Source code

Revision control

Copy as Markdown

Other Tools

/* -*- c++ -*- */
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef IR_H
#define IR_H
#include <stdio.h>
#include <stdlib.h>
#include "util/ralloc.h"
#include "util/format/u_format.h"
#include "util/half_float.h"
#include "compiler/glsl_types.h"
#include "list.h"
#include "ir_visitor.h"
#include "ir_hierarchical_visitor.h"
#ifdef __cplusplus
/**
* \defgroup IR Intermediate representation nodes
*
* @{
*/
/**
* Class tags
*
* Each concrete class derived from \c ir_instruction has a value in this
* enumerant. The value for the type is stored in \c ir_instruction::ir_type
* by the constructor. While using type tags is not very C++, it is extremely
* convenient. For example, during debugging you can simply inspect
* \c ir_instruction::ir_type to find out the actual type of the object.
*
* In addition, it is possible to use a switch-statement based on \c
* \c ir_instruction::ir_type to select different behavior for different object
* types. For functions that have only slight differences for several object
* types, this allows writing very straightforward, readable code.
*/
enum ir_node_type {
ir_type_dereference_array,
ir_type_dereference_record,
ir_type_dereference_variable,
ir_type_constant,
ir_type_expression,
ir_type_swizzle,
ir_type_texture,
ir_type_variable,
ir_type_assignment,
ir_type_call,
ir_type_function,
ir_type_function_signature,
ir_type_if,
ir_type_loop,
ir_type_loop_jump,
ir_type_return,
ir_type_precision,
ir_type_typedecl,
ir_type_discard,
ir_type_demote,
ir_type_emit_vertex,
ir_type_end_primitive,
ir_type_barrier,
ir_type_max, /**< maximum ir_type enum number, for validation */
ir_type_unset = ir_type_max
};
/**
* Base class of all IR instructions
*/
class ir_instruction : public exec_node {
public:
enum ir_node_type ir_type;
/**
* GCC 4.7+ and clang warn when deleting an ir_instruction unless
* there's a virtual destructor present. Because we almost
* universally use ralloc for our memory management of
* ir_instructions, the destructor doesn't need to do any work.
*/
virtual ~ir_instruction()
{
}
/** ir_print_visitor helper for debugging. */
void print(void) const;
void fprint(FILE *f) const;
virtual void accept(ir_visitor *) = 0;
virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
virtual ir_instruction *clone(void *mem_ctx,
struct hash_table *ht) const = 0;
bool is_rvalue() const
{
return ir_type == ir_type_dereference_array ||
ir_type == ir_type_dereference_record ||
ir_type == ir_type_dereference_variable ||
ir_type == ir_type_constant ||
ir_type == ir_type_expression ||
ir_type == ir_type_swizzle ||
ir_type == ir_type_texture;
}
bool is_dereference() const
{
return ir_type == ir_type_dereference_array ||
ir_type == ir_type_dereference_record ||
ir_type == ir_type_dereference_variable;
}
bool is_jump() const
{
return ir_type == ir_type_loop_jump ||
ir_type == ir_type_return ||
ir_type == ir_type_discard;
}
/**
* \name IR instruction downcast functions
*
* These functions either cast the object to a derived class or return
* \c NULL if the object's type does not match the specified derived class.
* Additional downcast functions will be added as needed.
*/
/*@{*/
#define AS_BASE(TYPE) \
class ir_##TYPE *as_##TYPE() \
{ \
assume(this != NULL); \
return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
} \
const class ir_##TYPE *as_##TYPE() const \
{ \
assume(this != NULL); \
return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
}
AS_BASE(rvalue)
AS_BASE(dereference)
AS_BASE(jump)
#undef AS_BASE
#define AS_CHILD(TYPE) \
class ir_##TYPE * as_##TYPE() \
{ \
assume(this != NULL); \
return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
} \
const class ir_##TYPE * as_##TYPE() const \
{ \
assume(this != NULL); \
return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
}
AS_CHILD(variable)
AS_CHILD(function)
AS_CHILD(dereference_array)
AS_CHILD(dereference_variable)
AS_CHILD(dereference_record)
AS_CHILD(expression)
AS_CHILD(loop)
AS_CHILD(assignment)
AS_CHILD(call)
AS_CHILD(return)
AS_CHILD(if)
AS_CHILD(swizzle)
AS_CHILD(texture)
AS_CHILD(constant)
AS_CHILD(discard)
#undef AS_CHILD
/*@}*/
/**
* IR equality method: Return true if the referenced instruction would
* return the same value as this one.
*
* This intended to be used for CSE and algebraic optimizations, on rvalues
* in particular. No support for other instruction types (assignments,
* jumps, calls, etc.) is planned.
*/
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
protected:
ir_instruction(enum ir_node_type t)
: ir_type(t)
{
}
private:
ir_instruction()
{
assert(!"Should not get here.");
}
};
/**
* The base class for all "values"/expression trees.
*/
class ir_rvalue : public ir_instruction {
public:
const struct glsl_type *type;
virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
ir_rvalue *as_rvalue_to_saturate();
virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
{
return false;
}
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return NULL;
}
/**
* If an r-value is a reference to a whole variable, get that variable
*
* \return
* Pointer to a variable that is completely dereferenced by the r-value. If
* the r-value is not a dereference or the dereference does not access the
* entire variable (i.e., it's just one array element, struct field), \c NULL
* is returned.
*/
virtual ir_variable *whole_variable_referenced()
{
return NULL;
}
/**
* Determine if an r-value has the value zero
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have all elements set to the value
* zero (or \c false for booleans).
*
* \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
*/
virtual bool is_zero() const;
/**
* Determine if an r-value has the value one
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have all elements set to the value
* one (or \c true for booleans).
*
* \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
*/
virtual bool is_one() const;
/**
* Determine if an r-value has the value negative one
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have all elements set to the value
* negative one. For boolean types, the result is always \c false.
*
* \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
*/
virtual bool is_negative_one() const;
/**
* Determine if an r-value is an unsigned integer constant which can be
* stored in 16 bits.
*
* \sa ir_constant::is_uint16_constant.
*/
virtual bool is_uint16_constant() const { return false; }
/**
* Return a generic value of error_type.
*
* Allocation will be performed with 'mem_ctx' as ralloc owner.
