Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "ir.h"
#include "ir_builder.h"
#include "ir_optimization.h"
#include "ir_hierarchical_visitor.h"
#include "program/prog_instruction.h"
#include "program/prog_statevars.h"
#include "util/bitscan.h"
#include "builtin_functions.h"
#include "main/mtypes.h"
using namespace ir_builder;
#define imm1(x) new(mem_ctx) ir_constant((float) (x), 1)
#define imm3(x) new(mem_ctx) ir_constant((float) (x), 3)
static ir_rvalue *
blend_multiply(ir_variable *src, ir_variable *dst)
{
/* f(Cs,Cd) = Cs*Cd */
return mul(src, dst);
}
static ir_rvalue *
blend_screen(ir_variable *src, ir_variable *dst)
{
/* f(Cs,Cd) = Cs+Cd-Cs*Cd */
return sub(add(src, dst), mul(src, dst));
}
static ir_rvalue *
blend_overlay(ir_variable *src, ir_variable *dst)
{
void *mem_ctx = ralloc_parent(src);
/* f(Cs,Cd) = 2*Cs*Cd, if Cd <= 0.5
* 1-2*(1-Cs)*(1-Cd), otherwise
*/
ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst));
ir_rvalue *rule_2 =
sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst))));
return csel(lequal(dst, imm3(0.5f)), rule_1, rule_2);
}
static ir_rvalue *
blend_darken(ir_variable *src, ir_variable *dst)
{
/* f(Cs,Cd) = min(Cs,Cd) */
return min2(src, dst);
}
static ir_rvalue *
blend_lighten(ir_variable *src, ir_variable *dst)
{
/* f(Cs,Cd) = max(Cs,Cd) */
return max2(src, dst);
}
static ir_rvalue *
blend_colordodge(ir_variable *src, ir_variable *dst)
{
void *mem_ctx = ralloc_parent(src);
/* f(Cs,Cd) =
* 0, if Cd <= 0
* min(1,Cd/(1-Cs)), if Cd > 0 and Cs < 1
* 1, if Cd > 0 and Cs >= 1
*/
return csel(lequal(dst, imm3(0)), imm3(0),
csel(gequal(src, imm3(1)), imm3(1),
min2(imm3(1), div(dst, sub(imm3(1), src)))));
}
static ir_rvalue *
blend_colorburn(ir_variable *src, ir_variable *dst)
{
void *mem_ctx = ralloc_parent(src);
/* f(Cs,Cd) =
* 1, if Cd >= 1
* 1 - min(1,(1-Cd)/Cs), if Cd < 1 and Cs > 0
* 0, if Cd < 1 and Cs <= 0
*/
return csel(gequal(dst, imm3(1)), imm3(1),
csel(lequal(src, imm3(0)), imm3(0),
sub(imm3(1), min2(imm3(1), div(sub(imm3(1), dst), src)))));
}
static ir_rvalue *
blend_hardlight(ir_variable *src, ir_variable *dst)
{
void *mem_ctx = ralloc_parent(src);
/* f(Cs,Cd) = 2*Cs*Cd, if Cs <= 0.5
* 1-2*(1-Cs)*(1-Cd), otherwise
*/
ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst));
ir_rvalue *rule_2 =
sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst))));
return csel(lequal(src, imm3(0.5f)), rule_1, rule_2);
}
static ir_rvalue *
blend_softlight(ir_variable *src, ir_variable *dst)
{
void *mem_ctx = ralloc_parent(src);
/* f(Cs,Cd) =
* Cd-(1-2*Cs)*Cd*(1-Cd),
* if Cs <= 0.5
* Cd+(2*Cs-1)*Cd*((16*Cd-12)*Cd+3),
* if Cs > 0.5 and Cd <= 0.25
* Cd+(2*Cs-1)*(sqrt(Cd)-Cd),
* if Cs > 0.5 and Cd > 0.25
*
* We can simplify this to
*
* f(Cs,Cd) = Cd+(2*Cs-1)*g(Cs,Cd) where
* g(Cs,Cd) = Cd*Cd-Cd if Cs <= 0.5
* Cd*((16*Cd-12)*Cd+3) if Cs > 0.5 and Cd <= 0.25
* sqrt(Cd)-Cd, otherwise
*/
ir_rvalue *factor_1 = mul(dst, sub(imm3(1), dst));
ir_rvalue *factor_2 =
mul(dst, add(mul(sub(mul(imm3(16), dst), imm3(12)), dst), imm3(3)));
ir_rvalue *factor_3 = sub(sqrt(dst), dst);
