Source code
Revision control
Copy as Markdown
Other Tools
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// This file may not be copied, modified, or distributed except according to
// those terms.
use core::{
cmp::Ordering,
fmt::{self, Debug, Display, Formatter},
hash::Hash,
mem::{self, ManuallyDrop},
ops::{Deref, DerefMut},
ptr,
};
use super::*;
/// A type with no alignment requirement.
///
/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
/// has the same size and bit validity as `T`, but not necessarily the same
/// alignment [or ABI]. This is useful if a type with an alignment requirement
/// needs to be read from a chunk of memory which provides no alignment
/// guarantees.
///
/// Since `Unalign` has no alignment requirement, the inner `T` may not be
/// properly aligned in memory. There are five ways to access the inner `T`:
/// - by value, using [`get`] or [`into_inner`]
/// - by reference inside of a callback, using [`update`]
/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
/// fail if the `Unalign` does not satisfy `T`'s alignment requirement at
/// runtime
/// - unsafely by reference, using [`deref_unchecked`] or
/// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
/// the `Unalign` satisfies `T`'s alignment requirement
/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
/// [`DerefMut::deref_mut`]
///
/// [`get`]: Unalign::get
/// [`into_inner`]: Unalign::into_inner
/// [`update`]: Unalign::update
/// [`try_deref`]: Unalign::try_deref
/// [`try_deref_mut`]: Unalign::try_deref_mut
/// [`deref_unchecked`]: Unalign::deref_unchecked
/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
// NOTE: This type is sound to use with types that need to be dropped. The
// reason is that the compiler-generated drop code automatically moves all
// values to aligned memory slots before dropping them in-place. This is not
// well-documented, but it's hinted at in places like [1] and [2]. However, this
// also means that `T` must be `Sized`; unless something changes, we can never
// support unsized `T`. [3]
//
#[allow(missing_debug_implementations)]
#[derive(Default, Copy)]
#[cfg_attr(
any(feature = "derive", test),
derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned)
)]
#[repr(C, packed)]
pub struct Unalign<T>(T);
#[cfg(not(any(feature = "derive", test)))]
impl_known_layout!(T => Unalign<T>);
safety_comment! {
/// SAFETY:
/// - `Unalign<T>` is `repr(packed)`, so it is unaligned regardless of the
/// alignment of `T`, and so we don't require that `T: Unaligned`
/// - `Unalign<T>` has the same bit validity as `T`, and so it is
/// `FromZeroes`, `FromBytes`, or `AsBytes` exactly when `T` is as well.
impl_or_verify!(T => Unaligned for Unalign<T>);
impl_or_verify!(T: FromZeroes => FromZeroes for Unalign<T>);
impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
impl_or_verify!(T: AsBytes => AsBytes for Unalign<T>);
}
// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
// is not sufficient to implement `Clone` for `Unalign`.
impl<T: Copy> Clone for Unalign<T> {
#[inline(always)]
fn clone(&self) -> Unalign<T> {
*self
}
}
impl<T> Unalign<T> {
/// Constructs a new `Unalign`.
#[inline(always)]
pub const fn new(val: T) -> Unalign<T> {
Unalign(val)
}
/// Consumes `self`, returning the inner `T`.
#[inline(always)]
pub const fn into_inner(self) -> T {
// Use this instead of `mem::transmute` since the latter can't tell
// that `Unalign<T>` and `T` have the same size.
#[repr(C)]
union Transmute<T> {
u: ManuallyDrop<Unalign<T>>,
t: ManuallyDrop<T>,
}
// SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same
// layout as `T`. `ManuallyDrop<U>` is guaranteed to have the same
// layout as `U`, and so `ManuallyDrop<Unalign<T>>` has the same layout
// as `ManuallyDrop<T>`. Since `Transmute<T>` is `#[repr(C)]`, its `t`
// and `u` fields both start at the same offset (namely, 0) within the
// union.
