Source code
Revision control
Copy as Markdown
Other Tools
// Copyright (c) 2013 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// exploitability_linux.cc: Linux specific exploitability engine.
//
// Provides a guess at the exploitability of the crash for the Linux
// platform given a minidump and process_state.
//
// Author: Matthew Riley
#include "processor/exploitability_linux.h"
#ifndef _WIN32
#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <sstream>
#include <iterator>
#endif // _WIN32
#include <string.h>
#include "google_breakpad/common/minidump_exception_linux.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/process_state.h"
#include "google_breakpad/processor/stack_frame.h"
#include "processor/logging.h"
namespace {
// Prefixes for memory mapping names.
constexpr char kHeapPrefix[] = "[heap";
constexpr char kStackPrefix[] = "[stack";
// This function in libc is called if the program was compiled with
// -fstack-protector and a function's stack canary changes.
constexpr char kStackCheckFailureFunction[] = "__stack_chk_fail";
// This function in libc is called if the program was compiled with
// -D_FORTIFY_SOURCE=2, a function like strcpy() is called, and the runtime
// can determine that the call would overflow the target buffer.
constexpr char kBoundsCheckFailureFunction[] = "__chk_fail";
#ifndef _WIN32
const unsigned int MAX_INSTRUCTION_LEN = 15;
const unsigned int MAX_OBJDUMP_BUFFER_LEN = 4096;
#endif // _WIN32
} // namespace
namespace google_breakpad {
ExploitabilityLinux::ExploitabilityLinux(Minidump *dump,
ProcessState *process_state)
: Exploitability(dump, process_state),
enable_objdump_(false) { }
ExploitabilityLinux::ExploitabilityLinux(Minidump *dump,
ProcessState *process_state,
bool enable_objdump)
: Exploitability(dump, process_state),
enable_objdump_(enable_objdump) { }
ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() {
// Check the crashing thread for functions suggesting a buffer overflow or
// stack smash.
if (process_state_->requesting_thread() != -1) {
CallStack* crashing_thread =
process_state_->threads()->at(process_state_->requesting_thread());
const vector<StackFrame*>& crashing_thread_frames =
*crashing_thread->frames();
for (size_t i = 0; i < crashing_thread_frames.size(); ++i) {
if (crashing_thread_frames[i]->function_name ==
kStackCheckFailureFunction) {
return EXPLOITABILITY_HIGH;
}
if (crashing_thread_frames[i]->function_name ==
kBoundsCheckFailureFunction) {
return EXPLOITABILITY_HIGH;
}
}
}
// Getting exception data. (It should exist for all minidumps.)
MinidumpException *exception = dump_->GetException();
if (exception == NULL) {
BPLOG(INFO) << "No exception record.";
return EXPLOITABILITY_ERR_PROCESSING;
}
const MDRawExceptionStream *raw_exception_stream = exception->exception();
if (raw_exception_stream == NULL) {
BPLOG(INFO) << "No raw exception stream.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Checking for benign exceptions that caused the crash.
if (this->BenignCrashTrigger(raw_exception_stream)) {
return EXPLOITABILITY_NONE;
}
// Check if the instruction pointer is in a valid instruction region
// by finding if it maps to an executable part of memory.
uint64_t instruction_ptr = 0;
uint64_t stack_ptr = 0;
const MinidumpContext *context = exception->GetContext();
if (context == NULL) {
BPLOG(INFO) << "No exception context.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Getting the instruction pointer.
if (!context->GetInstructionPointer(&instruction_ptr)) {
BPLOG(INFO) << "Failed to retrieve instruction pointer.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Getting the stack pointer.
if (!context->GetStackPointer(&stack_ptr)) {
BPLOG(INFO) << "Failed to retrieve stack pointer.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Checking for the instruction pointer in a valid instruction region,
// a misplaced stack pointer, and an executable stack or heap.
if (!this->InstructionPointerInCode(instruction_ptr) ||
this->StackPointerOffStack(stack_ptr) ||
this->ExecutableStackOrHeap()) {
return EXPLOITABILITY_HIGH;
}
// Check for write to read only memory or invalid memory, shelling out
// to objdump is enabled.
if (enable_objdump_ && this->EndedOnIllegalWrite(instruction_ptr)) {
return EXPLOITABILITY_HIGH;
}
// There was no strong evidence suggesting exploitability, but the minidump
// does not appear totally benign either.
return EXPLOITABILITY_INTERESTING;
}
bool ExploitabilityLinux::EndedOnIllegalWrite(uint64_t instruction_ptr) {
#ifdef _WIN32
BPLOG(INFO) << "MinGW does not support fork and exec. Terminating method.";
#else
// Get memory region containing instruction pointer.
