Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright © 2008, 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <inttypes.h> /* for PRIx64 macro */
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include "main/context.h"
#include "main/debug_output.h"
#include "main/formats.h"
#include "main/shaderobj.h"
#include "util/u_atomic.h" /* for p_atomic_cmpxchg */
#include "util/ralloc.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "ast.h"
#include "glsl_parser_extras.h"
#include "glsl_parser.h"
#include "ir_optimization.h"
#include "loop_analysis.h"
#include "builtin_functions.h"
/**
* Format a short human-readable description of the given GLSL version.
*/
const char *
glsl_compute_version_string(void *mem_ctx, bool is_es, unsigned version)
{
return ralloc_asprintf(mem_ctx, "GLSL%s %d.%02d", is_es ? " ES" : "",
version / 100, version % 100);
}
static const unsigned known_desktop_glsl_versions[] =
{ 110, 120, 130, 140, 150, 330, 400, 410, 420, 430, 440, 450, 460 };
static const unsigned known_desktop_gl_versions[] =
{ 20, 21, 30, 31, 32, 33, 40, 41, 42, 43, 44, 45, 46 };
_mesa_glsl_parse_state::_mesa_glsl_parse_state(struct gl_context *_ctx,
gl_shader_stage stage,
void *mem_ctx)
: ctx(_ctx), cs_input_local_size_specified(false), cs_input_local_size(),
switch_state(), warnings_enabled(true)
{
assert(stage < MESA_SHADER_STAGES);
this->stage = stage;
this->scanner = NULL;
this->translation_unit.make_empty();
this->symbols = new(mem_ctx) glsl_symbol_table;
this->linalloc = linear_alloc_parent(this, 0);
this->info_log = ralloc_strdup(mem_ctx, "");
this->error = false;
this->loop_nesting_ast = NULL;
this->uses_builtin_functions = false;
/* Set default language version and extensions */
this->language_version = 110;
this->forced_language_version = ctx->Const.ForceGLSLVersion;
this->zero_init = ctx->Const.GLSLZeroInit;
this->gl_version = 20;
this->compat_shader = true;
this->es_shader = false;
this->had_version_string = false;
this->ARB_texture_rectangle_enable = true;
/* OpenGL ES 2.0 has different defaults from desktop GL. */
if (ctx->API == API_OPENGLES2) {
this->language_version = 100;
this->es_shader = true;
this->ARB_texture_rectangle_enable = false;
}
this->extensions = &ctx->Extensions;
this->Const.MaxLights = ctx->Const.MaxLights;
this->Const.MaxClipPlanes = ctx->Const.MaxClipPlanes;
this->Const.MaxTextureUnits = ctx->Const.MaxTextureUnits;
this->Const.MaxTextureCoords = ctx->Const.MaxTextureCoordUnits;
this->Const.MaxVertexAttribs = ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs;
this->Const.MaxVertexUniformComponents = ctx->Const.Program[MESA_SHADER_VERTEX].MaxUniformComponents;
this->Const.MaxVertexTextureImageUnits = ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits;
this->Const.MaxCombinedTextureImageUnits = ctx->Const.MaxCombinedTextureImageUnits;
this->Const.MaxTextureImageUnits = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits;
this->Const.MaxFragmentUniformComponents = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxUniformComponents;
this->Const.MinProgramTexelOffset = ctx->Const.MinProgramTexelOffset;
this->Const.MaxProgramTexelOffset = ctx->Const.MaxProgramTexelOffset;
this->Const.MaxDrawBuffers = ctx->Const.MaxDrawBuffers;
this->Const.MaxDualSourceDrawBuffers = ctx->Const.MaxDualSourceDrawBuffers;
/* 1.50 constants */
this->Const.MaxVertexOutputComponents = ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents;
this->Const.MaxGeometryInputComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents;
this->Const.MaxGeometryOutputComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents;
this->Const.MaxGeometryShaderInvocations = ctx->Const.MaxGeometryShaderInvocations;
this->Const.MaxFragmentInputComponents = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents;
this->Const.MaxGeometryTextureImageUnits = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits;
this->Const.MaxGeometryOutputVertices = ctx->Const.MaxGeometryOutputVertices;
this->Const.MaxGeometryTotalOutputComponents = ctx->Const.MaxGeometryTotalOutputComponents;
this->Const.MaxGeometryUniformComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxUniformComponents;
this->Const.MaxVertexAtomicCounters = ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters;
this->Const.MaxTessControlAtomicCounters = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxAtomicCounters;
this->Const.MaxTessEvaluationAtomicCounters = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxAtomicCounters;
this->Const.MaxGeometryAtomicCounters = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters;
this->Const.MaxFragmentAtomicCounters = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters;
this->Const.MaxComputeAtomicCounters = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters;
