Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "ir_reader.h"
#include "glsl_parser_extras.h"
#include "compiler/glsl_types.h"
#include "s_expression.h"
static const bool debug = false;
namespace {
class ir_reader {
public:
ir_reader(_mesa_glsl_parse_state *);
void read(exec_list *instructions, const char *src, bool scan_for_protos);
private:
void *mem_ctx;
_mesa_glsl_parse_state *state;
void ir_read_error(s_expression *, const char *fmt, ...);
const glsl_type *read_type(s_expression *);
void scan_for_prototypes(exec_list *, s_expression *);
ir_function *read_function(s_expression *, bool skip_body);
void read_function_sig(ir_function *, s_expression *, bool skip_body);
void read_instructions(exec_list *, s_expression *, ir_loop *);
ir_instruction *read_instruction(s_expression *, ir_loop *);
ir_variable *read_declaration(s_expression *);
ir_if *read_if(s_expression *, ir_loop *);
ir_loop *read_loop(s_expression *);
ir_call *read_call(s_expression *);
ir_return *read_return(s_expression *);
ir_rvalue *read_rvalue(s_expression *);
ir_assignment *read_assignment(s_expression *);
ir_expression *read_expression(s_expression *);
ir_swizzle *read_swizzle(s_expression *);
ir_constant *read_constant(s_expression *);
ir_texture *read_texture(s_expression *);
ir_emit_vertex *read_emit_vertex(s_expression *);
ir_end_primitive *read_end_primitive(s_expression *);
ir_barrier *read_barrier(s_expression *);
ir_dereference *read_dereference(s_expression *);
ir_dereference_variable *read_var_ref(s_expression *);
};
} /* anonymous namespace */
ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state)
{
this->mem_ctx = state;
}
void
_mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
const char *src, bool scan_for_protos)
{
ir_reader r(state);
r.read(instructions, src, scan_for_protos);
}
void
ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos)
{
void *sx_mem_ctx = ralloc_context(NULL);
s_expression *expr = s_expression::read_expression(sx_mem_ctx, src);
if (expr == NULL) {
ir_read_error(NULL, "couldn't parse S-Expression.");
return;
}
if (scan_for_protos) {
scan_for_prototypes(instructions, expr);
if (state->error)
return;
}
read_instructions(instructions, expr, NULL);
ralloc_free(sx_mem_ctx);
if (debug)
validate_ir_tree(instructions);
}
void
ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...)
{
va_list ap;
state->error = true;
if (state->current_function != NULL)
ralloc_asprintf_append(&state->info_log, "In function %s:\n",
state->current_function->function_name());
ralloc_strcat(&state->info_log, "error: ");
va_start(ap, fmt);
ralloc_vasprintf_append(&state->info_log, fmt, ap);
va_end(ap);
ralloc_strcat(&state->info_log, "\n");
if (expr != NULL) {
ralloc_strcat(&state->info_log, "...in this context:\n ");
expr->print();
ralloc_strcat(&state->info_log, "\n\n");
}
}
const glsl_type *
ir_reader::read_type(s_expression *expr)
{
s_expression *s_base_type;
s_int *s_size;
s_pattern pat[] = { "array", s_base_type, s_size };
if (MATCH(expr, pat)) {
const glsl_type *base_type = read_type(s_base_type);
if (base_type == NULL) {
ir_read_error(NULL, "when reading base type of array type");
return NULL;
}
return glsl_type::get_array_instance(base_type, s_size->value());
}
s_symbol *type_sym = SX_AS_SYMBOL(expr);
if (type_sym == NULL) {
ir_read_error(expr, "expected <type>");
return NULL;
}
const glsl_type *type = state->symbols->get_type(type_sym->value());
if (type == NULL)
ir_read_error(expr, "invalid type: %s", type_sym->value());
return type;
}
void
ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr)
{
s_list *list = SX_AS_LIST(expr);
if (list == NULL) {
ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
return;
}
foreach_in_list(s_list, sub, &list->subexpressions) {
if (!sub->is_list())
continue; // not a (function ...); ignore it.
s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
if (tag == NULL || strcmp(tag->value(), "function") != 0)
continue; // not a (function ...); ignore it.