ir_rvalue *factor = csel(lequal(src, imm3(0.5f)), factor_1,
csel(lequal(dst, imm3(0.25f)),
factor_2, factor_3));
return add(dst, mul(sub(mul(imm3(2), src), imm3(1)), factor));
}
static ir_rvalue *
blend_difference(ir_variable *src, ir_variable *dst)
{
return abs(sub(dst, src));
}
static ir_rvalue *
blend_exclusion(ir_variable *src, ir_variable *dst)
{
void *mem_ctx = ralloc_parent(src);
return add(src, sub(dst, mul(imm3(2), mul(src, dst))));
}
/* Return the minimum of a vec3's components */
static ir_rvalue *
minv3(ir_variable *v)
{
return min2(min2(swizzle_x(v), swizzle_y(v)), swizzle_z(v));
}
/* Return the maximum of a vec3's components */
static ir_rvalue *
maxv3(ir_variable *v)
{
return max2(max2(swizzle_x(v), swizzle_y(v)), swizzle_z(v));
}
static ir_rvalue *
lumv3(ir_variable *c)
{
ir_constant_data data;
data.f[0] = 0.30;
data.f[1] = 0.59;
data.f[2] = 0.11;
void *mem_ctx = ralloc_parent(c);
/* dot(c, vec3(0.30, 0.59, 0.11)) */
return dot(c, new(mem_ctx) ir_constant(glsl_type::vec3_type, &data));
}
static ir_rvalue *
satv3(ir_variable *c)
{
return sub(maxv3(c), minv3(c));
}
/* Take the base RGB color <cbase> and override its luminosity with that
* of the RGB color <clum>.
*
* This follows the equations given in the ES 3.2 (June 15th, 2016)
* specification. Revision 16 of GL_KHR_blend_equation_advanced and
* revision 9 of GL_NV_blend_equation_advanced specify a different set
* of equations. Older revisions match ES 3.2's text, and dEQP expects
* the ES 3.2 rules implemented here.
*/
static void
set_lum(ir_factory *f,
ir_variable *color,
ir_variable *cbase,
ir_variable *clum)
{
void *mem_ctx = f->mem_ctx;
f->emit(assign(color, add(cbase, sub(lumv3(clum), lumv3(cbase)))));
ir_variable *llum = f->make_temp(glsl_type::float_type, "__blend_lum");
ir_variable *mincol = f->make_temp(glsl_type::float_type, "__blend_mincol");
ir_variable *maxcol = f->make_temp(glsl_type::float_type, "__blend_maxcol");
f->emit(assign(llum, lumv3(color)));
f->emit(assign(mincol, minv3(color)));
f->emit(assign(maxcol, maxv3(color)));
f->emit(if_tree(less(mincol, imm1(0)),
assign(color, add(llum, div(mul(sub(color, llum), llum),
sub(llum, mincol)))),
if_tree(greater(maxcol, imm1(1)),
assign(color, add(llum, div(mul(sub(color, llum),
sub(imm3(1), llum)),
sub(maxcol, llum)))))));
}
/* Take the base RGB color <cbase> and override its saturation with
* that of the RGB color <csat>. The override the luminosity of the
* result with that of the RGB color <clum>.
*/
static void
set_lum_sat(ir_factory *f,
ir_variable *color,
ir_variable *cbase,
ir_variable *csat,
ir_variable *clum)
{
void *mem_ctx = f->mem_ctx;
ir_rvalue *minbase = minv3(cbase);
ir_rvalue *ssat = satv3(csat);
ir_variable *sbase = f->make_temp(glsl_type::float_type, "__blend_sbase");
f->emit(assign(sbase, satv3(cbase)));
/* Equivalent (modulo rounding errors) to setting the
* smallest (R,G,B) component to 0, the largest to <ssat>,
* and interpolating the "middle" component based on its
* original value relative to the smallest/largest.
