unsigned 128-bit integer, implemented as a pair of unsigned 64-bit integers.
*
* Supports all basic arithmetic operators.
*/
class alignas(16) Uint128 final {
#if MOZ_LITTLE_ENDIAN()
uint64_t low = 0;
uint64_t high = 0;
#else
uint64_t high = 0;
uint64_t low = 0;
#endif
friend class Int128;
constexpr Uint128(uint64_t low, uint64_t high) : low(low), high(high) {}
/**
* Return the high double-word of the multiplication of `u * v`.
*
* Based on "Multiply high unsigned" from Hacker's Delight, 2nd edition,
* figure 8-2.
*/
static constexpr uint64_t mulhu(uint64_t u, uint64_t v) {
uint64_t u0 = u & 0xffff'ffff;
uint64_t u1 = u >> 32;
uint64_t v0 = v & 0xffff'ffff;
uint64_t v1 = v >> 32;
uint64_t w0 = u0 * v0;
uint64_t t = u1 * v0 + (w0 >> 32);
uint64_t w1 = t & 0xffff'ffff;
uint64_t w2 = t >> 32;
w1 = u0 * v1 + w1;
return u1 * v1 + w2 + (w1 >> 32);
}
/**
* Based on "Unsigned doubleword division from long division" from
* Hacker's Delight, 2nd edition, figure 9-5.
*/
static std::pair<Uint128, Uint128> udivdi(const Uint128& u,
const Uint128& v) {
MOZ_ASSERT(v != Uint128{});
// If v < 2**64
if (v.high == 0) {
// If u < 2**64
if (u.high == 0) {
// Prefer built-in division if possible.
return {Uint128{u.low / v.low, 0}, Uint128{u.low % v.low, 0}};
}
// If u/v cannot overflow, just do one division.
if (Uint128{u.high, 0} < v) {
auto [q, r] = divlu(u.high, u.low, v.low);
return {Uint128{q, 0}, Uint128{r, 0}};
}
// If u/v would overflow: Break u up into two halves.
// First quotient digit and first remainder, < v.
auto [q1, r1] = divlu(0, u.high, v.low);
// Second quotient digit.
auto [q0, r0] = divlu(r1, u.low, v.low);
// Return quotient and remainder.
return {Uint128{q0, q1}, Uint128{r0, 0}};
}
// Here v >= 2**64.
// 0 <= n <= 63
auto n = mozilla::CountLeadingZeroes64(v.high);
// Normalize the divisor so its MSB is 1.
auto v1 = (v << n).high;
// To ensure no overflow.
auto u1 = u >> 1;
// Get quotient from divide unsigned instruction.
auto [q1, r1] = divlu(u1.high, u1.low, v1);
// Undo normalization and division of u by 2.
auto q0 = (Uint128{q1, 0} << n) >> 63;
// Make q0 correct or too small by 1.
if (q0 != Uint128{0}) {
q0 -= Uint128{1};
}
// Now q0 is correct.
auto r0 = u - q0 * v;
if (r0 >= v) {
q0 += Uint128{1};
r0 -= v;
}
// Return quotient and remainder.
return {q0, r0};
}
/**
* Based on "Divide long unsigned, using fullword division instructions" from
* Hacker's Delight, 2nd edition, figure 9-3.
*/
static std::pair<uint64_t, uint64_t> divlu(uint64_t u1, uint64_t u0,
uint64_t v) {
// Number base (32 bits).
constexpr uint64_t base = 4294967296;
// If overflow, set the remainder to an impossible value and return the
// largest possible quotient.
if (u1 >= v) {
return {UINT64_MAX, UINT64_MAX};
}
// Shift amount for normalization. (0 <= s <= 63)
int64_t s = mozilla::CountLeadingZeroes64(v);
// Normalize the divisor.
v = v << s;
// Normalized divisor digits.
//
// Break divisor up into two 32-bit digits.
uint64_t vn1 = v >> 32;
uint64_t vn0 = uint32_t(v);
// Dividend digit pairs.