//
// We do this instead of just destructuring in order to prevent
// `Unalign`'s `Drop::drop` from being run, since dropping is not
// supported in `const fn`s.
//
// instead of using unsafe.
unsafe { ManuallyDrop::into_inner(Transmute { u: ManuallyDrop::new(self) }.t) }
}
/// Attempts to return a reference to the wrapped `T`, failing if `self` is
/// not properly aligned.
///
/// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
/// return a reference to the wrapped `T`, and `try_deref` returns `None`.
///
/// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
/// may prefer [`Deref::deref`], which is infallible.
#[inline(always)]
pub fn try_deref(&self) -> Option<&T> {
if !crate::util::aligned_to::<_, T>(self) {
return None;
}
// SAFETY: `deref_unchecked`'s safety requirement is that `self` is
// aligned to `align_of::<T>()`, which we just checked.
unsafe { Some(self.deref_unchecked()) }
}
/// Attempts to return a mutable reference to the wrapped `T`, failing if
/// `self` is not properly aligned.
///
/// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
/// return a reference to the wrapped `T`, and `try_deref_mut` returns
/// `None`.
///
/// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
/// callers may prefer [`DerefMut::deref_mut`], which is infallible.
#[inline(always)]
pub fn try_deref_mut(&mut self) -> Option<&mut T> {
if !crate::util::aligned_to::<_, T>(&*self) {
return None;
}
// SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
// aligned to `align_of::<T>()`, which we just checked.
unsafe { Some(self.deref_mut_unchecked()) }
}
/// Returns a reference to the wrapped `T` without checking alignment.
///
/// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
/// may prefer [`Deref::deref`], which is safe.
///
/// # Safety
///
/// If `self` does not satisfy `mem::align_of::<T>()`, then
/// `self.deref_unchecked()` may cause undefined behavior.
#[inline(always)]
pub const unsafe fn deref_unchecked(&self) -> &T {
// SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
// at the same memory location as `self`. It has no alignment guarantee,
// but the caller has promised that `self` is properly aligned, so we
// know that it is sound to create a reference to `T` at this memory
// location.
//
// We use `mem::transmute` instead of `&*self.get_ptr()` because
// dereferencing pointers is not stable in `const` on our current MSRV
// (1.56 as of this writing).
unsafe { mem::transmute(self) }
}
/// Returns a mutable reference to the wrapped `T` without checking
/// alignment.
///
/// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
/// callers may prefer [`DerefMut::deref_mut`], which is safe.
///
/// # Safety
///
/// If `self` does not satisfy `mem::align_of::<T>()`, then
/// `self.deref_mut_unchecked()` may cause undefined behavior.
#[inline(always)]
pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
// SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
// the same memory location as `self`. It has no alignment guarantee,
// but the caller has promised that `self` is properly aligned, so we
// know that the pointer itself is aligned, and thus that it is sound to
// create a reference to a `T` at this memory location.
unsafe { &mut *self.get_mut_ptr() }
}
/// Gets an unaligned raw pointer to the inner `T`.
///
/// # Safety
///
/// The returned raw pointer is not necessarily aligned to
/// `align_of::<T>()`. Most functions which operate on raw pointers require
/// those pointers to be aligned, so calling those functions with the result
/// of `get_ptr` will be undefined behavior if alignment is not guaranteed
/// using some out-of-band mechanism. In general, the only functions which
/// are safe to call with this pointer are those which are explicitly
/// documented as being sound to use with an unaligned pointer, such as
/// [`read_unaligned`].
///
/// [`read_unaligned`]: core::ptr::read_unaligned
#[inline(always)]
pub const fn get_ptr(&self) -> *const T {
ptr::addr_of!(self.0)
}
/// Gets an unaligned mutable raw pointer to the inner `T`.
///
/// # Safety
///
/// The returned raw pointer is not necessarily aligned to
/// `align_of::<T>()`. Most functions which operate on raw pointers require
/// those pointers to be aligned, so calling those functions with the result
/// of `get_ptr` will be undefined behavior if alignment is not guaranteed
/// using some out-of-band mechanism. In general, the only functions which
/// are safe to call with this pointer are those which are explicitly
/// documented as being sound to use with an unaligned pointer, such as
/// [`read_unaligned`].
