Source code

Revision control

Copy as Markdown

Other Tools

// Copyright 2019 Google Inc. All rights reserved.↩
//↩
// Redistribution and use in source and binary forms, with or without↩
// modification, are permitted provided that the following conditions are↩
// met:↩
//↩
// * Redistributions of source code must retain the above copyright↩
// notice, this list of conditions and the following disclaimer.↩
// * Redistributions in binary form must reproduce the above↩
// copyright notice, this list of conditions and the following disclaimer↩
// in the documentation and/or other materials provided with the↩
// distribution.↩
// * Neither the name of Google Inc. nor the names of its↩
// contributors may be used to endorse or promote products derived from↩
// this software without specific prior written permission.↩
//↩
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS↩
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT↩
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR↩
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT↩
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,↩
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT↩
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,↩
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY↩
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT↩
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE↩
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.↩
#include "tools/windows/converter_exe/escaping.h"
#include <assert.h>↩
#define kApb kAsciiPropertyBits↩
const unsigned char kAsciiPropertyBits[256] = {↩
0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0x00↩
0x40, 0x68, 0x48, 0x48, 0x48, 0x48, 0x40, 0x40,↩
0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0x10↩
0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,↩
0x28, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, // 0x20↩
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,↩
0x84, 0x84, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,↩
0x10, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x05, // 0x40↩
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,↩
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, // 0x50↩
0x05, 0x05, 0x05, 0x10, 0x10, 0x10, 0x10, 0x10,↩
0x10, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x05, // 0x60↩
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,↩
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, // 0x70↩
0x05, 0x05, 0x05, 0x10, 0x10, 0x10, 0x10, 0x40,↩
};↩
// Use !! to suppress the warning C4800 of forcing 'int' to 'bool'.↩
static inline bool ascii_isspace(unsigned char c) { return !!(kApb[c] & 0x08); }↩
///////////////////////////////////↩
// scoped_array↩
///////////////////////////////////↩
// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate↩
// with new [] and the destructor deletes objects with delete [].↩
//↩
// As with scoped_ptr<C>, a scoped_array<C> either points to an object↩
// or is NULL. A scoped_array<C> owns the object that it points to.↩
// scoped_array<T> is thread-compatible, and once you index into it,↩
// the returned objects have only the threadsafety guarantees of T.↩
//↩
// Size: sizeof(scoped_array<C>) == sizeof(C*)↩
template <class C>↩
class scoped_array {↩
public:↩
// The element type↩
typedef C element_type;↩
// Constructor. Defaults to intializing with NULL.↩
// There is no way to create an uninitialized scoped_array.↩
// The input parameter must be allocated with new [].↩
explicit scoped_array(C* p = NULL) : array_(p) { }↩
// Destructor. If there is a C object, delete it.↩
// We don't need to test ptr_ == NULL because C++ does that for us.↩
~scoped_array() {↩
enum { type_must_be_complete = sizeof(C) };↩
delete[] array_;↩
}↩
// Reset. Deletes the current owned object, if any.↩