//
// Shift dividend left.
uint64_t un32 = (u1 << s) | ((u0 >> ((64 - s) & 63)) & (-s >> 63));
uint64_t un10 = u0 << s;
// Normalized dividend least significant digits.
//
// Break right half of dividend into two digits.
uint64_t un1 = un10 >> 32;
uint64_t un0 = uint32_t(un10);
// Compute the first quotient digit and its remainder.
uint64_t q1 = un32 / vn1;
uint64_t rhat = un32 - q1 * vn1;
while (q1 >= base || q1 * vn0 > base * rhat + un1) {
q1 -= 1;
rhat += vn1;
if (rhat >= base) {
break;
}
}
// Multiply and subtract.
uint64_t un21 = un32 * base + un1 - q1 * v;
// Compute the second quotient digit and its remainder.
uint64_t q0 = un21 / vn1;
rhat = un21 - q0 * vn1;
while (q0 >= base || q0 * vn0 > base * rhat + un0) {
q0 -= 1;
rhat += vn1;
if (rhat >= base) {
break;
}
}
// Return the quotient and remainder.
uint64_t q = q1 * base + q0;
uint64_t r = (un21 * base + un0 - q0 * v) >> s;
return {q, r};
}
static double toDouble(const Uint128& x, bool negative);
public:
constexpr Uint128() = default;
constexpr Uint128(const Uint128&) = default;
explicit constexpr Uint128(uint64_t value)
: Uint128(uint64_t(value), uint64_t(0)) {}
constexpr bool operator==(const Uint128& other) const {
return low == other.low && high == other.high;
}
constexpr bool operator<(const Uint128& other) const {
if (high == other.high) {
return low < other.low;
}
return high < other.high;
}
// Other operators are implemented in terms of operator== and operator<.
constexpr bool operator!=(const Uint128& other) const {
return !(*this == other);
}
constexpr bool operator>(const Uint128& other) const { return other < *this; }
constexpr bool operator<=(const Uint128& other) const {
return !(other < *this);
}
constexpr bool operator>=(const Uint128& other) const {
return !(*this < other);
}
explicit constexpr operator bool() const { return !(*this == Uint128{}); }
explicit constexpr operator int8_t() const { return int8_t(low); }
explicit constexpr operator int16_t() const { return int16_t(low); }
explicit constexpr operator int32_t() const { return int32_t(low); }
explicit constexpr operator int64_t() const { return int64_t(low); }
explicit constexpr operator uint8_t() const { return uint8_t(low); }
explicit constexpr operator uint16_t() const { return uint16_t(low); }
explicit constexpr operator uint32_t() const { return uint32_t(low); }
explicit constexpr operator uint64_t() const { return uint64_t(low); }
explicit constexpr operator Int128() const;
explicit operator double() const { return toDouble(*this, false); }
constexpr Uint128 operator+(const Uint128& other) const {
// "§2-16 Double-Length Add/Subtract" from Hacker's Delight, 2nd edition.
Uint128 result;
result.low = low + other.low;
result.high = high + other.high + static_cast<uint64_t>(result.low < low);
return result;
}
constexpr Uint128 operator-(const Uint128& other) const {
// "§2-16 Double-Length Add/Subtract" from Hacker's Delight, 2nd edition.
Uint128 result;
result.low = low - other.low;
result.high = high - other.high - static_cast<uint64_t>(low < other.low);
return result;
}
constexpr Uint128 operator*(const Uint128& other) const {
uint64_t w01 = low * other.high;
uint64_t w10 = high * other.low;
uint64_t w00 = mulhu(low, other.low);
uint64_t w1 = w00 + w10 + w01;
uint64_t w0 = low * other.low;
return Uint128{w0, w1};
}
/**
* Return the quotient and remainder of the division.