*/
f->emit(if_tree(greater(sbase, imm1(0)),
assign(color, div(mul(sub(cbase, minbase), ssat), sbase)),
assign(color, imm3(0))));
set_lum(f, color, color, clum);
}
static ir_rvalue *
is_mode(ir_variable *mode, enum gl_advanced_blend_mode q)
{
return equal(mode, new(ralloc_parent(mode)) ir_constant(unsigned(q)));
}
static ir_variable *
calc_blend_result(ir_factory f,
ir_variable *mode,
ir_variable *fb,
ir_rvalue *blend_src,
GLbitfield blend_qualifiers)
{
void *mem_ctx = f.mem_ctx;
ir_variable *result = f.make_temp(glsl_type::vec4_type, "__blend_result");
/* Save blend_src to a temporary so we can reference it multiple times. */
ir_variable *src = f.make_temp(glsl_type::vec4_type, "__blend_src");
f.emit(assign(src, blend_src));
/* If we're not doing advanced blending, just write the original value. */
ir_if *if_blending = new(mem_ctx) ir_if(is_mode(mode, BLEND_NONE));
f.emit(if_blending);
if_blending->then_instructions.push_tail(assign(result, src));
f.instructions = &if_blending->else_instructions;
/* (Rs', Gs', Bs') =
* (0, 0, 0), if As == 0
* (Rs/As, Gs/As, Bs/As), otherwise
*/
ir_variable *src_rgb = f.make_temp(glsl_type::vec3_type, "__blend_src_rgb");
ir_variable *src_alpha = f.make_temp(glsl_type::float_type, "__blend_src_a");
/* (Rd', Gd', Bd') =
* (0, 0, 0), if Ad == 0
* (Rd/Ad, Gd/Ad, Bd/Ad), otherwise
*/
ir_variable *dst_rgb = f.make_temp(glsl_type::vec3_type, "__blend_dst_rgb");
ir_variable *dst_alpha = f.make_temp(glsl_type::float_type, "__blend_dst_a");
f.emit(assign(dst_alpha, swizzle_w(fb)));
f.emit(if_tree(equal(dst_alpha, imm1(0)),
assign(dst_rgb, imm3(0)),
assign(dst_rgb, csel(equal(swizzle_xyz(fb),
swizzle(fb, SWIZZLE_WWWW, 3)),
imm3(1),
div(swizzle_xyz(fb), dst_alpha)))));
f.emit(assign(src_alpha, swizzle_w(src)));
f.emit(if_tree(equal(src_alpha, imm1(0)),
assign(src_rgb, imm3(0)),
assign(src_rgb, csel(equal(swizzle_xyz(src),
swizzle(src, SWIZZLE_WWWW, 3)),
imm3(1),
div(swizzle_xyz(src), src_alpha)))));
ir_variable *factor = f.make_temp(glsl_type::vec3_type, "__blend_factor");
ir_factory casefactory = f;
unsigned choices = blend_qualifiers;
while (choices) {
enum gl_advanced_blend_mode choice = (enum gl_advanced_blend_mode)
(1u << u_bit_scan(&choices));
ir_if *iff = new(mem_ctx) ir_if(is_mode(mode, choice));
casefactory.emit(iff);
casefactory.instructions = &iff->then_instructions;
ir_rvalue *val = NULL;
switch (choice) {
case BLEND_MULTIPLY:
val = blend_multiply(src_rgb, dst_rgb);
break;
case BLEND_SCREEN:
val = blend_screen(src_rgb, dst_rgb);
break;
case BLEND_OVERLAY:
val = blend_overlay(src_rgb, dst_rgb);
break;
case BLEND_DARKEN:
val = blend_darken(src_rgb, dst_rgb);