MinidumpMemoryList *memory_list = dump_->GetMemoryList();
MinidumpMemoryRegion *memory_region =
memory_list ?
memory_list->GetMemoryRegionForAddress(instruction_ptr) : NULL;
if (!memory_region) {
BPLOG(INFO) << "No memory region around instruction pointer.";
return false;
}
// Get exception data to find architecture.
string architecture = "";
MinidumpException *exception = dump_->GetException();
// This should never evaluate to true, since this should not be reachable
// without checking for exception data earlier.
if (!exception) {
BPLOG(INFO) << "No exception data.";
return false;
}
const MDRawExceptionStream *raw_exception_stream = exception->exception();
const MinidumpContext *context = exception->GetContext();
// This should not evaluate to true, for the same reason mentioned above.
if (!raw_exception_stream || !context) {
BPLOG(INFO) << "No exception or architecture data.";
return false;
}
// Check architecture and set architecture variable to corresponding flag
// in objdump.
switch (context->GetContextCPU()) {
case MD_CONTEXT_X86:
architecture = "i386";
break;
case MD_CONTEXT_AMD64:
architecture = "i386:x86-64";
break;
default:
// Unsupported architecture. Note that ARM architectures are not
// supported because objdump does not support ARM.
return false;
break;
}
// Get memory region around instruction pointer and the number of bytes
// before and after the instruction pointer in the memory region.
const uint8_t *raw_memory = memory_region->GetMemory();
const uint64_t base = memory_region->GetBase();
if (base > instruction_ptr) {
BPLOG(ERROR) << "Memory region base value exceeds instruction pointer.";
return false;
}
const uint64_t offset = instruction_ptr - base;
if (memory_region->GetSize() < MAX_INSTRUCTION_LEN + offset) {
BPLOG(INFO) << "Not enough bytes left to guarantee complete instruction.";
return false;
}
// Convert bytes into objdump output.
char objdump_output_buffer[MAX_OBJDUMP_BUFFER_LEN] = {0};
DisassembleBytes(architecture,
raw_memory + offset,
MAX_OBJDUMP_BUFFER_LEN,
objdump_output_buffer);
string line;
if (!GetObjdumpInstructionLine(objdump_output_buffer, &line)) {
return false;
}
// Convert objdump instruction line into the operation and operands.
string instruction = "";
string dest = "";
string src = "";
TokenizeObjdumpInstruction(line, &instruction, &dest, &src);
// Check if the operation is a write to memory. First, the instruction
// must one that can write to memory. Second, the write destination
// must be a spot in memory rather than a register. Since there are no
// symbols from objdump, the destination will be enclosed by brackets.
if (dest.size() > 2 && dest.at(0) == '[' && dest.at(dest.size() - 1) == ']' &&
(!instruction.compare("mov") || !instruction.compare("inc") ||
!instruction.compare("dec") || !instruction.compare("and") ||
!instruction.compare("or") || !instruction.compare("xor") ||
!instruction.compare("not") || !instruction.compare("neg") ||
!instruction.compare("add") || !instruction.compare("sub") ||
!instruction.compare("shl") || !instruction.compare("shr"))) {
// Strip away enclosing brackets from the destination address.
dest = dest.substr(1, dest.size() - 2);
uint64_t write_address = 0;
CalculateAddress(dest, *context, &write_address);
// If the program crashed as a result of a write, the destination of
// the write must have been an address that did not permit writing.
// However, if the address is under 4k, due to program protections,
// the crash does not suggest exploitability for writes with such a
// low target address.
return write_address > 4096;
}
#endif // _WIN32
return false;
}
#ifndef _WIN32
bool ExploitabilityLinux::CalculateAddress(const string &address_expression,
const DumpContext &context,
uint64_t *write_address) {
// The destination should be the format reg+a or reg-a, where reg
// is a register and a is a hexadecimal constant. Although more complex
// expressions can make valid instructions, objdump's disassembly outputs
// it in this simpler format.