*/
std::pair<Uint128, Uint128> divrem(const Uint128& divisor) const {
return udivdi(*this, divisor);
}
Uint128 operator/(const Uint128& other) const {
auto [quot, rem] = divrem(other);
return quot;
}
Uint128 operator%(const Uint128& other) const {
auto [quot, rem] = divrem(other);
return rem;
}
constexpr Uint128 operator<<(int shift) const {
MOZ_ASSERT(0 <= shift && shift <= 127, "undefined shift amount");
// Ensure the shift amount is in range.
shift &= 127;
// "§2-17 Double-Length Shifts" from Hacker's Delight, 2nd edition.
if (shift >= 64) {
uint64_t y0 = 0;
uint64_t y1 = low << (shift - 64);
return Uint128{y0, y1};
}
if (shift > 0) {
uint64_t y0 = low << shift;
uint64_t y1 = high << shift | low >> (64 - shift);
return Uint128{y0, y1};
}
return *this;
}
constexpr Uint128 operator>>(int shift) const {
MOZ_ASSERT(0 <= shift && shift <= 127, "undefined shift amount");
// Ensure the shift amount is in range.
shift &= 127;
// "§2-17 Double-Length Shifts" from Hacker's Delight, 2nd edition.
if (shift >= 64) {
uint64_t y0 = high >> (shift - 64);
uint64_t y1 = 0;
return Uint128{y0, y1};
}
if (shift > 0) {
uint64_t y0 = low >> shift | high << (64 - shift);
uint64_t y1 = high >> shift;
return Uint128{y0, y1};
}
return *this;
}
constexpr Uint128 operator&(const Uint128& other) const {
return Uint128{low & other.low, high & other.high};
}
constexpr Uint128 operator|(const Uint128& other) const {
return Uint128{low | other.low, high | other.high};
}
constexpr Uint128 operator^(const Uint128& other) const {
return Uint128{low ^ other.low, high ^ other.high};
}
constexpr Uint128 operator~() const { return Uint128{~low, ~high}; }
constexpr Uint128 operator-() const { return Uint128{} - *this; }
constexpr Uint128 operator+() const { return *this; }
constexpr Uint128& operator++() {
*this = *this + Uint128{1, 0};
return *this;
}
constexpr Uint128 operator++(int) {
auto result = *this;
++*this;
return result;
}
constexpr Uint128& operator--() {
*this = *this - Uint128{1, 0};
return *this;
}
constexpr Uint128 operator--(int) {
auto result = *this;
--*this;
return result;
}
constexpr Uint128 operator+=(const Uint128& other) {
*this = *this + other;
return *this;
}
constexpr Uint128 operator-=(const Uint128& other) {
*this = *this - other;
return *this;
}
constexpr Uint128 operator*=(const Uint128& other) {
*this = *this * other;
return *this;
}
Uint128 operator/=(const Uint128& other) {
*this = *this / other;
return *this;
}
Uint128 operator%=(const Uint128& other) {
*this = *this % other;
return *this;
}
constexpr Uint128 operator&=(const Uint128& other) {
*this = *this & other;
return *this;
}
constexpr Uint128 operator|=(const Uint128& other) {
*this = *this | other;
return *this;
}
constexpr Uint128 operator^=(const Uint128& other) {
*this = *this ^ other;
return *this;
}
constexpr Uint128 operator<<=(int shift) {
*this = *this << shift;
return *this;
}
constexpr Uint128 operator>>=(int shift) {
*this = *this >> shift;
return *this;
}
};
/**
* Signed 128-bit integer, implemented as a pair of unsigned 64-bit integers.
*
* Supports all basic arithmetic operators.
*/
class alignas(16) Int128 final {
#if MOZ_LITTLE_ENDIAN()
uint64_t low = 0;
uint64_t high = 0;
#else
uint64_t high = 0;
uint64_t low = 0;
#endif
friend class Uint128;
constexpr Int128(uint64_t low, uint64_t high) : low(low), high(high) {}
/**
* Based on "Signed doubleword division from unsigned doubleword division"
* from Hacker's Delight, 2nd edition, figure 9-6.