///
/// [`read_unaligned`]: core::ptr::read_unaligned
#[inline(always)]
pub fn get_mut_ptr(&mut self) -> *mut T {
ptr::addr_of_mut!(self.0)
}
/// Sets the inner `T`, dropping the previous value.
#[inline(always)]
pub fn set(&mut self, t: T) {
*self = Unalign::new(t);
}
/// Updates the inner `T` by calling a function on it.
///
/// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
/// impl should be preferred over this method when performing updates, as it
/// will usually be faster and more ergonomic.
///
/// For large types, this method may be expensive, as it requires copying
/// `2 * size_of::<T>()` bytes. \[1\]
///
/// \[1\] Since the inner `T` may not be aligned, it would not be sound to
/// invoke `f` on it directly. Instead, `update` moves it into a
/// properly-aligned location in the local stack frame, calls `f` on it, and
/// then moves it back to its original location in `self`.
///
/// [`T: Unaligned`]: Unaligned
#[inline]
pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
// On drop, this moves `copy` out of itself and uses `ptr::write` to
// overwrite `slf`.
struct WriteBackOnDrop<T> {
copy: ManuallyDrop<T>,
slf: *mut Unalign<T>,
}
impl<T> Drop for WriteBackOnDrop<T> {
fn drop(&mut self) {
// SAFETY: We never use `copy` again as required by
// `ManuallyDrop::take`.
let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
// SAFETY: `slf` is the raw pointer value of `self`. We know it
// is valid for writes and properly aligned because `self` is a
// mutable reference, which guarantees both of these properties.
unsafe { ptr::write(self.slf, Unalign::new(copy)) };
}
}
// SAFETY: We know that `self` is valid for reads, properly aligned, and
// points to an initialized `Unalign<T>` because it is a mutable
// reference, which guarantees all of these properties.
//
// Since `T: !Copy`, it would be unsound in the general case to allow
// both the original `Unalign<T>` and the copy to be used by safe code.
// We guarantee that the copy is used to overwrite the original in the
// `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
// called before any other safe code executes, soundness is upheld.
// While this method can terminate in two ways (by returning normally or
// by unwinding due to a panic in `f`), in both cases, `write_back` is
// dropped - and its `drop` called - before any other safe code can
// execute.
let copy = unsafe { ptr::read(self) }.into_inner();
let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
let ret = f(&mut write_back.copy);
drop(write_back);
ret
}
}
impl<T: Copy> Unalign<T> {
/// Gets a copy of the inner `T`.
#[inline(always)]
pub fn get(&self) -> T {
let Unalign(val) = *self;
val
}
}
impl<T: Unaligned> Deref for Unalign<T> {
type Target = T;
#[inline(always)]
fn deref(&self) -> &T {
// SAFETY: `deref_unchecked`'s safety requirement is that `self` is
// aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
// `align_of::<T>() == 1`, and all pointers are one-aligned because all
// addresses are divisible by 1.
unsafe { self.deref_unchecked() }
}
}
impl<T: Unaligned> DerefMut for Unalign<T> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut T {
// SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
// aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
// `align_of::<T>() == 1`, and all pointers are one-aligned because all
// addresses are divisible by 1.