*/
static ir_rvalue *error_value(void *mem_ctx);
protected:
ir_rvalue(enum ir_node_type t);
};
/**
* Variable storage classes
*/
enum ir_variable_mode {
ir_var_auto = 0, /**< Function local variables and globals. */
ir_var_uniform, /**< Variable declared as a uniform. */
ir_var_shader_storage, /**< Variable declared as an ssbo. */
ir_var_shader_shared, /**< Variable declared as shared. */
ir_var_shader_in,
ir_var_shader_out,
ir_var_function_in,
ir_var_function_out,
ir_var_function_inout,
ir_var_const_in, /**< "in" param that must be a constant expression */
ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
ir_var_temporary, /**< Temporary variable generated during compilation. */
ir_var_mode_count /**< Number of variable modes */
};
/**
* Enum keeping track of how a variable was declared. For error checking of
* the gl_PerVertex redeclaration rules.
*/
enum ir_var_declaration_type {
/**
* Normal declaration (for most variables, this means an explicit
* declaration. Exception: temporaries are always implicitly declared, but
* they still use ir_var_declared_normally).
*
* Note: an ir_variable that represents a named interface block uses
* ir_var_declared_normally.
*/
ir_var_declared_normally = 0,
/**
* Variable was explicitly declared (or re-declared) in an unnamed
* interface block.
*/
ir_var_declared_in_block,
/**
* Variable is an implicitly declared built-in that has not been explicitly
* re-declared by the shader.
*/
ir_var_declared_implicitly,
/**
* Variable is implicitly generated by the compiler and should not be
* visible via the API.
*/
ir_var_hidden,
};
/**
* \brief Layout qualifiers for gl_FragDepth.
*
* The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
* with a layout qualifier.
*/
enum ir_depth_layout {
ir_depth_layout_none, /**< No depth layout is specified. */
ir_depth_layout_any,
ir_depth_layout_greater,
ir_depth_layout_less,
ir_depth_layout_unchanged
};
/**
* \brief Convert depth layout qualifier to string.
*/
const char*
depth_layout_string(ir_depth_layout layout);
/**
* Description of built-in state associated with a uniform
*
* \sa ir_variable::state_slots
*/
struct ir_state_slot {
gl_state_index16 tokens[STATE_LENGTH];
int swizzle;
};
/**
* Get the string value for an interpolation qualifier
*
* \return The string that would be used in a shader to specify \c
* mode will be returned.
*
* This function is used to generate error messages of the form "shader
* uses %s interpolation qualifier", so in the case where there is no
* interpolation qualifier, it returns "no".
*
* This function should only be used on a shader input or output variable.
*/
const char *interpolation_string(unsigned interpolation);
class ir_variable : public ir_instruction {
public:
ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Determine whether or not a variable is part of a uniform or
* shader storage block.
*/
inline bool is_in_buffer_block() const
{
return (this->data.mode == ir_var_uniform ||
this->data.mode == ir_var_shader_storage) &&
this->interface_type != NULL;
}
/**
* Determine whether or not a variable is part of a shader storage block.
*/
inline bool is_in_shader_storage_block() const
{
return this->data.mode == ir_var_shader_storage &&
this->interface_type != NULL;
}
/**
* Determine whether or not a variable is the declaration of an interface
* block
*
* For the first declaration below, there will be an \c ir_variable named
* "instance" whose type and whose instance_type will be the same
* \c glsl_type. For the second declaration, there will be an \c ir_variable
* named "f" whose type is float and whose instance_type is B2.
*
* "instance" is an interface instance variable, but "f" is not.
*
* uniform B1 {
* float f;
* } instance;
*
* uniform B2 {
* float f;
* };
*/
inline bool is_interface_instance() const
{
return this->type->without_array() == this->interface_type;
}
/**
* Return whether this variable contains a bindless sampler/image.
*/
inline bool contains_bindless() const
{
if (!this->type->contains_sampler() && !this->type->contains_image())
return false;
return this->data.bindless || this->data.mode != ir_var_uniform;
}
/**
* Set this->interface_type on a newly created variable.
*/
void init_interface_type(const struct glsl_type *type)
{
assert(this->interface_type == NULL);
this->interface_type = type;
if (this->is_interface_instance()) {
this->u.max_ifc_array_access =
ralloc_array(this, int, type->length);
for (unsigned i = 0; i < type->length; i++) {
this->u.max_ifc_array_access[i] = -1;
}
}
}
/**
* Change this->interface_type on a variable that previously had a
* different, but compatible, interface_type. This is used during linking
* to set the size of arrays in interface blocks.
*/
void change_interface_type(const struct glsl_type *type)
{
if (this->u.max_ifc_array_access != NULL) {
/* max_ifc_array_access has already been allocated, so make sure the
* new interface has the same number of fields as the old one.
*/
assert(this->interface_type->length == type->length);
}
this->interface_type = type;
}
/**
* Change this->interface_type on a variable that previously had a
* different, and incompatible, interface_type. This is used during
* compilation to handle redeclaration of the built-in gl_PerVertex
* interface block.
*/
void reinit_interface_type(const struct glsl_type *type)
{
if (this->u.max_ifc_array_access != NULL) {
#ifndef NDEBUG
/* Redeclaring gl_PerVertex is only allowed if none of the built-ins
* it defines have been accessed yet; so it's safe to throw away the
* old max_ifc_array_access pointer, since all of its values are
* zero.
*/
for (unsigned i = 0; i < this->interface_type->length; i++)
assert(this->u.max_ifc_array_access[i] == -1);
#endif
ralloc_free(this->u.max_ifc_array_access);
this->u.max_ifc_array_access = NULL;
}
this->interface_type = NULL;
init_interface_type(type);
}
const glsl_type *get_interface_type() const
{
return this->interface_type;
}
enum glsl_interface_packing get_interface_type_packing() const
{
return this->interface_type->get_interface_packing();
}
/**
* Get the max_ifc_array_access pointer
*
* A "set" function is not needed because the array is dynmically allocated
* as necessary.
*/
inline int *get_max_ifc_array_access()
{
assert(this->data._num_state_slots == 0);
return this->u.max_ifc_array_access;
}
inline unsigned get_num_state_slots() const
{
assert(!this->is_interface_instance()
|| this->data._num_state_slots == 0);
return this->data._num_state_slots;
}
inline void set_num_state_slots(unsigned n)
{
assert(!this->is_interface_instance()
|| n == 0);
this->data._num_state_slots = n;
}
inline ir_state_slot *get_state_slots()
{
return this->is_interface_instance() ? NULL : this->u.state_slots;
}
inline const ir_state_slot *get_state_slots() const
{
return this->is_interface_instance() ? NULL : this->u.state_slots;
}
inline ir_state_slot *allocate_state_slots(unsigned n)
{
assert(!this->is_interface_instance());
this->u.state_slots = ralloc_array(this, ir_state_slot, n);
this->data._num_state_slots = 0;
if (this->u.state_slots != NULL)
this->data._num_state_slots = n;
return this->u.state_slots;
}
inline bool is_interpolation_flat() const
{
return this->data.interpolation == INTERP_MODE_FLAT ||
this->type->contains_integer() ||
this->type->contains_double();
}
inline bool is_name_ralloced() const
{
return this->name != ir_variable::tmp_name &&
this->name != this->name_storage;
}
/**
* Enable emitting extension warnings for this variable
*/
void enable_extension_warning(const char *extension);
/**
* Get the extension warning string for this variable
*
* If warnings are not enabled, \c NULL is returned.