*/
static std::pair<Int128, Int128> divdi(const Int128& u, const Int128& v) {
auto [q, r] = Uint128::udivdi(u.abs(), v.abs());
// If u and v have different signs, negate q.
// If is negative, negate r.
auto t = static_cast<Uint128>((u ^ v) >> 127);
auto s = static_cast<Uint128>(u >> 127);
return {static_cast<Int128>((q ^ t) - t), static_cast<Int128>((r ^ s) - s)};
}
public:
constexpr Int128() = default;
constexpr Int128(const Int128&) = default;
explicit constexpr Int128(int64_t value)
: Int128(uint64_t(value), uint64_t(value >> 63)) {}
/**
* Return the quotient and remainder of the division.
*/
std::pair<Int128, Int128> divrem(const Int128& divisor) const {
return divdi(*this, divisor);
}
/**
* Return the absolute value of this integer.
*/
constexpr Uint128 abs() const {
if (*this >= Int128{}) {
return Uint128{low, high};
}
auto neg = -*this;
return Uint128{neg.low, neg.high};
}
constexpr bool operator==(const Int128& other) const {
return low == other.low && high == other.high;
}
constexpr bool operator<(const Int128& other) const {
if (high == other.high) {
return low < other.low;
}
return int64_t(high) < int64_t(other.high);
}
// Other operators are implemented in terms of operator== and operator<.
constexpr bool operator!=(const Int128& other) const {
return !(*this == other);
}
constexpr bool operator>(const Int128& other) const { return other < *this; }
constexpr bool operator<=(const Int128& other) const {
return !(other < *this);
}
constexpr bool operator>=(const Int128& other) const {
return !(*this < other);
}
explicit constexpr operator bool() const { return !(*this == Int128{}); }
explicit constexpr operator int8_t() const { return int8_t(low); }
explicit constexpr operator int16_t() const { return int16_t(low); }
explicit constexpr operator int32_t() const { return int32_t(low); }
explicit constexpr operator int64_t() const { return int64_t(low); }
explicit constexpr operator uint8_t() const { return uint8_t(low); }
explicit constexpr operator uint16_t() const { return uint16_t(low); }
explicit constexpr operator uint32_t() const { return uint32_t(low); }
explicit constexpr operator uint64_t() const { return uint64_t(low); }
explicit constexpr operator Uint128() const { return Uint128{low, high}; }
explicit operator double() const {
return Uint128::toDouble(abs(), *this < Int128{0});
}
constexpr Int128 operator+(const Int128& other) const {
return Int128{Uint128{*this} + Uint128{other}};
}
constexpr Int128 operator-(const Int128& other) const {
return Int128{Uint128{*this} - Uint128{other}};
}
constexpr Int128 operator*(const Int128& other) const {
return Int128{Uint128{*this} * Uint128{other}};
}
Int128 operator/(const Int128& other) const {
auto [quot, rem] = divrem(other);
return quot;
}
Int128 operator%(const Int128& other) const {
auto [quot, rem] = divrem(other);
return rem;
}
constexpr Int128 operator<<(int shift) const {
return Int128{Uint128{*this} << shift};
}
constexpr Int128 operator>>(int shift) const {
MOZ_ASSERT(0 <= shift && shift <= 127, "undefined shift amount");
// Ensure the shift amount is in range.
shift &= 127;
// "§2-17 Double-Length Shifts" from Hacker's Delight, 2nd edition.