// TODO(liuandrew): Handle more complex formats, should they arise.
if (!write_address) {
BPLOG(ERROR) << "Null parameter.";
return false;
}
// Clone parameter into a non-const string.
string expression = address_expression;
// Parse out the constant that is added to the address (if it exists).
size_t delim = expression.find('+');
bool positive_add_constant = true;
// Check if constant is subtracted instead of added.
if (delim == string::npos) {
positive_add_constant = false;
delim = expression.find('-');
}
uint32_t add_constant = 0;
// Save constant and remove it from the expression.
if (delim != string::npos) {
if (!sscanf(expression.substr(delim + 1).c_str(), "%x", &add_constant)) {
BPLOG(ERROR) << "Failed to scan constant.";
return false;
}
expression = expression.substr(0, delim);
}
// Set the the write address to the corresponding register.
// TODO(liuandrew): Add support for partial registers, such as
// the rax/eax/ax/ah/al chain.
switch (context.GetContextCPU()) {
case MD_CONTEXT_X86:
if (!expression.compare("eax")) {
*write_address = context.GetContextX86()->eax;
} else if (!expression.compare("ebx")) {
*write_address = context.GetContextX86()->ebx;
} else if (!expression.compare("ecx")) {
*write_address = context.GetContextX86()->ecx;
} else if (!expression.compare("edx")) {
*write_address = context.GetContextX86()->edx;
} else if (!expression.compare("edi")) {
*write_address = context.GetContextX86()->edi;
} else if (!expression.compare("esi")) {
*write_address = context.GetContextX86()->esi;
} else if (!expression.compare("ebp")) {
*write_address = context.GetContextX86()->ebp;
} else if (!expression.compare("esp")) {
*write_address = context.GetContextX86()->esp;
} else if (!expression.compare("eip")) {
*write_address = context.GetContextX86()->eip;
} else {
BPLOG(ERROR) << "Unsupported register";
return false;
}
break;
case MD_CONTEXT_AMD64:
if (!expression.compare("rax")) {
*write_address = context.GetContextAMD64()->rax;
} else if (!expression.compare("rbx")) {
*write_address = context.GetContextAMD64()->rbx;
} else if (!expression.compare("rcx")) {
*write_address = context.GetContextAMD64()->rcx;
} else if (!expression.compare("rdx")) {
*write_address = context.GetContextAMD64()->rdx;
} else if (!expression.compare("rdi")) {
*write_address = context.GetContextAMD64()->rdi;
} else if (!expression.compare("rsi")) {
*write_address = context.GetContextAMD64()->rsi;
} else if (!expression.compare("rbp")) {
*write_address = context.GetContextAMD64()->rbp;
} else if (!expression.compare("rsp")) {
*write_address = context.GetContextAMD64()->rsp;
} else if (!expression.compare("rip")) {
*write_address = context.GetContextAMD64()->rip;
} else if (!expression.compare("r8")) {
*write_address = context.GetContextAMD64()->r8;
} else if (!expression.compare("r9")) {
*write_address = context.GetContextAMD64()->r9;
} else if (!expression.compare("r10")) {
*write_address = context.GetContextAMD64()->r10;
} else if (!expression.compare("r11")) {
*write_address = context.GetContextAMD64()->r11;
} else if (!expression.compare("r12")) {
*write_address = context.GetContextAMD64()->r12;
} else if (!expression.compare("r13")) {
*write_address = context.GetContextAMD64()->r13;
} else if (!expression.compare("r14")) {
*write_address = context.GetContextAMD64()->r14;
} else if (!expression.compare("r15")) {
*write_address = context.GetContextAMD64()->r15;
} else {
BPLOG(ERROR) << "Unsupported register";
return false;
}
break;
default:
// This should not occur since the same switch condition
// should have terminated this method.
return false;
break;
}
// Add or subtract constant from write address (if applicable).
*write_address =
positive_add_constant ?