*/
const char *get_extension_warning() const;
/**
* Declared type of the variable
*/
const struct glsl_type *type;
/**
* Declared name of the variable
*/
const char *name;
private:
/**
* If the name length fits into name_storage, it's used, otherwise
* the name is ralloc'd. shader-db mining showed that 70% of variables
* fit here. This is a win over ralloc where only ralloc_header has
* 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
*/
char name_storage[16];
public:
struct ir_variable_data {
/**
* Is the variable read-only?
*
* This is set for variables declared as \c const, shader inputs,
* and uniforms.
*/
unsigned read_only:1;
unsigned centroid:1;
unsigned sample:1;
unsigned patch:1;
/**
* Was an 'invariant' qualifier explicitly set in the shader?
*
* This is used to cross validate qualifiers.
*/
unsigned explicit_invariant:1;
/**
* Is the variable invariant?
*
* It can happen either by having the 'invariant' qualifier
* explicitly set in the shader or by being used in calculations
* of other invariant variables.
*/
unsigned invariant:1;
unsigned precise:1;
/**
* Has this variable been used for reading or writing?
*
* Several GLSL semantic checks require knowledge of whether or not a
* variable has been used. For example, it is an error to redeclare a
* variable as invariant after it has been used.
*
* This is maintained in the ast_to_hir.cpp path and during linking,
* but not in Mesa's fixed function or ARB program paths.
*/
unsigned used:1;
/**
* Has this variable been statically assigned?
*
* This answers whether the variable was assigned in any path of
* the shader during ast_to_hir. This doesn't answer whether it is
* still written after dead code removal, nor is it maintained in
* non-ast_to_hir.cpp (GLSL parsing) paths.
*/
unsigned assigned:1;
/**
* When separate shader programs are enabled, only input/outputs between
* the stages of a multi-stage separate program can be safely removed
* from the shader interface. Other input/outputs must remains active.
*/
unsigned always_active_io:1;
/**
* Enum indicating how the variable was declared. See
* ir_var_declaration_type.
*
* This is used to detect certain kinds of illegal variable redeclarations.
*/
unsigned how_declared:2;
/**
* Storage class of the variable.
*
* \sa ir_variable_mode
*/
unsigned mode:4;
/**
* Interpolation mode for shader inputs / outputs
*
* \sa glsl_interp_mode
*/
unsigned interpolation:2;
/**
* Was the location explicitly set in the shader?
*
* If the location is explicitly set in the shader, it \b cannot be changed
* by the linker or by the API (e.g., calls to \c glBindAttribLocation have
* no effect).
*/
unsigned explicit_location:1;
unsigned explicit_index:1;
/**
* Was an initial binding explicitly set in the shader?
*
* If so, constant_value contains an integer ir_constant representing the
* initial binding point.
*/
unsigned explicit_binding:1;
/**
* Was an initial component explicitly set in the shader?
*/
unsigned explicit_component:1;
/**
* Does this variable have an initializer?
*
* This is used by the linker to cross-validiate initializers of global
* variables.
*/
unsigned has_initializer:1;
/**
* Is this variable a generic output or input that has not yet been matched
* up to a variable in another stage of the pipeline?
*
* This is used by the linker as scratch storage while assigning locations
* to generic inputs and outputs.
*/
unsigned is_unmatched_generic_inout:1;
/**
* Is this varying used by transform feedback?
*
* This is used by the linker to decide if it's safe to pack the varying.
*/
unsigned is_xfb:1;
/**
* Is this varying used only by transform feedback?
*
* This is used by the linker to decide if its safe to pack the varying.
*/
unsigned is_xfb_only:1;
/**
* Was a transform feedback buffer set in the shader?
*/
unsigned explicit_xfb_buffer:1;
/**
* Was a transform feedback offset set in the shader?
*/
unsigned explicit_xfb_offset:1;
/**
* Was a transform feedback stride set in the shader?
*/
unsigned explicit_xfb_stride:1;
/**
* If non-zero, then this variable may be packed along with other variables
* into a single varying slot, so this offset should be applied when
* accessing components. For example, an offset of 1 means that the x
* component of this variable is actually stored in component y of the
* location specified by \c location.
*/
unsigned location_frac:2;
/**
* Layout of the matrix. Uses glsl_matrix_layout values.
*/
unsigned matrix_layout:2;
/**
* Non-zero if this variable was created by lowering a named interface
* block.
*/
unsigned from_named_ifc_block:1;
/**
* Non-zero if the variable must be a shader input. This is useful for
* constraints on function parameters.
*/
unsigned must_be_shader_input:1;
/**
* Output index for dual source blending.
*
* \note
* The GLSL spec only allows the values 0 or 1 for the index in \b dual
* source blending.
*/
unsigned index:1;
/**
* Precision qualifier.
*
* In desktop GLSL we do not care about precision qualifiers at all, in
* fact, the spec says that precision qualifiers are ignored.
*
* To make things easy, we make it so that this field is always
* GLSL_PRECISION_NONE on desktop shaders. This way all the variables
* have the same precision value and the checks we add in the compiler
* for this field will never break a desktop shader compile.
*/
unsigned precision:2;
/**
* \brief Layout qualifier for gl_FragDepth.
*
* This is not equal to \c ir_depth_layout_none if and only if this
* variable is \c gl_FragDepth and a layout qualifier is specified.
*/
ir_depth_layout depth_layout:3;
/**
* Memory qualifiers.
*/
unsigned memory_read_only:1; /**< "readonly" qualifier. */
unsigned memory_write_only:1; /**< "writeonly" qualifier. */
unsigned memory_coherent:1;
unsigned memory_volatile:1;
unsigned memory_restrict:1;
/**
* ARB_shader_storage_buffer_object
*/
unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
unsigned implicit_sized_array:1;
/**
* Whether this is a fragment shader output implicitly initialized with
* the previous contents of the specified render target at the
* framebuffer location corresponding to this shader invocation.
*/
unsigned fb_fetch_output:1;
/**
* Non-zero if this variable is considered bindless as defined by
* ARB_bindless_texture.
*/
unsigned bindless:1;
/**
* Non-zero if this variable is considered bound as defined by
* ARB_bindless_texture.