// Then takes ownership of a new object, if given.↩
// this->reset(this->get()) works.↩
void reset(C* p = NULL) {↩
if (p != array_) {↩
enum { type_must_be_complete = sizeof(C) };↩
delete[] array_;↩
array_ = p;↩
}↩
}↩
// Get one element of the current object.↩
// Will assert() if there is no current object, or index i is negative.↩
C& operator[](std::ptrdiff_t i) const {↩
assert(i >= 0);↩
assert(array_ != NULL);↩
return array_[i];↩
}↩
// Get a pointer to the zeroth element of the current object.↩
// If there is no current object, return NULL.↩
C* get() const {↩
return array_;↩
}↩
// Comparison operators.↩
// These return whether a scoped_array and a raw pointer refer to↩
// the same array, not just to two different but equal arrays.↩
bool operator==(const C* p) const { return array_ == p; }↩
bool operator!=(const C* p) const { return array_ != p; }↩
// Swap two scoped arrays.↩
void swap(scoped_array& p2) {↩
C* tmp = array_;↩
array_ = p2.array_;↩
p2.array_ = tmp;↩
}↩
// Release an array.↩
// The return value is the current pointer held by this object.↩
// If this object holds a NULL pointer, the return value is NULL.↩
// After this operation, this object will hold a NULL pointer,↩
// and will not own the object any more.↩
C* release() {↩
C* retVal = array_;↩
array_ = NULL;↩
return retVal;↩
}↩
private:↩
C* array_;↩
// Forbid comparison of different scoped_array types.↩
template <class C2> bool operator==(scoped_array<C2> const& p2) const;↩
template <class C2> bool operator!=(scoped_array<C2> const& p2) const;↩
// Disallow evil constructors↩
scoped_array(const scoped_array&);↩
void operator=(const scoped_array&);↩
};↩
///////////////////////////////////↩
// Escape methods↩
///////////////////////////////////↩
namespace strings {↩
// Return a mutable char* pointing to a string's internal buffer,↩
// which may not be null-terminated. Writing through this pointer will↩
// modify the string.↩
//↩
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the↩
// next call to a string method that invalidates iterators.↩
//↩
// As of 2006-04, there is no standard-blessed way of getting a↩
// mutable reference to a string's internal buffer. However, issue 530↩
// proposes this as the method. According to Matt Austern, this should↩
// already work on all current implementations.↩
inline char* string_as_array(string* str) {↩
// DO NOT USE const_cast<char*>(str->data())! See the unittest for why.↩
return str->empty() ? NULL : &*str->begin();↩
}↩
int CalculateBase64EscapedLen(int input_len, bool do_padding) {↩
// these formulae were copied from comments that used to go with the base64↩
// encoding functions↩
int intermediate_result = 8 * input_len + 5;↩
assert(intermediate_result > 0); // make sure we didn't overflow↩
int len = intermediate_result / 6;↩
if (do_padding) len = ((len + 3) / 4) * 4;↩
return len;↩
}↩
// Base64Escape does padding, so this calculation includes padding.↩
int CalculateBase64EscapedLen(int input_len) {↩
return CalculateBase64EscapedLen(input_len, true);↩
}↩
// ----------------------------------------------------------------------↩
// int Base64Unescape() - base64 decoder↩
// int Base64Escape() - base64 encoder↩
// int WebSafeBase64Unescape() - Google's variation of base64 decoder↩
// int WebSafeBase64Escape() - Google's variation of base64 encoder↩
//↩
// Check out↩
// description, but what we care about is that...↩
// Take the encoded stuff in groups of 4 characters and turn each↩
// character into a code 0 to 63 thus:↩
// A-Z map to 0 to 25↩
// a-z map to 26 to 51↩
// 0-9 map to 52 to 61↩
// +(- for WebSafe) maps to 62↩
// /(_ for WebSafe) maps to 63↩
// There will be four numbers, all less than 64 which can be represented↩
// by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively).↩