*write_address + add_constant : *write_address - add_constant;
return true;
}
// static
bool ExploitabilityLinux::GetObjdumpInstructionLine(
const char *objdump_output_buffer,
string *instruction_line) {
// Put buffer data into stream to output line-by-line.
std::stringstream objdump_stream;
objdump_stream.str(string(objdump_output_buffer));
// Pipe each output line into the string until the string contains the first
// instruction from objdump. All lines before the "<.data>:" section are
// skipped. Loop until the line shows the first instruction or there are no
// lines left.
bool data_section_seen = false;
do {
if (!getline(objdump_stream, *instruction_line)) {
BPLOG(INFO) << "Objdump instructions not found";
return false;
}
if (instruction_line->find("<.data>:") != string::npos) {
data_section_seen = true;
}
} while (!data_section_seen || instruction_line->find("0:") == string::npos);
// This first instruction contains the above substring.
return true;
}
bool ExploitabilityLinux::TokenizeObjdumpInstruction(const string &line,
string *operation,
string *dest,
string *src) {
if (!operation || !dest || !src) {
BPLOG(ERROR) << "Null parameters passed.";
return false;
}
// Set all pointer values to empty strings.
*operation = "";
*dest = "";
*src = "";
// Tokenize the objdump line.
vector<string> tokens;
std::istringstream line_stream(line);
copy(std::istream_iterator<string>(line_stream),
std::istream_iterator<string>(),
std::back_inserter(tokens));
// Regex for the data in hex form. Each byte is two hex digits.
regex_t regex;
regcomp(®ex, "^[[:xdigit:]]{2}$", REG_EXTENDED | REG_NOSUB);
// Find and set the location of the operator. The operator appears
// directly after the chain of bytes that define the instruction. The
// operands will be the last token, given that the instruction has operands.
// If not, the operator is the last token. The loop skips the first token
// because the first token is the instruction number (namely "0:").
string operands = "";
for (size_t i = 1; i < tokens.size(); i++) {
// Check if current token no longer is in byte format.
if (regexec(®ex, tokens[i].c_str(), 0, NULL, 0)) {
// instruction = tokens[i];
*operation = tokens[i];
// If the operator is the last token, there are no operands.
if (i != tokens.size() - 1) {
operands = tokens[tokens.size() - 1];
}
break;
}
}
regfree(®ex);
if (operation->empty()) {
BPLOG(ERROR) << "Failed to parse out operation from objdump instruction.";
return false;
}
// Split operands into source and destination (if applicable).
if (!operands.empty()) {
size_t delim = operands.find(',');
if (delim == string::npos) {
*dest = operands;
} else {
*dest = operands.substr(0, delim);
*src = operands.substr(delim + 1);
}
}
return true;
}
bool ExploitabilityLinux::DisassembleBytes(const string &architecture,
const uint8_t *raw_bytes,
const unsigned int buffer_len,
char *objdump_output_buffer) {
if (!raw_bytes || !objdump_output_buffer) {
BPLOG(ERROR) << "Bad input parameters.";
return false;
}
// Write raw bytes around instruction pointer to a temporary file to
// pass as an argument to objdump.
char raw_bytes_tmpfile[] = "/tmp/breakpad_mem_region-raw_bytes-XXXXXX";
int raw_bytes_fd = mkstemp(raw_bytes_tmpfile);
if (raw_bytes_fd < 0) {
BPLOG(ERROR) << "Failed to create tempfile.";
unlink(raw_bytes_tmpfile);
return false;
}
if (write(raw_bytes_fd, raw_bytes, MAX_INSTRUCTION_LEN)
!= MAX_INSTRUCTION_LEN) {
BPLOG(ERROR) << "Writing of raw bytes failed.";
unlink(raw_bytes_tmpfile);
return false;
}
char cmd[1024] = {0};
snprintf(cmd,
1024,
"objdump -D -b binary -M intel -m %s %s",
architecture.c_str(),
raw_bytes_tmpfile);
FILE *objdump_fp = popen(cmd, "r");
if (!objdump_fp) {
fclose(objdump_fp);
unlink(raw_bytes_tmpfile);
BPLOG(ERROR) << "Failed to call objdump.";
return false;
}
if (fread(objdump_output_buffer, 1, buffer_len, objdump_fp) <= 0) {
fclose(objdump_fp);
unlink(raw_bytes_tmpfile);
BPLOG(ERROR) << "Failed to read objdump output.";
return false;
}
fclose(objdump_fp);
unlink(raw_bytes_tmpfile);
return true;
}
#endif // _WIN32
bool ExploitabilityLinux::StackPointerOffStack(uint64_t stack_ptr) {
MinidumpLinuxMapsList *linux_maps_list = dump_->GetLinuxMapsList();
// Inconclusive if there are no mappings available.