ir_function *f = read_function(sub, true);
if (f == NULL)
return;
instructions->push_tail(f);
}
}
ir_function *
ir_reader::read_function(s_expression *expr, bool skip_body)
{
bool added = false;
s_symbol *name;
s_pattern pat[] = { "function", name };
if (!PARTIAL_MATCH(expr, pat)) {
ir_read_error(expr, "Expected (function <name> (signature ...) ...)");
return NULL;
}
ir_function *f = state->symbols->get_function(name->value());
if (f == NULL) {
f = new(mem_ctx) ir_function(name->value());
added = state->symbols->add_function(f);
assert(added);
}
/* Skip over "function" tag and function name (which are guaranteed to be
* present by the above PARTIAL_MATCH call).
*/
exec_node *node = ((s_list *) expr)->subexpressions.get_head_raw()->next->next;
for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
s_expression *s_sig = (s_expression *) node;
read_function_sig(f, s_sig, skip_body);
}
return added ? f : NULL;
}
static bool
always_available(const _mesa_glsl_parse_state *)
{
return true;
}
void
ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body)
{
s_expression *type_expr;
s_list *paramlist;
s_list *body_list;
s_pattern pat[] = { "signature", type_expr, paramlist, body_list };
if (!MATCH(expr, pat)) {
ir_read_error(expr, "Expected (signature <type> (parameters ...) "
"(<instruction> ...))");
return;
}
const glsl_type *return_type = read_type(type_expr);
if (return_type == NULL)
return;
s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
ir_read_error(paramlist, "Expected (parameters ...)");
return;
}
// Read the parameters list into a temporary place.
exec_list hir_parameters;
state->symbols->push_scope();
/* Skip over the "parameters" tag. */
exec_node *node = paramlist->subexpressions.get_head_raw()->next;
for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
ir_variable *var = read_declaration((s_expression *) node);
if (var == NULL)
return;
hir_parameters.push_tail(var);
}
ir_function_signature *sig =
f->exact_matching_signature(state, &hir_parameters);
if (sig == NULL && skip_body) {
/* If scanning for prototypes, generate a new signature. */
/* ir_reader doesn't know what languages support a given built-in, so
* just say that they're always available. For now, other mechanisms
* guarantee the right built-ins are available.
*/
sig = new(mem_ctx) ir_function_signature(return_type, always_available);
f->add_signature(sig);
} else if (sig != NULL) {
const char *badvar = sig->qualifiers_match(&hir_parameters);
if (badvar != NULL) {
ir_read_error(expr, "function `%s' parameter `%s' qualifiers "
"don't match prototype", f->name, badvar);
return;
}
if (sig->return_type != return_type) {
ir_read_error(expr, "function `%s' return type doesn't "
"match prototype", f->name);
return;
}
} else {
/* No prototype for this body exists - skip it. */
state->symbols->pop_scope();
return;
}
assert(sig != NULL);
sig->replace_parameters(&hir_parameters);
if (!skip_body && !body_list->subexpressions.is_empty()) {
if (sig->is_defined) {
ir_read_error(expr, "function %s redefined", f->name);
return;
}
state->current_function = sig;
read_instructions(&sig->body, body_list, NULL);
state->current_function = NULL;
sig->is_defined = true;
}
state->symbols->pop_scope();
}
void
ir_reader::read_instructions(exec_list *instructions, s_expression *expr,
ir_loop *loop_ctx)
{
// Read in a list of instructions
s_list *list = SX_AS_LIST(expr);
if (list == NULL) {
ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
return;
}
foreach_in_list(s_expression, sub, &list->subexpressions) {
ir_instruction *ir = read_instruction(sub, loop_ctx);
if (ir != NULL) {
/* Global variable declarations should be moved to the top, before
* any functions that might use them. Functions are added to the
* instruction stream when scanning for prototypes, so without this
* hack, they always appear before variable declarations.