// Arrange the 6 digit binary numbers into three bytes as such:↩
// aaaaaabb bbbbcccc ccdddddd↩
// Equals signs (one or two) are used at the end of the encoded block to↩
// indicate that the text was not an integer multiple of three bytes long.↩
// ----------------------------------------------------------------------↩
int Base64UnescapeInternal(const char *src, int szsrc,↩
char *dest, int szdest,↩
const signed char* unbase64) {↩
static const char kPad64 = '=';↩
int decode = 0;↩
int destidx = 0;↩
int state = 0;↩
unsigned int ch = 0;↩
unsigned int temp = 0;↩
// The GET_INPUT macro gets the next input character, skipping↩
// over any whitespace, and stopping when we reach the end of the↩
// string or when we read any non-data character. The arguments are↩
// an arbitrary identifier (used as a label for goto) and the number↩
// of data bytes that must remain in the input to avoid aborting the↩
// loop.↩
#define GET_INPUT(label, remain) \↩
label: \↩
--szsrc; \↩
ch = *src++; \↩
decode = unbase64[ch]; \↩
if (decode < 0) { \↩
if (ascii_isspace((char)ch) && szsrc >= remain) \↩
goto label; \↩
state = 4 - remain; \↩
break; \↩
}↩
// if dest is null, we're just checking to see if it's legal input↩
// rather than producing output. (I suspect this could just be done↩
// with a regexp...). We duplicate the loop so this test can be↩
// outside it instead of in every iteration.↩
if (dest) {↩
// This loop consumes 4 input bytes and produces 3 output bytes↩
// per iteration. We can't know at the start that there is enough↩
// data left in the string for a full iteration, so the loop may↩
// break out in the middle; if so 'state' will be set to the↩
// number of input bytes read.↩
while (szsrc >= 4) {↩
// We'll start by optimistically assuming that the next four↩
// bytes of the string (src[0..3]) are four good data bytes↩
// (that is, no nulls, whitespace, padding chars, or illegal↩
// chars). We need to test src[0..2] for nulls individually↩
// before constructing temp to preserve the property that we↩
// never read past a null in the string (no matter how long↩
// szsrc claims the string is).↩
if (!src[0] || !src[1] || !src[2] ||↩
(temp = ((unbase64[static_cast<int>(src[0])] << 18) |↩
(unbase64[static_cast<int>(src[1])] << 12) |↩
(unbase64[static_cast<int>(src[2])] << 6) |↩
(unbase64[static_cast<int>(src[3])]))) & 0x80000000) {↩
// Iff any of those four characters was bad (null, illegal,↩
// whitespace, padding), then temp's high bit will be set↩
// (because unbase64[] is -1 for all bad characters).↩
//↩
// We'll back up and resort to the slower decoder, which knows↩
// how to handle those cases.↩
GET_INPUT(first, 4);↩
temp = decode;↩
GET_INPUT(second, 3);↩
temp = (temp << 6) | decode;↩
GET_INPUT(third, 2);↩
temp = (temp << 6) | decode;↩
GET_INPUT(fourth, 1);↩
temp = (temp << 6) | decode;↩
} else {↩
// We really did have four good data bytes, so advance four↩
// characters in the string.↩
szsrc -= 4;↩
src += 4;↩
decode = -1;↩
ch = '\0';↩
}↩
// temp has 24 bits of input, so write that out as three bytes.↩
if (destidx+3 > szdest) return -1;↩
dest[destidx+2] = (char)temp;↩
temp >>= 8;↩
dest[destidx+1] = (char)temp;↩
temp >>= 8;↩
dest[destidx] = (char)temp;↩
destidx += 3;↩
}↩
} else {↩
while (szsrc >= 4) {↩
if (!src[0] || !src[1] || !src[2] ||↩
(temp = ((unbase64[static_cast<int>(src[0])] << 18) |↩
(unbase64[static_cast<int>(src[1])] << 12) |↩
(unbase64[static_cast<int>(src[2])] << 6) |↩
(unbase64[static_cast<int>(src[3])]))) & 0x80000000) {↩
GET_INPUT(first_no_dest, 4);↩
GET_INPUT(second_no_dest, 3);↩
GET_INPUT(third_no_dest, 2);↩
GET_INPUT(fourth_no_dest, 1);↩
} else {↩
szsrc -= 4;↩
src += 4;↩
decode = -1;↩
ch = '\0';↩
}↩
destidx += 3;↩
}↩
}↩
#undef GET_INPUT↩