if (shift >= 64) {
uint64_t y0 = uint64_t(int64_t(high) >> (shift - 64));
uint64_t y1 = uint64_t(int64_t(high) >> 63);
return Int128{y0, y1};
}
if (shift > 0) {
uint64_t y0 = low >> shift | high << (64 - shift);
uint64_t y1 = uint64_t(int64_t(high) >> shift);
return Int128{y0, y1};
}
return *this;
}
constexpr Int128 operator&(const Int128& other) const {
return Int128{low & other.low, high & other.high};
}
constexpr Int128 operator|(const Int128& other) const {
return Int128{low | other.low, high | other.high};
}
constexpr Int128 operator^(const Int128& other) const {
return Int128{low ^ other.low, high ^ other.high};
}
constexpr Int128 operator~() const { return Int128{~low, ~high}; }
constexpr Int128 operator-() const { return Int128{} - *this; }
constexpr Int128 operator+() const { return *this; }
constexpr Int128& operator++() {
*this = *this + Int128{1, 0};
return *this;
}
constexpr Int128 operator++(int) {
auto result = *this;
++*this;
return result;
}
constexpr Int128& operator--() {
*this = *this - Int128{1, 0};
return *this;
}
constexpr Int128 operator--(int) {
auto result = *this;
--*this;
return result;
}
constexpr Int128 operator+=(const Int128& other) {
*this = *this + other;
return *this;
}
constexpr Int128 operator-=(const Int128& other) {
*this = *this - other;
return *this;
}
constexpr Int128 operator*=(const Int128& other) {
*this = *this * other;
return *this;
}
Int128 operator/=(const Int128& other) {
*this = *this / other;
return *this;
}
Int128 operator%=(const Int128& other) {
*this = *this % other;
return *this;
}
constexpr Int128 operator&=(const Int128& other) {
*this = *this & other;
return *this;
}
constexpr Int128 operator|=(const Int128& other) {
*this = *this | other;
return *this;
}
constexpr Int128 operator^=(const Int128& other) {
*this = *this ^ other;
return *this;
}
constexpr Int128 operator<<=(int shift) {
*this = *this << shift;
return *this;
}
constexpr Int128 operator>>=(int shift) {
*this = *this >> shift;
return *this;
}
};
constexpr Uint128::operator Int128() const { return Int128{low, high}; }
} /* namespace js::temporal */
template <>
class std::numeric_limits<js::temporal::Int128> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = true;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr std::float_denorm_style has_denorm = std::denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr std::float_round_style round_style = std::round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = CHAR_BIT * sizeof(js::temporal::Int128) - 1;
static constexpr int digits10 = int(digits * /* std::log10(2) */ 0.30102999);
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = true;
static constexpr bool tinyness_before = false;
static constexpr auto min() noexcept {
return js::temporal::Int128{1} << 127;
}
static constexpr auto lowest() noexcept { return min(); }
static constexpr auto max() noexcept { return ~min(); }
static constexpr auto epsilon() noexcept { return js::temporal::Int128{}; }
static constexpr auto round_error() noexcept {
return js::temporal::Int128{};
}
static constexpr auto infinity() noexcept { return js::temporal::Int128{}; }
static constexpr auto quiet_NaN() noexcept { return js::temporal::Int128{}; }
static constexpr auto signaling_NaN() noexcept {
return js::temporal::Int128{};
}
static constexpr auto denorm_min() noexcept { return js::temporal::Int128{}; }
};
template <>
class std::numeric_limits<js::temporal::Uint128> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr std::float_denorm_style has_denorm = std::denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr std::float_round_style round_style = std::round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = CHAR_BIT * sizeof(js::temporal::Uint128);
static constexpr int digits10 = int(digits * /* std::log10(2) */ 0.30102999);
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = true;
static constexpr bool tinyness_before = false;
static constexpr auto min() noexcept { return js::temporal::Uint128{}; }
static constexpr auto lowest() noexcept { return min(); }
static constexpr auto max() noexcept { return ~js::temporal::Uint128{}; }
static constexpr auto epsilon() noexcept { return js::temporal::Uint128{}; }
static constexpr auto round_error() noexcept {
return js::temporal::Uint128{};
}
static constexpr auto infinity() noexcept { return js::temporal::Uint128{}; }
static constexpr auto quiet_NaN() noexcept { return js::temporal::Uint128{}; }
static constexpr auto signaling_NaN() noexcept {
return js::temporal::Uint128{};
}
static constexpr auto denorm_min() noexcept {
return js::temporal::Uint128{};
}
};
#endif /* builtin_temporal_Int128_h */