*/
unsigned bound:1;
/**
* Emit a warning if this variable is accessed.
*/
private:
uint8_t warn_extension_index;
public:
/**
* Image internal format if specified explicitly, otherwise
* PIPE_FORMAT_NONE.
*/
enum pipe_format image_format;
private:
/**
* Number of state slots used
*
* \note
* This could be stored in as few as 7-bits, if necessary. If it is made
* smaller, add an assertion to \c ir_variable::allocate_state_slots to
* be safe.
*/
uint16_t _num_state_slots;
public:
/**
* Initial binding point for a sampler, atomic, or UBO.
*
* For array types, this represents the binding point for the first element.
*/
uint16_t binding;
/**
* Storage location of the base of this variable
*
* The precise meaning of this field depends on the nature of the variable.
*
* - Vertex shader input: one of the values from \c gl_vert_attrib.
* - Vertex shader output: one of the values from \c gl_varying_slot.
* - Geometry shader input: one of the values from \c gl_varying_slot.
* - Geometry shader output: one of the values from \c gl_varying_slot.
* - Fragment shader input: one of the values from \c gl_varying_slot.
* - Fragment shader output: one of the values from \c gl_frag_result.
* - Uniforms: Per-stage uniform slot number for default uniform block.
* - Uniforms: Index within the uniform block definition for UBO members.
* - Non-UBO Uniforms: explicit location until linking then reused to
* store uniform slot number.
* - Other: This field is not currently used.
*
* If the variable is a uniform, shader input, or shader output, and the
* slot has not been assigned, the value will be -1.
*/
int location;
/**
* for glsl->tgsi/mesa IR we need to store the index into the
* parameters for uniforms, initially the code overloaded location
* but this causes problems with indirect samplers and AoA.
* This is assigned in _mesa_generate_parameters_list_for_uniforms.
*/
int param_index;
/**
* Vertex stream output identifier.
*
* For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
* stream of the i-th component.
*/
unsigned stream;
/**
* Atomic, transform feedback or block member offset.
*/
unsigned offset;
/**
* Highest element accessed with a constant expression array index
*
* Not used for non-array variables. -1 is never accessed.
*/
int max_array_access;
/**
* Transform feedback buffer.
*/
unsigned xfb_buffer;
/**
* Transform feedback stride.
*/
unsigned xfb_stride;
/**
* Allow (only) ir_variable direct access private members.
*/
friend class ir_variable;
} data;
/**
* Value assigned in the initializer of a variable declared "const"
*/
ir_constant *constant_value;
/**
* Constant expression assigned in the initializer of the variable
*
* \warning
* This field and \c ::constant_value are distinct. Even if the two fields
* refer to constants with the same value, they must point to separate
* objects.
*/
ir_constant *constant_initializer;
private:
static const char *const warn_extension_table[];
union {
/**
* For variables which satisfy the is_interface_instance() predicate,
* this points to an array of integers such that if the ith member of
* the interface block is an array, max_ifc_array_access[i] is the
* maximum array element of that member that has been accessed. If the
* ith member of the interface block is not an array,
* max_ifc_array_access[i] is unused.
*
* For variables whose type is not an interface block, this pointer is
* NULL.
*/
int *max_ifc_array_access;
/**
* Built-in state that backs this uniform
*
* Once set at variable creation, \c state_slots must remain invariant.
*
* If the variable is not a uniform, \c _num_state_slots will be zero
* and \c state_slots will be \c NULL.
*/
ir_state_slot *state_slots;
} u;
/**
* For variables that are in an interface block or are an instance of an
* interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
*
* \sa ir_variable::location
*/
const glsl_type *interface_type;
/**
* Name used for anonymous compiler temporaries
*/
static const char tmp_name[];
public:
/**
* Should the construct keep names for ir_var_temporary variables?
*
* When this global is false, names passed to the constructor for
* \c ir_var_temporary variables will be dropped. Instead, the variable will
* be named "compiler_temp". This name will be in static storage.
*
* \warning
* \b NEVER change the mode of an \c ir_var_temporary.
*
* \warning
* This variable is \b not thread-safe. It is global, \b not
* per-context. It begins life false. A context can, at some point, make
* it true. From that point on, it will be true forever. This should be
* okay since it will only be set true while debugging.
*/
static bool temporaries_allocate_names;
};
/**
* A function that returns whether a built-in function is available in the
* current shading language (based on version, ES or desktop, and extensions).
*/
typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
#define MAKE_INTRINSIC_FOR_TYPE(op, t) \
ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
#define MAP_INTRINSIC_TO_TYPE(i, t) \
ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
enum ir_intrinsic_id {
ir_intrinsic_invalid = 0,
/**
* \name Generic intrinsics
*
* Each of these intrinsics has a specific version for shared variables and
* SSBOs.
*/
/*@{*/
ir_intrinsic_generic_load,
ir_intrinsic_generic_store,
ir_intrinsic_generic_atomic_add,
ir_intrinsic_generic_atomic_and,
ir_intrinsic_generic_atomic_or,
ir_intrinsic_generic_atomic_xor,
ir_intrinsic_generic_atomic_min,
ir_intrinsic_generic_atomic_max,
ir_intrinsic_generic_atomic_exchange,
ir_intrinsic_generic_atomic_comp_swap,
/*@}*/
ir_intrinsic_atomic_counter_read,
ir_intrinsic_atomic_counter_increment,
ir_intrinsic_atomic_counter_predecrement,
ir_intrinsic_atomic_counter_add,
ir_intrinsic_atomic_counter_and,
ir_intrinsic_atomic_counter_or,
ir_intrinsic_atomic_counter_xor,
ir_intrinsic_atomic_counter_min,
ir_intrinsic_atomic_counter_max,
ir_intrinsic_atomic_counter_exchange,
ir_intrinsic_atomic_counter_comp_swap,
ir_intrinsic_image_load,
ir_intrinsic_image_store,
ir_intrinsic_image_atomic_add,
ir_intrinsic_image_atomic_and,
ir_intrinsic_image_atomic_or,
ir_intrinsic_image_atomic_xor,
ir_intrinsic_image_atomic_min,
ir_intrinsic_image_atomic_max,
ir_intrinsic_image_atomic_exchange,
ir_intrinsic_image_atomic_comp_swap,
ir_intrinsic_image_size,
ir_intrinsic_image_samples,
ir_intrinsic_image_atomic_inc_wrap,
ir_intrinsic_image_atomic_dec_wrap,
ir_intrinsic_ssbo_load,
ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
ir_intrinsic_memory_barrier,
ir_intrinsic_shader_clock,
ir_intrinsic_group_memory_barrier,
ir_intrinsic_memory_barrier_atomic_counter,
ir_intrinsic_memory_barrier_buffer,
ir_intrinsic_memory_barrier_image,
ir_intrinsic_memory_barrier_shared,
ir_intrinsic_begin_invocation_interlock,
ir_intrinsic_end_invocation_interlock,
ir_intrinsic_vote_all,
ir_intrinsic_vote_any,
ir_intrinsic_vote_eq,
ir_intrinsic_ballot,
ir_intrinsic_read_invocation,
ir_intrinsic_read_first_invocation,
ir_intrinsic_helper_invocation,
ir_intrinsic_shared_load,
ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
};
/*@{*/
/**
* The representation of a function instance; may be the full definition or
* simply a prototype.