// if the loop terminated because we read a bad character, return↩
// now.↩
if (decode < 0 && ch != '\0' && ch != kPad64 && !ascii_isspace((char)ch))↩
return -1;↩
if (ch == kPad64) {↩
// if we stopped by hitting an '=', un-read that character -- we'll↩
// look at it again when we count to check for the proper number of↩
// equals signs at the end.↩
++szsrc;↩
--src;↩
} else {↩
// This loop consumes 1 input byte per iteration. It's used to↩
// clean up the 0-3 input bytes remaining when the first, faster↩
// loop finishes. 'temp' contains the data from 'state' input↩
// characters read by the first loop.↩
while (szsrc > 0) {↩
--szsrc;↩
ch = *src++;↩
decode = unbase64[ch];↩
if (decode < 0) {↩
if (ascii_isspace((char)ch)) {↩
continue;↩
} else if (ch == '\0') {↩
break;↩
} else if (ch == kPad64) {↩
// back up one character; we'll read it again when we check↩
// for the correct number of equals signs at the end.↩
++szsrc;↩
--src;↩
break;↩
} else {↩
return -1;↩
}↩
}↩
// Each input character gives us six bits of output.↩
temp = (temp << 6) | decode;↩
++state;↩
if (state == 4) {↩
// If we've accumulated 24 bits of output, write that out as↩
// three bytes.↩
if (dest) {↩
if (destidx+3 > szdest) return -1;↩
dest[destidx+2] = (char)temp;↩
temp >>= 8;↩
dest[destidx+1] = (char)temp;↩
temp >>= 8;↩
dest[destidx] = (char)temp;↩
}↩
destidx += 3;↩
state = 0;↩
temp = 0;↩
}↩
}↩
}↩
// Process the leftover data contained in 'temp' at the end of the input.↩
int expected_equals = 0;↩
switch (state) {↩
case 0:↩
// Nothing left over; output is a multiple of 3 bytes.↩
break;↩
case 1:↩
// Bad input; we have 6 bits left over.↩
return -1;↩
case 2:↩
// Produce one more output byte from the 12 input bits we have left.↩
if (dest) {↩
if (destidx+1 > szdest) return -1;↩
temp >>= 4;↩
dest[destidx] = (char)temp;↩
}↩
++destidx;↩
expected_equals = 2;↩
break;↩
case 3:↩
// Produce two more output bytes from the 18 input bits we have left.↩
if (dest) {↩
if (destidx+2 > szdest) return -1;↩
temp >>= 2;↩
dest[destidx+1] = (char)temp;↩
temp >>= 8;↩
dest[destidx] = (char)temp;↩
}↩
destidx += 2;↩
expected_equals = 1;↩
break;↩
default:↩
// state should have no other values at this point.↩
fprintf(stdout, "This can't happen; base64 decoder state = %d", state);↩
}↩
// The remainder of the string should be all whitespace, mixed with↩
// exactly 0 equals signs, or exactly 'expected_equals' equals↩
// signs. (Always accepting 0 equals signs is a google extension↩
// not covered in the RFC.)↩
int equals = 0;↩
while (szsrc > 0 && *src) {↩
if (*src == kPad64)↩
++equals;↩
else if (!ascii_isspace(*src))↩
return -1;↩
--szsrc;↩
++src;↩
}↩
return (equals == 0 || equals == expected_equals) ? destidx : -1;↩
}↩
int Base64Unescape(const char *src, int szsrc, char *dest, int szdest) {↩
static const signed char UnBase64[] = {↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */,↩
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,↩
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,↩
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,↩
7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,↩
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,↩
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1,↩
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,↩
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,↩
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,↩
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1↩
};↩
// The above array was generated by the following code↩
// #include <sys/time.h>↩
// #include <stdlib.h>↩
// #include <string.h>↩
// main()↩
// {↩
// static const char Base64[] =↩
// "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";↩
// char *pos;↩
// int idx, i, j;↩
// printf(" ");↩
// for (i = 0; i < 255; i += 8) {↩
// for (j = i; j < i + 8; j++) {↩