break;
case BLEND_LIGHTEN:
val = blend_lighten(src_rgb, dst_rgb);
break;
case BLEND_COLORDODGE:
val = blend_colordodge(src_rgb, dst_rgb);
break;
case BLEND_COLORBURN:
val = blend_colorburn(src_rgb, dst_rgb);
break;
case BLEND_HARDLIGHT:
val = blend_hardlight(src_rgb, dst_rgb);
break;
case BLEND_SOFTLIGHT:
val = blend_softlight(src_rgb, dst_rgb);
break;
case BLEND_DIFFERENCE:
val = blend_difference(src_rgb, dst_rgb);
break;
case BLEND_EXCLUSION:
val = blend_exclusion(src_rgb, dst_rgb);
break;
case BLEND_HSL_HUE:
set_lum_sat(&casefactory, factor, src_rgb, dst_rgb, dst_rgb);
break;
case BLEND_HSL_SATURATION:
set_lum_sat(&casefactory, factor, dst_rgb, src_rgb, dst_rgb);
break;
case BLEND_HSL_COLOR:
set_lum(&casefactory, factor, src_rgb, dst_rgb);
break;
case BLEND_HSL_LUMINOSITY:
set_lum(&casefactory, factor, dst_rgb, src_rgb);
break;
case BLEND_NONE:
case BLEND_ALL:
unreachable("not real cases");
}
if (val)
casefactory.emit(assign(factor, val));
casefactory.instructions = &iff->else_instructions;
}
/* p0(As,Ad) = As*Ad
* p1(As,Ad) = As*(1-Ad)
* p2(As,Ad) = Ad*(1-As)
*/
ir_variable *p0 = f.make_temp(glsl_type::float_type, "__blend_p0");
ir_variable *p1 = f.make_temp(glsl_type::float_type, "__blend_p1");
ir_variable *p2 = f.make_temp(glsl_type::float_type, "__blend_p2");
f.emit(assign(p0, mul(src_alpha, dst_alpha)));
f.emit(assign(p1, mul(src_alpha, sub(imm1(1), dst_alpha))));
f.emit(assign(p2, mul(dst_alpha, sub(imm1(1), src_alpha))));
/* R = f(Rs',Rd')*p0(As,Ad) + Y*Rs'*p1(As,Ad) + Z*Rd'*p2(As,Ad)
* G = f(Gs',Gd')*p0(As,Ad) + Y*Gs'*p1(As,Ad) + Z*Gd'*p2(As,Ad)
* B = f(Bs',Bd')*p0(As,Ad) + Y*Bs'*p1(As,Ad) + Z*Bd'*p2(As,Ad)
* A = X*p0(As,Ad) + Y*p1(As,Ad) + Z*p2(As,Ad)
*
* <X, Y, Z> is always <1, 1, 1>, so we can ignore it.
*
* In vector form, this is:
* RGB = factor * p0 + Cs * p1 + Cd * p2
* A = p0 + p1 + p2
*/
f.emit(assign(result,
add(add(mul(factor, p0), mul(src_rgb, p1)), mul(dst_rgb, p2)),
WRITEMASK_XYZ));
f.emit(assign(result, add(add(p0, p1), p2), WRITEMASK_W));
return result;
}
/**
* Dereference var, or var[0] if it's an array.
*/
static ir_dereference *
deref_output(ir_variable *var)
{
void *mem_ctx = ralloc_parent(var);
ir_dereference *val = new(mem_ctx) ir_dereference_variable(var);
if (val->type->is_array()) {
ir_constant *index = new(mem_ctx) ir_constant(0);
val = new(mem_ctx) ir_dereference_array(val, index);
}
return val;
}
static ir_function_signature *
get_main(gl_linked_shader *sh)
{
ir_function_signature *sig = NULL;
/* We can't use _mesa_get_main_function_signature() because we don't
* have a symbol table at this point. Just go find main() by hand.