*/
class ir_function_signature : public ir_instruction {
/* An ir_function_signature will be part of the list of signatures in
* an ir_function.
*/
public:
ir_function_signature(const glsl_type *return_type,
builtin_available_predicate builtin_avail = NULL);
virtual ir_function_signature *clone(void *mem_ctx,
struct hash_table *ht) const;
ir_function_signature *clone_prototype(void *mem_ctx,
struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Attempt to evaluate this function as a constant expression,
* given a list of the actual parameters and the variable context.
* Returns NULL for non-built-ins.
*/
ir_constant *constant_expression_value(void *mem_ctx,
exec_list *actual_parameters,
struct hash_table *variable_context);
/**
* Get the name of the function for which this is a signature
*/
const char *function_name() const;
/**
* Get a handle to the function for which this is a signature
*
* There is no setter function, this function returns a \c const pointer,
* and \c ir_function_signature::_function is private for a reason. The
* only way to make a connection between a function and function signature
* is via \c ir_function::add_signature. This helps ensure that certain
* invariants (i.e., a function signature is in the list of signatures for
* its \c _function) are met.
*
* \sa ir_function::add_signature
*/
inline const class ir_function *function() const
{
return this->_function;
}
/**
* Check whether the qualifiers match between this signature's parameters
* and the supplied parameter list. If not, returns the name of the first
* parameter with mismatched qualifiers (for use in error messages).
*/
const char *qualifiers_match(exec_list *params);
/**
* Replace the current parameter list with the given one. This is useful
* if the current information came from a prototype, and either has invalid
* or missing parameter names.
*/
void replace_parameters(exec_list *new_params);
/**
* Function return type.
*
* \note The precision qualifier is stored separately in return_precision.
*/
const struct glsl_type *return_type;
/**
* List of ir_variable of function parameters.
*
* This represents the storage. The paramaters passed in a particular
* call will be in ir_call::actual_paramaters.
*/
struct exec_list parameters;
/** Whether or not this function has a body (which may be empty). */
unsigned is_defined:1;
/*
* Precision qualifier for the return type.
*
* See the comment for ir_variable_data::precision for more details.
*/
unsigned return_precision:2;
/** Whether or not this function signature is a built-in. */
bool is_builtin() const;
/**
* Whether or not this function is an intrinsic to be implemented
* by the driver.
*/
inline bool is_intrinsic() const
{
return intrinsic_id != ir_intrinsic_invalid;
}
/** Indentifier for this intrinsic. */
enum ir_intrinsic_id intrinsic_id;
/** Whether or not a built-in is available for this shader. */
bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
/** Body of instructions in the function. */
struct exec_list body;
private:
/**
* A function pointer to a predicate that answers whether a built-in
* function is available in the current shader. NULL if not a built-in.
*/
builtin_available_predicate builtin_avail;
/** Function of which this signature is one overload. */
class ir_function *_function;
/** Function signature of which this one is a prototype clone */
const ir_function_signature *origin;
friend class ir_function;
/**
* Helper function to run a list of instructions for constant
* expression evaluation.
*
* The hash table represents the values of the visible variables.
* There are no scoping issues because the table is indexed on
* ir_variable pointers, not variable names.
*
* Returns false if the expression is not constant, true otherwise,
* and the value in *result if result is non-NULL.
*/
bool constant_expression_evaluate_expression_list(void *mem_ctx,
const struct exec_list &body,
struct hash_table *variable_context,
ir_constant **result);
};
/**
* Header for tracking multiple overloaded functions with the same name.
* Contains a list of ir_function_signatures representing each of the
* actual functions.
*/
class ir_function : public ir_instruction {
public:
ir_function(const char *name);
virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
void add_signature(ir_function_signature *sig)
{
sig->_function = this;
this->signatures.push_tail(sig);
}
/**
* Find a signature that matches a set of actual parameters, taking implicit
* conversions into account. Also flags whether the match was exact.
*/
ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
const exec_list *actual_param,
bool allow_builtins,
bool *match_is_exact);
/**
* Find a signature that matches a set of actual parameters, taking implicit
* conversions into account.
*/
ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
const exec_list *actual_param,
bool allow_builtins);
/**
* Find a signature that exactly matches a set of actual parameters without
* any implicit type conversions.
*/
ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
const exec_list *actual_ps);
/**
* Name of the function.
*/
const char *name;
/** Whether or not this function has a signature that isn't a built-in. */
bool has_user_signature();
/**
* List of ir_function_signature for each overloaded function with this name.
*/
struct exec_list signatures;
/**
* is this function a subroutine type declaration
* e.g. subroutine void type1(float arg1);
*/
bool is_subroutine;
/**
* is this function associated to a subroutine type
* e.g. subroutine (type1, type2) function_name { function_body };
* would have num_subroutine_types 2,
* and pointers to the type1 and type2 types.
*/
int num_subroutine_types;
const struct glsl_type **subroutine_types;
int subroutine_index;
};
inline const char *ir_function_signature::function_name() const
{
return this->_function->name;
}
/*@}*/
/**
* IR instruction representing high-level if-statements
*/
class ir_if : public ir_instruction {
public:
ir_if(ir_rvalue *condition)
: ir_instruction(ir_type_if), condition(condition)
{
}
virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *condition;
/** List of ir_instruction for the body of the then branch */
exec_list then_instructions;
/** List of ir_instruction for the body of the else branch */
exec_list else_instructions;
};
/**
* IR instruction representing a high-level loop structure.
*/
class ir_loop : public ir_instruction {
public:
ir_loop();
virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/** List of ir_instruction that make up the body of the loop. */
exec_list body_instructions;
};
class ir_assignment : public ir_instruction {
public:
ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
/**
* Construct an assignment with an explicit write mask
*
* \note
* Since a write mask is supplied, the LHS must already be a bare
* \c ir_dereference. The cannot be any swizzles in the LHS.