// pos = strchr(Base64, j);↩
// if ((pos == NULL) || (j == 0))↩
// idx = -1;↩
// else↩
// idx = pos - Base64;↩
// if (idx == -1)↩
// printf(" %2d, ", idx);↩
// else↩
// printf(" %2d/*%c*/,", idx, j);↩
// }↩
// printf("\n ");↩
// }↩
// }↩
return Base64UnescapeInternal(src, szsrc, dest, szdest, UnBase64);↩
}↩
bool Base64Unescape(const char *src, int slen, string* dest) {↩
// Determine the size of the output string. Base64 encodes every 3 bytes into↩
// 4 characters. any leftover chars are added directly for good measure.↩
// This is documented in the base64 RFC: http://www.ietf.org/rfc/rfc3548.txt
const int dest_len = 3 * (slen / 4) + (slen % 4);↩
dest->resize(dest_len);↩
// We are getting the destination buffer by getting the beginning of the↩
// string and converting it into a char *.↩
const int len = Base64Unescape(src, slen,↩
string_as_array(dest), dest->size());↩
if (len < 0) {↩
return false;↩
}↩
// could be shorter if there was padding↩
assert(len <= dest_len);↩
dest->resize(len);↩
return true;↩
}↩
// Base64Escape↩
//↩
// NOTE: We have to use an unsigned type for src because code built↩
// in the the /google tree treats characters as signed unless↩
// otherwised specified.↩
//↩
// TODO(who?): Move this function to use the char* type for "src"↩
int Base64EscapeInternal(const unsigned char *src, int szsrc,↩
char *dest, int szdest, const char *base64,↩
bool do_padding) {↩
static const char kPad64 = '=';↩
if (szsrc <= 0) return 0;↩
char *cur_dest = dest;↩
const unsigned char *cur_src = src;↩
// Three bytes of data encodes to four characters of cyphertext.↩
// So we can pump through three-byte chunks atomically.↩
while (szsrc > 2) { /* keep going until we have less than 24 bits */
if ((szdest -= 4) < 0) return 0;↩
cur_dest[0] = base64[cur_src[0] >> 2];↩
cur_dest[1] = base64[((cur_src[0] & 0x03) << 4) + (cur_src[1] >> 4)];↩
cur_dest[2] = base64[((cur_src[1] & 0x0f) << 2) + (cur_src[2] >> 6)];↩
cur_dest[3] = base64[cur_src[2] & 0x3f];↩
cur_dest += 4;↩
cur_src += 3;↩
szsrc -= 3;↩
}↩
/* now deal with the tail (<=2 bytes) */
switch (szsrc) {↩
case 0:↩
// Nothing left; nothing more to do.↩
break;↩
case 1:↩
// One byte left: this encodes to two characters, and (optionally)↩
// two pad characters to round out the four-character cypherblock.↩
if ((szdest -= 2) < 0) return 0;↩
cur_dest[0] = base64[cur_src[0] >> 2];↩
cur_dest[1] = base64[(cur_src[0] & 0x03) << 4];↩
cur_dest += 2;↩
if (do_padding) {↩
if ((szdest -= 2) < 0) return 0;↩
cur_dest[0] = kPad64;↩
cur_dest[1] = kPad64;↩
cur_dest += 2;↩
}↩
break;↩
case 2:↩
// Two bytes left: this encodes to three characters, and (optionally)↩
// one pad character to round out the four-character cypherblock.↩
if ((szdest -= 3) < 0) return 0;↩
cur_dest[0] = base64[cur_src[0] >> 2];↩
cur_dest[1] = base64[((cur_src[0] & 0x03) << 4) + (cur_src[1] >> 4)];↩
cur_dest[2] = base64[(cur_src[1] & 0x0f) << 2];↩
cur_dest += 3;↩
if (do_padding) {↩
if ((szdest -= 1) < 0) return 0;↩
cur_dest[0] = kPad64;↩
cur_dest += 1;↩
}↩
break;↩
default:↩
// Should not be reached: blocks of 3 bytes are handled↩
// in the while loop before this switch statement.↩
fprintf(stderr, "Logic problem? szsrc = %d", szsrc);↩
assert(false);↩
break;↩
}↩
return (cur_dest - dest);↩
}↩
static const char kBase64Chars[] =↩
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";↩
static const char kWebSafeBase64Chars[] =↩
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";↩
int Base64Escape(const unsigned char *src, int szsrc, char *dest, int szdest) {↩
return Base64EscapeInternal(src, szsrc, dest, szdest, kBase64Chars, true);↩
}↩
void Base64Escape(const unsigned char *src, int szsrc,↩
string* dest, bool do_padding) {↩
const int max_escaped_size =↩
CalculateBase64EscapedLen(szsrc, do_padding);↩