this->Const.MaxCombinedAtomicCounters = ctx->Const.MaxCombinedAtomicCounters;
this->Const.MaxAtomicBufferBindings = ctx->Const.MaxAtomicBufferBindings;
this->Const.MaxVertexAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers;
this->Const.MaxTessControlAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxAtomicBuffers;
this->Const.MaxTessEvaluationAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxAtomicBuffers;
this->Const.MaxGeometryAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers;
this->Const.MaxFragmentAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers;
this->Const.MaxComputeAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers;
this->Const.MaxCombinedAtomicCounterBuffers =
ctx->Const.MaxCombinedAtomicBuffers;
this->Const.MaxAtomicCounterBufferSize =
ctx->Const.MaxAtomicBufferSize;
/* ARB_enhanced_layouts constants */
this->Const.MaxTransformFeedbackBuffers = ctx->Const.MaxTransformFeedbackBuffers;
this->Const.MaxTransformFeedbackInterleavedComponents = ctx->Const.MaxTransformFeedbackInterleavedComponents;
/* Compute shader constants */
for (unsigned i = 0; i < ARRAY_SIZE(this->Const.MaxComputeWorkGroupCount); i++)
this->Const.MaxComputeWorkGroupCount[i] = ctx->Const.MaxComputeWorkGroupCount[i];
for (unsigned i = 0; i < ARRAY_SIZE(this->Const.MaxComputeWorkGroupSize); i++)
this->Const.MaxComputeWorkGroupSize[i] = ctx->Const.MaxComputeWorkGroupSize[i];
this->Const.MaxComputeTextureImageUnits = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
this->Const.MaxComputeUniformComponents = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxUniformComponents;
this->Const.MaxImageUnits = ctx->Const.MaxImageUnits;
this->Const.MaxCombinedShaderOutputResources = ctx->Const.MaxCombinedShaderOutputResources;
this->Const.MaxImageSamples = ctx->Const.MaxImageSamples;
this->Const.MaxVertexImageUniforms = ctx->Const.Program[MESA_SHADER_VERTEX].MaxImageUniforms;
this->Const.MaxTessControlImageUniforms = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxImageUniforms;
this->Const.MaxTessEvaluationImageUniforms = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxImageUniforms;
this->Const.MaxGeometryImageUniforms = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxImageUniforms;
this->Const.MaxFragmentImageUniforms = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxImageUniforms;
this->Const.MaxComputeImageUniforms = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxImageUniforms;
this->Const.MaxCombinedImageUniforms = ctx->Const.MaxCombinedImageUniforms;
/* ARB_viewport_array */
this->Const.MaxViewports = ctx->Const.MaxViewports;
/* tessellation shader constants */
this->Const.MaxPatchVertices = ctx->Const.MaxPatchVertices;
this->Const.MaxTessGenLevel = ctx->Const.MaxTessGenLevel;
this->Const.MaxTessControlInputComponents = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents;
this->Const.MaxTessControlOutputComponents = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents;
this->Const.MaxTessControlTextureImageUnits = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxTextureImageUnits;
this->Const.MaxTessEvaluationInputComponents = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents;
this->Const.MaxTessEvaluationOutputComponents = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents;
this->Const.MaxTessEvaluationTextureImageUnits = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxTextureImageUnits;
this->Const.MaxTessPatchComponents = ctx->Const.MaxTessPatchComponents;
this->Const.MaxTessControlTotalOutputComponents = ctx->Const.MaxTessControlTotalOutputComponents;
this->Const.MaxTessControlUniformComponents = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxUniformComponents;
this->Const.MaxTessEvaluationUniformComponents = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxUniformComponents;
/* GL 4.5 / OES_sample_variables */
this->Const.MaxSamples = ctx->Const.MaxSamples;
this->current_function = NULL;
this->toplevel_ir = NULL;
this->found_return = false;
this->found_begin_interlock = false;
this->found_end_interlock = false;
this->all_invariant = false;
this->user_structures = NULL;
this->num_user_structures = 0;
this->num_subroutines = 0;
this->subroutines = NULL;
this->num_subroutine_types = 0;
this->subroutine_types = NULL;
/* supported_versions should be large enough to support the known desktop
* GLSL versions plus 4 GLES versions (ES 1.00, ES 3.00, ES 3.10, ES 3.20)
*/
STATIC_ASSERT((ARRAY_SIZE(known_desktop_glsl_versions) + 4) ==
ARRAY_SIZE(this->supported_versions));
/* Populate the list of supported GLSL versions */
/* FINISHME: Once the OpenGL 3.0 'forward compatible' context or
* the OpenGL 3.2 Core context is supported, this logic will need
* change. Older versions of GLSL are no longer supported
* outside the compatibility contexts of 3.x.