*/
ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
unsigned write_mask);
virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Get a whole variable written by an assignment
*
* If the LHS of the assignment writes a whole variable, the variable is
* returned. Otherwise \c NULL is returned. Examples of whole-variable
* assignment are:
*
* - Assigning to a scalar
* - Assigning to all components of a vector
* - Whole array (or matrix) assignment
* - Whole structure assignment
*/
ir_variable *whole_variable_written();
/**
* Set the LHS of an assignment
*/
void set_lhs(ir_rvalue *lhs);
/**
* Left-hand side of the assignment.
*
* This should be treated as read only. If you need to set the LHS of an
* assignment, use \c ir_assignment::set_lhs.
*/
ir_dereference *lhs;
/**
* Value being assigned
*/
ir_rvalue *rhs;
/**
* Optional condition for the assignment.
*/
ir_rvalue *condition;
/**
* Component mask written
*
* For non-vector types in the LHS, this field will be zero. For vector
* types, a bit will be set for each component that is written. Note that
* for \c vec2 and \c vec3 types only the lower bits will ever be set.
*
* A partially-set write mask means that each enabled channel gets
* the value from a consecutive channel of the rhs. For example,
* to write just .xyw of gl_FrontColor with color:
*
* (assign (constant bool (1)) (xyw)
* (var_ref gl_FragColor)
* (swiz xyw (var_ref color)))
*/
unsigned write_mask:4;
};
#include "ir_expression_operation.h"
extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
class ir_expression : public ir_rvalue {
public:
ir_expression(int op, const struct glsl_type *type,
ir_rvalue *op0, ir_rvalue *op1 = NULL,
ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
/**
* Constructor for unary operation expressions
*/
ir_expression(int op, ir_rvalue *);
/**
* Constructor for binary operation expressions
*/
ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
/**
* Constructor for ternary operation expressions
*/
ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
/**
* Attempt to constant-fold the expression
*
* The "variable_context" hash table links ir_variable * to ir_constant *
* that represent the variables' values. \c NULL represents an empty
* context.
*
* If the expression cannot be constant folded, this method will return
* \c NULL.
*/
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
/**
* This is only here for ir_reader to used for testing purposes please use
* the precomputed num_operands field if you need the number of operands.
*/
static unsigned get_num_operands(ir_expression_operation);
/**
* Return whether the expression operates on vectors horizontally.
*/
bool is_horizontal() const
{
return operation == ir_binop_all_equal ||
operation == ir_binop_any_nequal ||
operation == ir_binop_dot ||
operation == ir_binop_vector_extract ||
operation == ir_triop_vector_insert ||
operation == ir_binop_ubo_load ||
operation == ir_quadop_vector;
}
/**
* Do a reverse-lookup to translate the given string into an operator.
*/
static ir_expression_operation get_operator(const char *);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual ir_variable *variable_referenced() const;
/**
* Determine the number of operands used by an expression
*/
void init_num_operands()
{
if (operation == ir_quadop_vector) {
num_operands = this->type->vector_elements;
} else {
num_operands = get_num_operands(operation);
}
}
ir_expression_operation operation;
ir_rvalue *operands[4];
uint8_t num_operands;
};
/**
* HIR instruction representing a high-level function call, containing a list
* of parameters and returning a value in the supplied temporary.
*/
class ir_call : public ir_instruction {
public:
ir_call(ir_function_signature *callee,
ir_dereference_variable *return_deref,
exec_list *actual_parameters)
: ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
{
assert(callee->return_type != NULL);
actual_parameters->move_nodes_to(& this->actual_parameters);
}
ir_call(ir_function_signature *callee,
ir_dereference_variable *return_deref,
exec_list *actual_parameters,
ir_variable *var, ir_rvalue *array_idx)
: ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
{
assert(callee->return_type != NULL);
actual_parameters->move_nodes_to(& this->actual_parameters);
}
virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Get the name of the function being called.
*/
const char *callee_name() const
{
return callee->function_name();
}
/**
* Generates an inline version of the function before @ir,
* storing the return value in return_deref.
*/
void generate_inline(ir_instruction *ir);
/**
* Storage for the function's return value.
* This must be NULL if the return type is void.
*/
ir_dereference_variable *return_deref;
/**
* The specific function signature being called.
*/
ir_function_signature *callee;
/* List of ir_rvalue of paramaters passed in this call. */
exec_list actual_parameters;
/*
* ARB_shader_subroutine support -
* the subroutine uniform variable and array index
* rvalue to be used in the lowering pass later.
*/
ir_variable *sub_var;
ir_rvalue *array_idx;
};
/**
* \name Jump-like IR instructions.
*
* These include \c break, \c continue, \c return, and \c discard.
*/
/*@{*/
class ir_jump : public ir_instruction {
protected:
ir_jump(enum ir_node_type t)
: ir_instruction(t)
{
}
};
class ir_return : public ir_jump {
public:
ir_return()
: ir_jump(ir_type_return), value(NULL)
{
}
ir_return(ir_rvalue *value)
: ir_jump(ir_type_return), value(value)
{
}
virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
ir_rvalue *get_value() const
{
return value;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *value;
};
/**
* Jump instructions used inside loops
*
* These include \c break and \c continue. The \c break within a loop is
* different from the \c break within a switch-statement.
*
* \sa ir_switch_jump
*/
class ir_loop_jump : public ir_jump {
public:
enum jump_mode {
jump_break,
jump_continue
};
ir_loop_jump(jump_mode mode)
: ir_jump(ir_type_loop_jump)
{
this->mode = mode;
}
virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
bool is_break() const
{
return mode == jump_break;
}
bool is_continue() const
{
return mode == jump_continue;
}
/** Mode selector for the jump instruction. */
enum jump_mode mode;
};
/**
* IR instruction representing discard statements.
*/
class ir_discard : public ir_jump {
public:
ir_discard()
: ir_jump(ir_type_discard)
{
this->condition = NULL;
}
ir_discard(ir_rvalue *cond)
: ir_jump(ir_type_discard)
{
this->condition = cond;
}
virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *condition;
};
/*@}*/
/**
* IR instruction representing demote statements from
* GL_EXT_demote_to_helper_invocation.