*/
if (state->current_function == NULL && ir->as_variable() != NULL)
instructions->push_head(ir);
else
instructions->push_tail(ir);
}
}
}
ir_instruction *
ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx)
{
s_symbol *symbol = SX_AS_SYMBOL(expr);
if (symbol != NULL) {
if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue);
}
s_list *list = SX_AS_LIST(expr);
if (list == NULL || list->subexpressions.is_empty()) {
ir_read_error(expr, "Invalid instruction.\n");
return NULL;
}
s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
if (tag == NULL) {
ir_read_error(expr, "expected instruction tag");
return NULL;
}
ir_instruction *inst = NULL;
if (strcmp(tag->value(), "declare") == 0) {
inst = read_declaration(list);
} else if (strcmp(tag->value(), "assign") == 0) {
inst = read_assignment(list);
} else if (strcmp(tag->value(), "if") == 0) {
inst = read_if(list, loop_ctx);
} else if (strcmp(tag->value(), "loop") == 0) {
inst = read_loop(list);
} else if (strcmp(tag->value(), "call") == 0) {
inst = read_call(list);
} else if (strcmp(tag->value(), "return") == 0) {
inst = read_return(list);
} else if (strcmp(tag->value(), "function") == 0) {
inst = read_function(list, false);
} else if (strcmp(tag->value(), "emit-vertex") == 0) {
inst = read_emit_vertex(list);
} else if (strcmp(tag->value(), "end-primitive") == 0) {
inst = read_end_primitive(list);
} else if (strcmp(tag->value(), "barrier") == 0) {
inst = read_barrier(list);
} else {
inst = read_rvalue(list);
if (inst == NULL)
ir_read_error(NULL, "when reading instruction");
}
return inst;
}
ir_variable *
ir_reader::read_declaration(s_expression *expr)
{
s_list *s_quals;
s_expression *s_type;
s_symbol *s_name;
s_pattern pat[] = { "declare", s_quals, s_type, s_name };
if (!MATCH(expr, pat)) {
ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)");
return NULL;
}
const glsl_type *type = read_type(s_type);
if (type == NULL)
return NULL;
ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(),
ir_var_auto);
foreach_in_list(s_symbol, qualifier, &s_quals->subexpressions) {
if (!qualifier->is_symbol()) {
ir_read_error(expr, "qualifier list must contain only symbols");
return NULL;
}
// FINISHME: Check for duplicate/conflicting qualifiers.
if (strcmp(qualifier->value(), "centroid") == 0) {
var->data.centroid = 1;
} else if (strcmp(qualifier->value(), "sample") == 0) {
var->data.sample = 1;
} else if (strcmp(qualifier->value(), "patch") == 0) {
var->data.patch = 1;
} else if (strcmp(qualifier->value(), "explicit_invariant") == 0) {
var->data.explicit_invariant = true;
} else if (strcmp(qualifier->value(), "invariant") == 0) {
var->data.invariant = true;
} else if (strcmp(qualifier->value(), "uniform") == 0) {
var->data.mode = ir_var_uniform;
} else if (strcmp(qualifier->value(), "shader_storage") == 0) {
var->data.mode = ir_var_shader_storage;
} else if (strcmp(qualifier->value(), "auto") == 0) {
var->data.mode = ir_var_auto;
} else if (strcmp(qualifier->value(), "in") == 0) {
var->data.mode = ir_var_function_in;
} else if (strcmp(qualifier->value(), "shader_in") == 0) {
var->data.mode = ir_var_shader_in;
} else if (strcmp(qualifier->value(), "const_in") == 0) {
var->data.mode = ir_var_const_in;
} else if (strcmp(qualifier->value(), "out") == 0) {
var->data.mode = ir_var_function_out;
} else if (strcmp(qualifier->value(), "shader_out") == 0) {
var->data.mode = ir_var_shader_out;
} else if (strcmp(qualifier->value(), "inout") == 0) {
var->data.mode = ir_var_function_inout;
} else if (strcmp(qualifier->value(), "temporary") == 0) {
var->data.mode = ir_var_temporary;
} else if (strcmp(qualifier->value(), "stream1") == 0) {