unsafe { self.deref_mut_unchecked() }
}
}
impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
#[inline(always)]
fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
PartialOrd::partial_cmp(self.deref(), other.deref())
}
}
impl<T: Unaligned + Ord> Ord for Unalign<T> {
#[inline(always)]
fn cmp(&self, other: &Unalign<T>) -> Ordering {
Ord::cmp(self.deref(), other.deref())
}
}
impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
#[inline(always)]
fn eq(&self, other: &Unalign<T>) -> bool {
PartialEq::eq(self.deref(), other.deref())
}
}
impl<T: Unaligned + Eq> Eq for Unalign<T> {}
impl<T: Unaligned + Hash> Hash for Unalign<T> {
#[inline(always)]
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
self.deref().hash(state);
}
}
impl<T: Unaligned + Debug> Debug for Unalign<T> {
#[inline(always)]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Debug::fmt(self.deref(), f)
}
}
impl<T: Unaligned + Display> Display for Unalign<T> {
#[inline(always)]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(self.deref(), f)
}
}
#[cfg(test)]
mod tests {
use core::panic::AssertUnwindSafe;
use super::*;
use crate::util::testutil::*;
/// A `T` which is guaranteed not to satisfy `align_of::<A>()`.
///
/// It must be the case that `align_of::<T>() < align_of::<A>()` in order
/// fot this type to work properly.
#[repr(C)]
struct ForceUnalign<T, A> {
// The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is
// placed at the minimum offset that guarantees its alignment. If
// `align_of::<T>() < align_of::<A>()`, then that offset will be
// guaranteed *not* to satisfy `align_of::<A>()`.
_u: u8,
t: T,
_a: [A; 0],
}
impl<T, A> ForceUnalign<T, A> {
const fn new(t: T) -> ForceUnalign<T, A> {
ForceUnalign { _u: 0, t, _a: [] }
}
}
#[test]
fn test_unalign() {
// Test methods that don't depend on alignment.
let mut u = Unalign::new(AU64(123));
assert_eq!(u.get(), AU64(123));
assert_eq!(u.into_inner(), AU64(123));
assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
u.set(AU64(321));
assert_eq!(u.get(), AU64(321));
// Test methods that depend on alignment (when alignment is satisfied).
let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
assert_eq!(u.t.try_deref(), Some(&AU64(123)));
assert_eq!(u.t.try_deref_mut(), Some(&mut AU64(123)));
// SAFETY: The `Align<_, AU64>` guarantees proper alignment.
assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
// SAFETY: The `Align<_, AU64>` guarantees proper alignment.
assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
*u.t.try_deref_mut().unwrap() = AU64(321);
assert_eq!(u.t.get(), AU64(321));
// Test methods that depend on alignment (when alignment is not
// satisfied).
let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
assert_eq!(u.t.try_deref(), None);
assert_eq!(u.t.try_deref_mut(), None);
// Test methods that depend on `T: Unaligned`.
let mut u = Unalign::new(123u8);
assert_eq!(u.try_deref(), Some(&123));
assert_eq!(u.try_deref_mut(), Some(&mut 123));
assert_eq!(u.deref(), &123);
assert_eq!(u.deref_mut(), &mut 123);
*u = 21;
assert_eq!(u.get(), 21);
// Test that some `Unalign` functions and methods are `const`.
const _UNALIGN: Unalign<u64> = Unalign::new(0);
const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
const _U64: u64 = _UNALIGN.into_inner();
// Make sure all code is considered "used".
//
// attribute.
#[allow(dead_code)]
const _: () = {
let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
// Make sure that `deref_unchecked` is `const`.
//
// SAFETY: The `Align<_, AU64>` guarantees proper alignment.
let au64 = unsafe { x.t.deref_unchecked() };
match au64 {
AU64(123) => {}
_ => unreachable!(),
}
};
}
#[test]
fn test_unalign_update() {
let mut u = Unalign::new(AU64(123));
u.update(|a| a.0 += 1);
assert_eq!(u.get(), AU64(124));
// Test that, even if the callback panics, the original is still
// correctly overwritten. Use a `Box` so that Miri is more likely to
// catch any unsoundness (which would likely result in two `Box`es for
// the same heap object, which is the sort of thing that Miri would
// probably catch).
let mut u = Unalign::new(Box::new(AU64(123)));
let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
u.update(|a| {
a.0 += 1;
panic!();
})
}));
assert!(res.is_err());
assert_eq!(u.into_inner(), Box::new(AU64(124)));
}
}