*/
class ir_demote : public ir_instruction {
public:
ir_demote()
: ir_instruction(ir_type_demote)
{
}
virtual ir_demote *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
};
/**
* Texture sampling opcodes used in ir_texture
*/
enum ir_texture_opcode {
ir_tex, /**< Regular texture look-up */
ir_txb, /**< Texture look-up with LOD bias */
ir_txl, /**< Texture look-up with explicit LOD */
ir_txd, /**< Texture look-up with partial derivatvies */
ir_txf, /**< Texel fetch with explicit LOD */
ir_txf_ms, /**< Multisample texture fetch */
ir_txs, /**< Texture size */
ir_lod, /**< Texture lod query */
ir_tg4, /**< Texture gather */
ir_query_levels, /**< Texture levels query */
ir_texture_samples, /**< Texture samples query */
ir_samples_identical, /**< Query whether all samples are definitely identical. */
};
/**
* IR instruction to sample a texture
*
* The specific form of the IR instruction depends on the \c mode value
* selected from \c ir_texture_opcodes. In the printed IR, these will
* appear as:
*
* Texel offset (0 or an expression)
* | Projection divisor
* | | Shadow comparator
* | | |
* v v v
* (tex <type> <sampler> <coordinate> 0 1 ( ))
* (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
* (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
* (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
* (txf <type> <sampler> <coordinate> 0 <lod>)
* (txf_ms
* <type> <sampler> <coordinate> <sample_index>)
* (txs <type> <sampler> <lod>)
* (lod <type> <sampler> <coordinate>)
* (tg4 <type> <sampler> <coordinate> <offset> <component>)
* (query_levels <type> <sampler>)
* (samples_identical <sampler> <coordinate>)
*/
class ir_texture : public ir_rvalue {
public:
ir_texture(enum ir_texture_opcode op)
: ir_rvalue(ir_type_texture),
op(op), sampler(NULL), coordinate(NULL), projector(NULL),
shadow_comparator(NULL), offset(NULL)
{
memset(&lod_info, 0, sizeof(lod_info));
}
virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
/**
* Return a string representing the ir_texture_opcode.
*/
const char *opcode_string();
/** Set the sampler and type. */
void set_sampler(ir_dereference *sampler, const glsl_type *type);
static bool has_lod(const glsl_type *sampler_type);
/**
* Do a reverse-lookup to translate a string into an ir_texture_opcode.
*/
static ir_texture_opcode get_opcode(const char *);
enum ir_texture_opcode op;
/** Sampler to use for the texture access. */
ir_dereference *sampler;
/** Texture coordinate to sample */
ir_rvalue *coordinate;
/**
* Value used for projective divide.
*
* If there is no projective divide (the common case), this will be
* \c NULL. Optimization passes should check for this to point to a constant
* of 1.0 and replace that with \c NULL.
*/
ir_rvalue *projector;
/**
* Coordinate used for comparison on shadow look-ups.
*
* If there is no shadow comparison, this will be \c NULL. For the
* \c ir_txf opcode, this *must* be \c NULL.
*/
ir_rvalue *shadow_comparator;
/** Texel offset. */
ir_rvalue *offset;
union {
ir_rvalue *lod; /**< Floating point LOD */
ir_rvalue *bias; /**< Floating point LOD bias */
ir_rvalue *sample_index; /**< MSAA sample index */
ir_rvalue *component; /**< Gather component selector */
struct {
ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
} grad;
} lod_info;
};
struct ir_swizzle_mask {
unsigned x:2;
unsigned y:2;
unsigned z:2;
unsigned w:2;
/**
* Number of components in the swizzle.
*/
unsigned num_components:3;
/**
* Does the swizzle contain duplicate components?
*
* L-value swizzles cannot contain duplicate components.
*/
unsigned has_duplicates:1;
};
class ir_swizzle : public ir_rvalue {
public:
ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
unsigned count);
ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
/**
* Construct an ir_swizzle from the textual representation. Can fail.
*/
static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
{
return val->is_lvalue(state) && !mask.has_duplicates;
}
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const;
ir_rvalue *val;
ir_swizzle_mask mask;
private:
/**
* Initialize the mask component of a swizzle
*
* This is used by the \c ir_swizzle constructors.
*/
void init_mask(const unsigned *components, unsigned count);
};
class ir_dereference : public ir_rvalue {
public:
virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const = 0;
/**
* Get the precision. This can either come from the eventual variable that
* is dereferenced, or from a record member.
*/
virtual int precision() const = 0;
protected:
ir_dereference(enum ir_node_type t)
: ir_rvalue(t)
{
}
};
class ir_dereference_variable : public ir_dereference {
public:
ir_dereference_variable(ir_variable *var);
virtual ir_dereference_variable *clone(void *mem_ctx,
struct hash_table *) const;
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return this->var;
}
virtual int precision() const
{
return this->var->data.precision;
}
virtual ir_variable *whole_variable_referenced()
{
/* ir_dereference_variable objects always dereference the entire
* variable. However, if this dereference is dereferenced by anything
* else, the complete deferefernce chain is not a whole-variable
* dereference. This method should only be called on the top most
* ir_rvalue in a dereference chain.
*/
return this->var;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Object being dereferenced.
*/
ir_variable *var;
};
class ir_dereference_array : public ir_dereference {
public:
ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
virtual ir_dereference_array *clone(void *mem_ctx,
struct hash_table *) const;
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return this->array->variable_referenced();
}
virtual int precision() const
{
ir_dereference *deref = this->array->as_dereference();
if (deref == NULL)
return GLSL_PRECISION_NONE;
else
return deref->precision();
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *array;
ir_rvalue *array_index;
private:
void set_array(ir_rvalue *value);
};
class ir_dereference_record : public ir_dereference {
public:
ir_dereference_record(ir_rvalue *value, const char *field);
ir_dereference_record(ir_variable *var, const char *field);
virtual ir_dereference_record *clone(void *mem_ctx,
struct hash_table *) const;
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return this->record->variable_referenced();
}
virtual int precision() const
{
glsl_struct_field *field = record->type->fields.structure + field_idx;
return field->precision;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *record;
int field_idx;
};
/**
* Data stored in an ir_constant
*/
union ir_constant_data {
unsigned u[16];
int i[16];
float f[16];
bool b[16];
double d[16];
uint16_t f16[16];
uint64_t u64[16];
int64_t i64[16];
};
class ir_constant : public ir_rvalue {
public:
ir_constant(const struct glsl_type *type, const ir_constant_data *data);
ir_constant(bool b, unsigned vector_elements=1);
ir_constant(unsigned int u, unsigned vector_elements=1);
ir_constant(int i, unsigned vector_elements=1);
ir_constant(float16_t f16, unsigned vector_elements=1);
ir_constant(float f, unsigned vector_elements=1);
ir_constant(double d, unsigned vector_elements=1);
ir_constant(uint64_t u64, unsigned vector_elements=1);
ir_constant(int64_t i64, unsigned vector_elements=1);
/**
* Construct an ir_constant from a list of ir_constant values
*/
ir_constant(const struct glsl_type *type, exec_list *values);
/**
* Construct an ir_constant from a scalar component of another ir_constant
*
* The new \c ir_constant inherits the type of the component from the
* source constant.