var->data.stream = 1;
} else if (strcmp(qualifier->value(), "stream2") == 0) {
var->data.stream = 2;
} else if (strcmp(qualifier->value(), "stream3") == 0) {
var->data.stream = 3;
} else if (strcmp(qualifier->value(), "smooth") == 0) {
var->data.interpolation = INTERP_MODE_SMOOTH;
} else if (strcmp(qualifier->value(), "flat") == 0) {
var->data.interpolation = INTERP_MODE_FLAT;
} else if (strcmp(qualifier->value(), "noperspective") == 0) {
var->data.interpolation = INTERP_MODE_NOPERSPECTIVE;
} else {
ir_read_error(expr, "unknown qualifier: %s", qualifier->value());
return NULL;
}
}
// Add the variable to the symbol table
state->symbols->add_variable(var);
return var;
}
ir_if *
ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx)
{
s_expression *s_cond;
s_expression *s_then;
s_expression *s_else;
s_pattern pat[] = { "if", s_cond, s_then, s_else };
if (!MATCH(expr, pat)) {
ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))");
return NULL;
}
ir_rvalue *condition = read_rvalue(s_cond);
if (condition == NULL) {
ir_read_error(NULL, "when reading condition of (if ...)");
return NULL;
}
ir_if *iff = new(mem_ctx) ir_if(condition);
read_instructions(&iff->then_instructions, s_then, loop_ctx);
read_instructions(&iff->else_instructions, s_else, loop_ctx);
if (state->error) {
delete iff;
iff = NULL;
}
return iff;
}
ir_loop *
ir_reader::read_loop(s_expression *expr)
{
s_expression *s_body;
s_pattern loop_pat[] = { "loop", s_body };
if (!MATCH(expr, loop_pat)) {
ir_read_error(expr, "expected (loop <body>)");
return NULL;
}
ir_loop *loop = new(mem_ctx) ir_loop;
read_instructions(&loop->body_instructions, s_body, loop);
if (state->error) {
delete loop;
loop = NULL;
}
return loop;
}
ir_return *
ir_reader::read_return(s_expression *expr)
{
s_expression *s_retval;
s_pattern return_value_pat[] = { "return", s_retval};
s_pattern return_void_pat[] = { "return" };
if (MATCH(expr, return_value_pat)) {
ir_rvalue *retval = read_rvalue(s_retval);
if (retval == NULL) {
ir_read_error(NULL, "when reading return value");
return NULL;
}
return new(mem_ctx) ir_return(retval);
} else if (MATCH(expr, return_void_pat)) {
return new(mem_ctx) ir_return;
} else {
ir_read_error(expr, "expected (return <rvalue>) or (return)");
return NULL;
}
}
ir_rvalue *
ir_reader::read_rvalue(s_expression *expr)
{
s_list *list = SX_AS_LIST(expr);
if (list == NULL || list->subexpressions.is_empty())
return NULL;
s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
if (tag == NULL) {
ir_read_error(expr, "expected rvalue tag");
return NULL;
}
ir_rvalue *rvalue = read_dereference(list);
if (rvalue != NULL || state->error)
return rvalue;
else if (strcmp(tag->value(), "swiz") == 0) {
rvalue = read_swizzle(list);
} else if (strcmp(tag->value(), "expression") == 0) {
rvalue = read_expression(list);
} else if (strcmp(tag->value(), "constant") == 0) {
rvalue = read_constant(list);
} else {
rvalue = read_texture(list);
if (rvalue == NULL && !state->error)
ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
}
return rvalue;
}
ir_assignment *
ir_reader::read_assignment(s_expression *expr)
{
s_expression *cond_expr = NULL;
s_expression *lhs_expr, *rhs_expr;
s_list *mask_list;
s_pattern pat4[] = { "assign", mask_list, lhs_expr, rhs_expr };
s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr };
if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) {
ir_read_error(expr, "expected (assign [<condition>] (<write mask>) "
"<lhs> <rhs>)");
return NULL;
}
ir_rvalue *condition = NULL;
if (cond_expr != NULL) {
condition = read_rvalue(cond_expr);
if (condition == NULL) {