*/
this->num_supported_versions = 0;
if (_mesa_is_desktop_gl(ctx)) {
for (unsigned i = 0; i < ARRAY_SIZE(known_desktop_glsl_versions); i++) {
if (known_desktop_glsl_versions[i] <= ctx->Const.GLSLVersion) {
this->supported_versions[this->num_supported_versions].ver
= known_desktop_glsl_versions[i];
this->supported_versions[this->num_supported_versions].gl_ver
= known_desktop_gl_versions[i];
this->supported_versions[this->num_supported_versions].es = false;
this->num_supported_versions++;
}
}
}
if (ctx->API == API_OPENGLES2 || ctx->Extensions.ARB_ES2_compatibility) {
this->supported_versions[this->num_supported_versions].ver = 100;
this->supported_versions[this->num_supported_versions].gl_ver = 20;
this->supported_versions[this->num_supported_versions].es = true;
this->num_supported_versions++;
}
if (_mesa_is_gles3(ctx) || ctx->Extensions.ARB_ES3_compatibility) {
this->supported_versions[this->num_supported_versions].ver = 300;
this->supported_versions[this->num_supported_versions].gl_ver = 30;
this->supported_versions[this->num_supported_versions].es = true;
this->num_supported_versions++;
}
if (_mesa_is_gles31(ctx) || ctx->Extensions.ARB_ES3_1_compatibility) {
this->supported_versions[this->num_supported_versions].ver = 310;
this->supported_versions[this->num_supported_versions].gl_ver = 31;
this->supported_versions[this->num_supported_versions].es = true;
this->num_supported_versions++;
}
if ((ctx->API == API_OPENGLES2 && ctx->Version >= 32) ||
ctx->Extensions.ARB_ES3_2_compatibility) {
this->supported_versions[this->num_supported_versions].ver = 320;
this->supported_versions[this->num_supported_versions].gl_ver = 32;
this->supported_versions[this->num_supported_versions].es = true;
this->num_supported_versions++;
}
/* Create a string for use in error messages to tell the user which GLSL
* versions are supported.
*/
char *supported = ralloc_strdup(this, "");
for (unsigned i = 0; i < this->num_supported_versions; i++) {
unsigned ver = this->supported_versions[i].ver;
const char *const prefix = (i == 0)
? ""
: ((i == this->num_supported_versions - 1) ? ", and " : ", ");
const char *const suffix = (this->supported_versions[i].es) ? " ES" : "";
ralloc_asprintf_append(& supported, "%s%u.%02u%s",
prefix,
ver / 100, ver % 100,
suffix);
}
this->supported_version_string = supported;
if (ctx->Const.ForceGLSLExtensionsWarn)
_mesa_glsl_process_extension("all", NULL, "warn", NULL, this);
this->default_uniform_qualifier = new(this) ast_type_qualifier();
this->default_uniform_qualifier->flags.q.shared = 1;
this->default_uniform_qualifier->flags.q.column_major = 1;
this->default_shader_storage_qualifier = new(this) ast_type_qualifier();
this->default_shader_storage_qualifier->flags.q.shared = 1;
this->default_shader_storage_qualifier->flags.q.column_major = 1;
this->fs_uses_gl_fragcoord = false;
this->fs_redeclares_gl_fragcoord = false;
this->fs_origin_upper_left = false;
this->fs_pixel_center_integer = false;
this->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = false;
this->gs_input_prim_type_specified = false;
this->tcs_output_vertices_specified = false;
this->gs_input_size = 0;
this->in_qualifier = new(this) ast_type_qualifier();
this->out_qualifier = new(this) ast_type_qualifier();
this->fs_early_fragment_tests = false;
this->fs_inner_coverage = false;
this->fs_post_depth_coverage = false;
this->fs_pixel_interlock_ordered = false;
this->fs_pixel_interlock_unordered = false;
this->fs_sample_interlock_ordered = false;
this->fs_sample_interlock_unordered = false;
this->fs_blend_support = 0;
memset(this->atomic_counter_offsets, 0,
sizeof(this->atomic_counter_offsets));
this->allow_extension_directive_midshader =
ctx->Const.AllowGLSLExtensionDirectiveMidShader;
this->allow_builtin_variable_redeclaration =
ctx->Const.AllowGLSLBuiltinVariableRedeclaration;
this->allow_layout_qualifier_on_function_parameter =
ctx->Const.AllowLayoutQualifiersOnFunctionParameters;
this->cs_input_local_size_variable_specified = false;
/* ARB_bindless_texture */
this->bindless_sampler_specified = false;
this->bindless_image_specified = false;
this->bound_sampler_specified = false;
this->bound_image_specified = false;
}
/**
* Determine whether the current GLSL version is sufficiently high to support
* a certain feature, and generate an error message if it isn't.