*
* \note
* In the case of a matrix constant, the new constant is a scalar, \b not
* a vector.
*/
ir_constant(const ir_constant *c, unsigned i);
/**
* Return a new ir_constant of the specified type containing all zeros.
*/
static ir_constant *zero(void *mem_ctx, const glsl_type *type);
virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_constant *constant_expression_value(void *mem_ctx,
struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
/**
* Get a particular component of a constant as a specific type
*
* This is useful, for example, to get a value from an integer constant
* as a float or bool. This appears frequently when constructors are
* called with all constant parameters.
*/
/*@{*/
bool get_bool_component(unsigned i) const;
float get_float_component(unsigned i) const;
uint16_t get_float16_component(unsigned i) const;
double get_double_component(unsigned i) const;
int get_int_component(unsigned i) const;
unsigned get_uint_component(unsigned i) const;
int64_t get_int64_component(unsigned i) const;
uint64_t get_uint64_component(unsigned i) const;
/*@}*/
ir_constant *get_array_element(unsigned i) const;
ir_constant *get_record_field(int idx);
/**
* Copy the values on another constant at a given offset.
*
* The offset is ignored for array or struct copies, it's only for
* scalars or vectors into vectors or matrices.
*
* With identical types on both sides and zero offset it's clone()
* without creating a new object.
*/
void copy_offset(ir_constant *src, int offset);
/**
* Copy the values on another constant at a given offset and
* following an assign-like mask.
*
* The mask is ignored for scalars.
*
* Note that this function only handles what assign can handle,
* i.e. at most a vector as source and a column of a matrix as
* destination.
*/
void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
/**
* Determine whether a constant has the same value as another constant
*
* \sa ir_constant::is_zero, ir_constant::is_one,
* ir_constant::is_negative_one
*/
bool has_value(const ir_constant *) const;
/**
* Return true if this ir_constant represents the given value.
*
* For vectors, this checks that each component is the given value.
*/
virtual bool is_value(float f, int i) const;
virtual bool is_zero() const;
virtual bool is_one() const;
virtual bool is_negative_one() const;
/**
* Return true for constants that could be stored as 16-bit unsigned values.
*
* Note that this will return true even for signed integer ir_constants, as
* long as the value is non-negative and fits in 16-bits.
*/
virtual bool is_uint16_constant() const;
/**
* Value of the constant.
*
* The field used to back the values supplied by the constant is determined
* by the type associated with the \c ir_instruction. Constants may be
* scalars, vectors, or matrices.
*/
union ir_constant_data value;
/* Array elements and structure fields */
ir_constant **const_elements;
private:
/**
* Parameterless constructor only used by the clone method
*/
ir_constant(void);
};
class ir_precision_statement : public ir_instruction {
public:
ir_precision_statement(const char *statement_to_store)
: ir_instruction(ir_type_precision)
{
ir_type = ir_type_precision;
precision_statement = statement_to_store;
}
virtual ir_precision_statement *clone(void *mem_ctx, struct hash_table *) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Precision statement
*/
const char *precision_statement;
};
class ir_typedecl_statement : public ir_instruction {
public:
ir_typedecl_statement(const glsl_type* type_decl)
: ir_instruction(ir_type_typedecl)
{
this->ir_type = ir_type_typedecl;
this->type_decl = type_decl;
}
virtual ir_typedecl_statement *clone(void *mem_ctx, struct hash_table *) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
const glsl_type* type_decl;
};
/**
* IR instruction to emit a vertex in a geometry shader.
*/
class ir_emit_vertex : public ir_instruction {
public:
ir_emit_vertex(ir_rvalue *stream)
: ir_instruction(ir_type_emit_vertex),
stream(stream)
{
assert(stream);
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
{
return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
int stream_id() const
{
return stream->as_constant()->value.i[0];
}
ir_rvalue *stream;
};
/**
* IR instruction to complete the current primitive and start a new one in a
* geometry shader.
*/
class ir_end_primitive : public ir_instruction {
public:
ir_end_primitive(ir_rvalue *stream)
: ir_instruction(ir_type_end_primitive),
stream(stream)
{
assert(stream);
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
{
return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
int stream_id() const
{
return stream->as_constant()->value.i[0];
}
ir_rvalue *stream;
};
/**
* IR instruction for tessellation control and compute shader barrier.
*/
class ir_barrier : public ir_instruction {
public:
ir_barrier()
: ir_instruction(ir_type_barrier)
{
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
{
return new(mem_ctx) ir_barrier();
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
};
/*@}*/
/**
* Apply a visitor to each IR node in a list
*/
void
visit_exec_list(exec_list *list, ir_visitor *visitor);
/**
* Validate invariants on each IR node in a list
*/
void validate_ir_tree(exec_list *instructions);
struct _mesa_glsl_parse_state;
struct gl_shader_program;
/**
* Detect whether an unlinked shader contains static recursion
*
* If the list of instructions is determined to contain static recursion,
* \c _mesa_glsl_error will be called to emit error messages for each function
* that is in the recursion cycle.
*/
void
detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
exec_list *instructions);
/**
* Detect whether a linked shader contains static recursion
*
* If the list of instructions is determined to contain static recursion,
* \c link_error_printf will be called to emit error messages for each function
* that is in the recursion cycle. In addition,
* \c gl_shader_program::LinkStatus will be set to false.
*/
void
detect_recursion_linked(struct gl_shader_program *prog,
exec_list *instructions);
/**
* Make a clone of each IR instruction in a list
*
* \param in List of IR instructions that are to be cloned
* \param out List to hold the cloned instructions
*/
void
clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
extern void
_mesa_glsl_initialize_variables(exec_list *instructions,
struct _mesa_glsl_parse_state *state);
extern void
reparent_ir(exec_list *list, void *mem_ctx);
extern void
do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
gl_shader_stage shader_stage);
extern char *
prototype_string(const glsl_type *return_type, const char *name,
exec_list *parameters);
const char *
mode_string(const ir_variable *var);
/**
* Built-in / reserved GL variables names start with "gl_"
*/
static inline bool
is_gl_identifier(const char *s)
{
return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
}
extern "C" {
#endif /* __cplusplus */
extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
struct _mesa_glsl_parse_state *state);
extern void
fprint_ir(FILE *f, const void *instruction);
extern const struct gl_builtin_uniform_desc *
_mesa_glsl_get_builtin_uniform_desc(const char *name);
#ifdef __cplusplus
} /* extern "C" */
#endif
unsigned
vertices_per_prim(GLenum prim);
#endif /* IR_H */