ir_read_error(NULL, "when reading condition of assignment");
return NULL;
}
}
unsigned mask = 0;
s_symbol *mask_symbol;
s_pattern mask_pat[] = { mask_symbol };
if (MATCH(mask_list, mask_pat)) {
const char *mask_str = mask_symbol->value();
unsigned mask_length = strlen(mask_str);
if (mask_length > 4) {
ir_read_error(expr, "invalid write mask: %s", mask_str);
return NULL;
}
const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
for (unsigned i = 0; i < mask_length; i++) {
if (mask_str[i] < 'w' || mask_str[i] > 'z') {
ir_read_error(expr, "write mask contains invalid character: %c",
mask_str[i]);
return NULL;
}
mask |= 1 << idx_map[mask_str[i] - 'w'];
}
} else if (!mask_list->subexpressions.is_empty()) {
ir_read_error(mask_list, "expected () or (<write mask>)");
return NULL;
}
ir_dereference *lhs = read_dereference(lhs_expr);
if (lhs == NULL) {
ir_read_error(NULL, "when reading left-hand side of assignment");
return NULL;
}
ir_rvalue *rhs = read_rvalue(rhs_expr);
if (rhs == NULL) {
ir_read_error(NULL, "when reading right-hand side of assignment");
return NULL;
}
if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
ir_read_error(expr, "non-zero write mask required.");
return NULL;
}
return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask);
}
ir_call *
ir_reader::read_call(s_expression *expr)
{
s_symbol *name;
s_list *params;
s_list *s_return = NULL;
ir_dereference_variable *return_deref = NULL;
s_pattern void_pat[] = { "call", name, params };
s_pattern non_void_pat[] = { "call", name, s_return, params };
if (MATCH(expr, non_void_pat)) {
return_deref = read_var_ref(s_return);
if (return_deref == NULL) {
ir_read_error(s_return, "when reading a call's return storage");
return NULL;
}
} else if (!MATCH(expr, void_pat)) {
ir_read_error(expr, "expected (call <name> [<deref>] (<param> ...))");
return NULL;
}
exec_list parameters;
foreach_in_list(s_expression, e, &params->subexpressions) {
ir_rvalue *param = read_rvalue(e);
if (param == NULL) {
ir_read_error(e, "when reading parameter to function call");
return NULL;
}
parameters.push_tail(param);
}
ir_function *f = state->symbols->get_function(name->value());
if (f == NULL) {
ir_read_error(expr, "found call to undefined function %s",
name->value());
return NULL;
}
ir_function_signature *callee =
f->matching_signature(state, &parameters, true);
if (callee == NULL) {
ir_read_error(expr, "couldn't find matching signature for function "
"%s", name->value());
return NULL;
}
if (callee->return_type == glsl_type::void_type && return_deref) {
ir_read_error(expr, "call has return value storage but void type");
return NULL;
} else if (callee->return_type != glsl_type::void_type && !return_deref) {
ir_read_error(expr, "call has non-void type but no return value storage");
return NULL;
}
return new(mem_ctx) ir_call(callee, return_deref, &parameters);
}
ir_expression *
ir_reader::read_expression(s_expression *expr)
{
s_expression *s_type;
s_symbol *s_op;
s_expression *s_arg[4] = {NULL};
s_pattern pat[] = { "expression", s_type, s_op, s_arg[0] };
if (!PARTIAL_MATCH(expr, pat)) {
ir_read_error(expr, "expected (expression <type> <operator> "
"<operand> [<operand>] [<operand>] [<operand>])");
return NULL;
}
s_arg[1] = (s_expression *) s_arg[0]->next; // may be tail sentinel
s_arg[2] = (s_expression *) s_arg[1]->next; // may be tail sentinel or NULL
if (s_arg[2])
s_arg[3] = (s_expression *) s_arg[2]->next; // may be tail sentinel or NULL
const glsl_type *type = read_type(s_type);
if (type == NULL)
return NULL;
/* Read the operator */
ir_expression_operation op = ir_expression::get_operator(s_op->value());