if (!linux_maps_list) {
return false;
}
const MinidumpLinuxMaps *linux_maps =
linux_maps_list->GetLinuxMapsForAddress(stack_ptr);
// Checks if the stack pointer maps to a valid mapping and if the mapping
// is not the stack. If the mapping has no name, it is inconclusive whether
// it is off the stack.
return !linux_maps || (linux_maps->GetPathname().compare("") &&
linux_maps->GetPathname().compare(
0, strlen(kStackPrefix), kStackPrefix));
}
bool ExploitabilityLinux::ExecutableStackOrHeap() {
MinidumpLinuxMapsList *linux_maps_list = dump_->GetLinuxMapsList();
if (linux_maps_list) {
for (size_t i = 0; i < linux_maps_list->get_maps_count(); i++) {
const MinidumpLinuxMaps *linux_maps =
linux_maps_list->GetLinuxMapsAtIndex(i);
// Check for executable stack or heap for each mapping.
if (linux_maps && (!linux_maps->GetPathname().compare(
0, strlen(kStackPrefix), kStackPrefix) ||
!linux_maps->GetPathname().compare(
0, strlen(kHeapPrefix), kHeapPrefix)) &&
linux_maps->IsExecutable()) {
return true;
}
}
}
return false;
}
bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) {
// Get Linux memory mapping from /proc/self/maps. Checking whether the
// region the instruction pointer is in has executable permission can tell
// whether it is in a valid code region. If there is no mapping for the
// instruction pointer, it is indicative that the instruction pointer is
// not within a module, which implies that it is outside a valid area.
MinidumpLinuxMapsList *linux_maps_list = dump_->GetLinuxMapsList();
const MinidumpLinuxMaps *linux_maps =
linux_maps_list ?
linux_maps_list->GetLinuxMapsForAddress(instruction_ptr) : NULL;
return linux_maps ? linux_maps->IsExecutable() : false;
}
bool ExploitabilityLinux::BenignCrashTrigger(const MDRawExceptionStream
*raw_exception_stream) {
// Check the cause of crash.
// If the exception of the crash is a benign exception,
// it is probably not exploitable.
switch (raw_exception_stream->exception_record.exception_code) {
case MD_EXCEPTION_CODE_LIN_SIGHUP:
case MD_EXCEPTION_CODE_LIN_SIGINT:
case MD_EXCEPTION_CODE_LIN_SIGQUIT:
case MD_EXCEPTION_CODE_LIN_SIGTRAP:
case MD_EXCEPTION_CODE_LIN_SIGABRT:
case MD_EXCEPTION_CODE_LIN_SIGFPE:
case MD_EXCEPTION_CODE_LIN_SIGKILL:
case MD_EXCEPTION_CODE_LIN_SIGUSR1:
case MD_EXCEPTION_CODE_LIN_SIGUSR2:
case MD_EXCEPTION_CODE_LIN_SIGPIPE:
case MD_EXCEPTION_CODE_LIN_SIGALRM:
case MD_EXCEPTION_CODE_LIN_SIGTERM:
case MD_EXCEPTION_CODE_LIN_SIGCHLD:
case MD_EXCEPTION_CODE_LIN_SIGCONT:
case MD_EXCEPTION_CODE_LIN_SIGSTOP:
case MD_EXCEPTION_CODE_LIN_SIGTSTP:
case MD_EXCEPTION_CODE_LIN_SIGTTIN:
case MD_EXCEPTION_CODE_LIN_SIGTTOU:
case MD_EXCEPTION_CODE_LIN_SIGURG:
case MD_EXCEPTION_CODE_LIN_SIGXCPU:
case MD_EXCEPTION_CODE_LIN_SIGXFSZ:
case MD_EXCEPTION_CODE_LIN_SIGVTALRM:
case MD_EXCEPTION_CODE_LIN_SIGPROF:
case MD_EXCEPTION_CODE_LIN_SIGWINCH:
case MD_EXCEPTION_CODE_LIN_SIGIO:
case MD_EXCEPTION_CODE_LIN_SIGPWR:
case MD_EXCEPTION_CODE_LIN_SIGSYS:
case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED:
return true;
break;
default:
return false;
break;
}
}
} // namespace google_breakpad