dest->clear();↩
dest->resize(max_escaped_size + 1, '\0');↩
const int escaped_len = Base64EscapeInternal(src, szsrc,↩
&*dest->begin(), dest->size(),↩
kBase64Chars,↩
do_padding);↩
assert(max_escaped_size <= escaped_len);↩
dest->resize(escaped_len);↩
}↩
void Base64Escape(const string& src, string* dest) {↩
Base64Escape(reinterpret_cast<const unsigned char*>(src.c_str()),↩
src.size(), dest, true);↩
}↩
////////////////////////////////////////////////////↩
// WebSafe methods↩
////////////////////////////////////////////////////↩
int WebSafeBase64Unescape(const char *src, int szsrc, char *dest, int szdest) {↩
static const signed char UnBase64[] = {↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, 62/*-*/, -1, -1,↩
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,↩
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,↩
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,↩
7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,↩
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,↩
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, 63/*_*/,↩
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,↩
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,↩
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,↩
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1,↩
-1, -1, -1, -1, -1, -1, -1, -1↩
};↩
// The above array was generated by the following code↩
// #include <sys/time.h>↩
// #include <stdlib.h>↩
// #include <string.h>↩
// main()↩
// {↩
// static const char Base64[] =↩
// "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";↩
// char *pos;↩
// int idx, i, j;↩
// printf(" ");↩
// for (i = 0; i < 255; i += 8) {↩
// for (j = i; j < i + 8; j++) {↩
// pos = strchr(Base64, j);↩
// if ((pos == NULL) || (j == 0))↩
// idx = -1;↩
// else↩
// idx = pos - Base64;↩
// if (idx == -1)↩
// printf(" %2d, ", idx);↩
// else↩
// printf(" %2d/*%c*/,", idx, j);↩
// }↩
// printf("\n ");↩
// }↩
// }↩
return Base64UnescapeInternal(src, szsrc, dest, szdest, UnBase64);↩
}↩
bool WebSafeBase64Unescape(const char *src, int slen, string* dest) {↩
int dest_len = 3 * (slen / 4) + (slen % 4);↩
dest->clear();↩
dest->resize(dest_len);↩
int len = WebSafeBase64Unescape(src, slen, &*dest->begin(), dest->size());↩
if (len < 0) {↩
dest->clear();↩
return false;↩
}↩
// could be shorter if there was padding↩
assert(len <= dest_len);↩
dest->resize(len);↩
return true;↩
}↩
bool WebSafeBase64Unescape(const string& src, string* dest) {↩
return WebSafeBase64Unescape(src.data(), src.size(), dest);↩
}↩
int WebSafeBase64Escape(const unsigned char *src, int szsrc, char *dest,↩
int szdest, bool do_padding) {↩
return Base64EscapeInternal(src, szsrc, dest, szdest,↩
kWebSafeBase64Chars, do_padding);↩
}↩
void WebSafeBase64Escape(const unsigned char *src, int szsrc,↩
string *dest, bool do_padding) {↩
const int max_escaped_size =↩
CalculateBase64EscapedLen(szsrc, do_padding);↩
dest->clear();↩
dest->resize(max_escaped_size + 1, '\0');↩
const int escaped_len = Base64EscapeInternal(src, szsrc,↩
&*dest->begin(), dest->size(),↩
kWebSafeBase64Chars,↩
do_padding);↩
assert(max_escaped_size <= escaped_len);↩
dest->resize(escaped_len);↩
}↩
void WebSafeBase64EscapeInternal(const string& src,↩
string* dest,↩
bool do_padding) {↩
int encoded_len = CalculateBase64EscapedLen(src.size());↩
scoped_array<char> buf(new char[encoded_len]);↩
int len = WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.c_str()),↩
src.size(), buf.get(),↩
encoded_len, do_padding);↩
dest->assign(buf.get(), len);↩
}↩
void WebSafeBase64Escape(const string& src, string* dest) {↩
WebSafeBase64EscapeInternal(src, dest, false);↩
}↩
void WebSafeBase64EscapeWithPadding(const string& src, string* dest) {↩
WebSafeBase64EscapeInternal(src, dest, true);↩
}↩
} // namespace strings↩