if (op == (ir_expression_operation) -1) {
ir_read_error(expr, "invalid operator: %s", s_op->value());
return NULL;
}
/* Skip "expression" <type> <operation> by subtracting 3. */
int num_operands = (int) ((s_list *) expr)->subexpressions.length() - 3;
int expected_operands = ir_expression::get_num_operands(op);
if (num_operands != expected_operands) {
ir_read_error(expr, "found %d expression operands, expected %d",
num_operands, expected_operands);
return NULL;
}
ir_rvalue *arg[4] = {NULL};
for (int i = 0; i < num_operands; i++) {
arg[i] = read_rvalue(s_arg[i]);
if (arg[i] == NULL) {
ir_read_error(NULL, "when reading operand #%d of %s", i, s_op->value());
return NULL;
}
}
return new(mem_ctx) ir_expression(op, type, arg[0], arg[1], arg[2], arg[3]);
}
ir_swizzle *
ir_reader::read_swizzle(s_expression *expr)
{
s_symbol *swiz;
s_expression *sub;
s_pattern pat[] = { "swiz", swiz, sub };
if (!MATCH(expr, pat)) {
ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)");
return NULL;
}
if (strlen(swiz->value()) > 4) {
ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value());
return NULL;
}
ir_rvalue *rvalue = read_rvalue(sub);
if (rvalue == NULL)
return NULL;
ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
rvalue->type->vector_elements);
if (ir == NULL)
ir_read_error(expr, "invalid swizzle");
return ir;
}
ir_constant *
ir_reader::read_constant(s_expression *expr)
{
s_expression *type_expr;
s_list *values;
s_pattern pat[] = { "constant", type_expr, values };
if (!MATCH(expr, pat)) {
ir_read_error(expr, "expected (constant <type> (...))");
return NULL;
}
const glsl_type *type = read_type(type_expr);
if (type == NULL)
return NULL;
if (values == NULL) {
ir_read_error(expr, "expected (constant <type> (...))");
return NULL;
}
if (type->is_array()) {
unsigned elements_supplied = 0;
exec_list elements;
foreach_in_list(s_expression, elt, &values->subexpressions) {
ir_constant *ir_elt = read_constant(elt);
if (ir_elt == NULL)
return NULL;
elements.push_tail(ir_elt);
elements_supplied++;
}
if (elements_supplied != type->length) {
ir_read_error(values, "expected exactly %u array elements, "
"given %u", type->length, elements_supplied);
return NULL;
}
return new(mem_ctx) ir_constant(type, &elements);
}
ir_constant_data data = { { 0 } };
// Read in list of values (at most 16).
unsigned k = 0;
foreach_in_list(s_expression, expr, &values->subexpressions) {
if (k >= 16) {
ir_read_error(values, "expected at most 16 numbers");
return NULL;
}
if (type->is_float()) {
s_number *value = SX_AS_NUMBER(expr);
if (value == NULL) {
ir_read_error(values, "expected numbers");
return NULL;
}
data.f[k] = value->fvalue();
} else {
s_int *value = SX_AS_INT(expr);
if (value == NULL) {
ir_read_error(values, "expected integers");
return NULL;
}
switch (type->base_type) {
case GLSL_TYPE_UINT: {
data.u[k] = value->value();
break;
}
case GLSL_TYPE_INT: {
data.i[k] = value->value();
break;
}
case GLSL_TYPE_BOOL: {
data.b[k] = value->value();
break;
}
default:
ir_read_error(values, "unsupported constant type");
return NULL;
}
}
++k;
}
if (k != type->components()) {
ir_read_error(values, "expected %u constant values, found %u",
type->components(), k);
return NULL;
}
return new(mem_ctx) ir_constant(type, &data);
}
ir_dereference_variable *
ir_reader::read_var_ref(s_expression *expr)
{
s_symbol *s_var;
s_pattern var_pat[] = { "var_ref", s_var };
if (MATCH(expr, var_pat)) {
ir_variable *var = state->symbols->get_variable(s_var->value());
if (var == NULL) {
ir_read_error(expr, "undeclared variable: %s", s_var->value());
return NULL;
}
return new(mem_ctx) ir_dereference_variable(var);