*/
foreach_in_list(ir_instruction, ir, sh->ir) {
ir_function *f = ir->as_function();
if (f && strcmp(f->name, "main") == 0) {
exec_list void_parameters;
sig = f->matching_signature(NULL, &void_parameters, false);
break;
}
}
assert(sig != NULL); /* main() must exist */
return sig;
}
bool
lower_blend_equation_advanced(struct gl_linked_shader *sh, bool coherent)
{
if (sh->Program->sh.fs.BlendSupport == 0)
return false;
/* Lower early returns in main() so there's a single exit point
* where we can insert our lowering code.
*/
do_lower_jumps(sh->ir, false, false, true, false, false);
void *mem_ctx = ralloc_parent(sh->ir);
ir_variable *fb = new(mem_ctx) ir_variable(glsl_type::vec4_type,
"__blend_fb_fetch",
ir_var_shader_out);
fb->data.location = FRAG_RESULT_DATA0;
fb->data.read_only = 1;
fb->data.fb_fetch_output = 1;
fb->data.memory_coherent = coherent;
fb->data.how_declared = ir_var_hidden;
ir_variable *mode = new(mem_ctx) ir_variable(glsl_type::uint_type,
"gl_AdvancedBlendModeMESA",
ir_var_uniform);
mode->data.how_declared = ir_var_hidden;
mode->allocate_state_slots(1);
ir_state_slot *slot0 = &mode->get_state_slots()[0];
slot0->swizzle = SWIZZLE_XXXX;
slot0->tokens[0] = STATE_INTERNAL;
slot0->tokens[1] = STATE_ADVANCED_BLENDING_MODE;
for (int i = 2; i < STATE_LENGTH; i++)
slot0->tokens[i] = 0;
sh->ir->push_head(fb);
sh->ir->push_head(mode);
/* Gather any output variables referring to render target 0.
*
* ARB_enhanced_layouts irritatingly allows the shader to specify
* multiple output variables for the same render target, each of
* which writes a subset of the components, starting at location_frac.
* The variables can't overlap, thankfully.
*/
ir_variable *outputs[4] = { NULL, NULL, NULL, NULL };
foreach_in_list(ir_instruction, ir, sh->ir) {
ir_variable *var = ir->as_variable();
if (!var || var->data.mode != ir_var_shader_out)
continue;
if (var->data.location == FRAG_RESULT_DATA0 ||
var->data.location == FRAG_RESULT_COLOR) {
const int components = var->type->without_array()->vector_elements;
for (int i = 0; i < components; i++) {
outputs[var->data.location_frac + i] = var;
}
}
}
/* Combine values written to outputs into a single RGBA blend source.
* We assign <0, 0, 0, 1> to any components with no corresponding output.
*/
ir_rvalue *blend_source;
if (outputs[0] && outputs[0]->type->without_array()->vector_elements == 4) {
blend_source = deref_output(outputs[0]);
} else {
ir_rvalue *blend_comps[4];
for (int i = 0; i < 4; i++) {
ir_variable *var = outputs[i];
if (var) {
blend_comps[i] = swizzle(deref_output(outputs[i]),
i - outputs[i]->data.location_frac, 1);
} else {
blend_comps[i] = new(mem_ctx) ir_constant(i < 3 ? 0.0f : 1.0f);
}
}
blend_source =
new(mem_ctx) ir_expression(ir_quadop_vector, glsl_type::vec4_type,
blend_comps[0], blend_comps[1],
blend_comps[2], blend_comps[3]);
}
ir_function_signature *main = get_main(sh);
ir_factory f(&main->body, mem_ctx);
ir_variable *result_dest =
calc_blend_result(f, mode, fb, blend_source,
sh->Program->sh.fs.BlendSupport);
/* Copy the result back to the original values. It would be simpler
* to demote the program's output variables, and create a new vec4
* output for our result, but this pass runs before we create the
* ARB_program_interface_query resource list. So we have to leave
* the original outputs in place and use them.
*/
for (int i = 0; i < 4; i++) {
if (!outputs[i])
continue;
f.emit(assign(deref_output(outputs[i]), swizzle(result_dest, i, 1),
1 << i));
}
validate_ir_tree(sh->ir);
return true;
}