}
return NULL;
}
ir_dereference *
ir_reader::read_dereference(s_expression *expr)
{
s_expression *s_subject;
s_expression *s_index;
s_symbol *s_field;
s_pattern array_pat[] = { "array_ref", s_subject, s_index };
s_pattern record_pat[] = { "record_ref", s_subject, s_field };
ir_dereference_variable *var_ref = read_var_ref(expr);
if (var_ref != NULL) {
return var_ref;
} else if (MATCH(expr, array_pat)) {
ir_rvalue *subject = read_rvalue(s_subject);
if (subject == NULL) {
ir_read_error(NULL, "when reading the subject of an array_ref");
return NULL;
}
ir_rvalue *idx = read_rvalue(s_index);
if (idx == NULL) {
ir_read_error(NULL, "when reading the index of an array_ref");
return NULL;
}
return new(mem_ctx) ir_dereference_array(subject, idx);
} else if (MATCH(expr, record_pat)) {
ir_rvalue *subject = read_rvalue(s_subject);
if (subject == NULL) {
ir_read_error(NULL, "when reading the subject of a record_ref");
return NULL;
}
return new(mem_ctx) ir_dereference_record(subject, s_field->value());
}
return NULL;
}
ir_texture *
ir_reader::read_texture(s_expression *expr)
{
s_symbol *tag = NULL;
s_expression *s_type = NULL;
s_expression *s_sampler = NULL;
s_expression *s_coord = NULL;
s_expression *s_offset = NULL;
s_expression *s_proj = NULL;
s_list *s_shadow = NULL;
s_expression *s_lod = NULL;
s_expression *s_sample_index = NULL;
s_expression *s_component = NULL;
ir_texture_opcode op = ir_tex; /* silence warning */
s_pattern tex_pattern[] =
{ "tex", s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow };
s_pattern lod_pattern[] =
{ "lod", s_type, s_sampler, s_coord };
s_pattern txf_pattern[] =
{ "txf", s_type, s_sampler, s_coord, s_offset, s_lod };
s_pattern txf_ms_pattern[] =
{ "txf_ms", s_type, s_sampler, s_coord, s_sample_index };
s_pattern txs_pattern[] =
{ "txs", s_type, s_sampler, s_lod };
s_pattern tg4_pattern[] =
{ "tg4", s_type, s_sampler, s_coord, s_offset, s_component };
s_pattern query_levels_pattern[] =
{ "query_levels", s_type, s_sampler };
s_pattern texture_samples_pattern[] =
{ "samples", s_type, s_sampler };
s_pattern other_pattern[] =
{ tag, s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod };
if (MATCH(expr, lod_pattern)) {
op = ir_lod;
} else if (MATCH(expr, tex_pattern)) {
op = ir_tex;
} else if (MATCH(expr, txf_pattern)) {
op = ir_txf;
} else if (MATCH(expr, txf_ms_pattern)) {
op = ir_txf_ms;
} else if (MATCH(expr, txs_pattern)) {
op = ir_txs;
} else if (MATCH(expr, tg4_pattern)) {
op = ir_tg4;
} else if (MATCH(expr, query_levels_pattern)) {
op = ir_query_levels;
} else if (MATCH(expr, texture_samples_pattern)) {
op = ir_texture_samples;
} else if (MATCH(expr, other_pattern)) {
op = ir_texture::get_opcode(tag->value());
if (op == (ir_texture_opcode) -1)
return NULL;
} else {
ir_read_error(NULL, "unexpected texture pattern %s", tag->value());
return NULL;
}
ir_texture *tex = new(mem_ctx) ir_texture(op);
// Read return type
const glsl_type *type = read_type(s_type);
if (type == NULL) {
ir_read_error(NULL, "when reading type in (%s ...)",
tex->opcode_string());
return NULL;
}
// Read sampler (must be a deref)
ir_dereference *sampler = read_dereference(s_sampler);
if (sampler == NULL) {
ir_read_error(NULL, "when reading sampler in (%s ...)",
tex->opcode_string());
return NULL;
}
tex->set_sampler(sampler, type);
if (op != ir_txs) {
// Read coordinate (any rvalue)
tex->coordinate = read_rvalue(s_coord);
if (tex->coordinate == NULL) {
ir_read_error(NULL, "when reading coordinate in (%s ...)",
tex->opcode_string());
return NULL;
}
if (op != ir_txf_ms && op != ir_lod) {
// Read texel offset - either 0 or an rvalue.
s_int *si_offset = SX_AS_INT(s_offset);
if (si_offset == NULL || si_offset->value() != 0) {
tex->offset = read_rvalue(s_offset);
if (tex->offset == NULL) {
ir_read_error(s_offset, "expected 0 or an expression");
return NULL;
}
}
}
}
if (op != ir_txf && op != ir_txf_ms &&
op != ir_txs && op != ir_lod && op != ir_tg4 &&
op != ir_query_levels && op != ir_texture_samples) {
s_int *proj_as_int = SX_AS_INT(s_proj);
if (proj_as_int && proj_as_int->value() == 1) {
tex->projector = NULL;
} else {
tex->projector = read_rvalue(s_proj);
if (tex->projector == NULL) {
ir_read_error(NULL, "when reading projective divide in (%s ..)",
tex->opcode_string());
return NULL;
}
}
if (s_shadow->subexpressions.is_empty()) {
tex->shadow_comparator = NULL;
} else {
tex->shadow_comparator = read_rvalue(s_shadow);
if (tex->shadow_comparator == NULL) {
ir_read_error(NULL, "when reading shadow comparator in (%s ..)",
tex->opcode_string());
return NULL;
}
}
}
switch (op) {
case ir_txb:
tex->lod_info.bias = read_rvalue(s_lod);
if (tex->lod_info.bias == NULL) {
ir_read_error(NULL, "when reading LOD bias in (txb ...)");
return NULL;
}
break;
case ir_txl:
case ir_txf:
case ir_txs:
tex->lod_info.lod = read_rvalue(s_lod);
if (tex->lod_info.lod == NULL) {
ir_read_error(NULL, "when reading LOD in (%s ...)",
tex->opcode_string());
return NULL;
}
break;
case ir_txf_ms:
tex->lod_info.sample_index = read_rvalue(s_sample_index);
if (tex->lod_info.sample_index == NULL) {
ir_read_error(NULL, "when reading sample_index in (txf_ms ...)");
return NULL;
}
break;
case ir_txd: {
s_expression *s_dx, *s_dy;
s_pattern dxdy_pat[] = { s_dx, s_dy };
if (!MATCH(s_lod, dxdy_pat)) {
ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)");
return NULL;
}
tex->lod_info.grad.dPdx = read_rvalue(s_dx);
if (tex->lod_info.grad.dPdx == NULL) {
ir_read_error(NULL, "when reading dPdx in (txd ...)");
return NULL;
}
tex->lod_info.grad.dPdy = read_rvalue(s_dy);
if (tex->lod_info.grad.dPdy == NULL) {
ir_read_error(NULL, "when reading dPdy in (txd ...)");
return NULL;
}
break;
}
case ir_tg4:
tex->lod_info.component = read_rvalue(s_component);
if (tex->lod_info.component == NULL) {
ir_read_error(NULL, "when reading component in (tg4 ...)");
return NULL;
}
break;
default:
// tex and lod don't have any extra parameters.
break;
};
return tex;
}
ir_emit_vertex *
ir_reader::read_emit_vertex(s_expression *expr)
{
s_expression *s_stream = NULL;
s_pattern pat[] = { "emit-vertex", s_stream };
if (MATCH(expr, pat)) {
ir_rvalue *stream = read_dereference(s_stream);
if (stream == NULL) {
ir_read_error(NULL, "when reading stream info in emit-vertex");
return NULL;
}
return new(mem_ctx) ir_emit_vertex(stream);
}
ir_read_error(NULL, "when reading emit-vertex");
return NULL;
}
ir_end_primitive *
ir_reader::read_end_primitive(s_expression *expr)
{
s_expression *s_stream = NULL;
s_pattern pat[] = { "end-primitive", s_stream };
if (MATCH(expr, pat)) {
ir_rvalue *stream = read_dereference(s_stream);
if (stream == NULL) {
ir_read_error(NULL, "when reading stream info in end-primitive");
return NULL;
}
return new(mem_ctx) ir_end_primitive(stream);
}
ir_read_error(NULL, "when reading end-primitive");
return NULL;
}
ir_barrier *
ir_reader::read_barrier(s_expression *expr)
{
s_pattern pat[] = { "barrier" };
if (MATCH(expr, pat)) {
return new(mem_ctx) ir_barrier();
}
ir_read_error(NULL, "when reading barrier");
return NULL;
}