*
* \param required_glsl_version and \c required_glsl_es_version are
* interpreted as they are in _mesa_glsl_parse_state::is_version().
*
* \param locp is the parser location where the error should be reported.
*
* \param fmt (and additional arguments) constitute a printf-style error
* message to report if the version check fails. Information about the
* current and required GLSL versions will be appended. So, for example, if
* the GLSL version being compiled is 1.20, and check_version(130, 300, locp,
* "foo unsupported") is called, the error message will be "foo unsupported in
* GLSL 1.20 (GLSL 1.30 or GLSL 3.00 ES required)".
*/
bool
_mesa_glsl_parse_state::check_version(unsigned required_glsl_version,
unsigned required_glsl_es_version,
YYLTYPE *locp, const char *fmt, ...)
{
if (this->is_version(required_glsl_version, required_glsl_es_version))
return true;
va_list args;
va_start(args, fmt);
char *problem = ralloc_vasprintf(this, fmt, args);
va_end(args);
const char *glsl_version_string
= glsl_compute_version_string(this, false, required_glsl_version);
const char *glsl_es_version_string
= glsl_compute_version_string(this, true, required_glsl_es_version);
const char *requirement_string = "";
if (required_glsl_version && required_glsl_es_version) {
requirement_string = ralloc_asprintf(this, " (%s or %s required)",
glsl_version_string,
glsl_es_version_string);
} else if (required_glsl_version) {
requirement_string = ralloc_asprintf(this, " (%s required)",
glsl_version_string);
} else if (required_glsl_es_version) {
requirement_string = ralloc_asprintf(this, " (%s required)",
glsl_es_version_string);
}
_mesa_glsl_error(locp, this, "%s in %s%s",
problem, this->get_version_string(),
requirement_string);
return false;
}
/**
* Process a GLSL #version directive.
*
* \param version is the integer that follows the #version token.
*
* \param ident is a string identifier that follows the integer, if any is
* present. Otherwise NULL.
*/
void
_mesa_glsl_parse_state::process_version_directive(YYLTYPE *locp, int version,
const char *ident)
{
bool es_token_present = false;
bool compat_token_present = false;
if (ident) {
if (strcmp(ident, "es") == 0) {
es_token_present = true;
} else if (version >= 150) {
if (strcmp(ident, "core") == 0) {
/* Accept the token. There's no need to record that this is
* a core profile shader since that's the only profile we support.
*/
} else if (strcmp(ident, "compatibility") == 0) {
compat_token_present = true;
if (this->ctx->API != API_OPENGL_COMPAT) {
_mesa_glsl_error(locp, this,
"the compatibility profile is not supported");
}
} else {
_mesa_glsl_error(locp, this,
"\"%s\" is not a valid shading language profile; "
"if present, it must be \"core\"", ident);
}
} else {
_mesa_glsl_error(locp, this,
"illegal text following version number");
}
}
this->es_shader = es_token_present;
if (version == 100) {
if (es_token_present) {
_mesa_glsl_error(locp, this,
"GLSL 1.00 ES should be selected using "
"`#version 100'");
} else {
this->es_shader = true;
}
}
if (this->es_shader) {
this->ARB_texture_rectangle_enable = false;
}
if (this->forced_language_version)
this->language_version = this->forced_language_version;
else
this->language_version = version;
this->had_version_string = true;
this->compat_shader = compat_token_present ||
(this->ctx->API == API_OPENGL_COMPAT &&
this->language_version == 140) ||
(!this->es_shader && this->language_version < 140);
bool supported = false;
for (unsigned i = 0; i < this->num_supported_versions; i++) {
if (this->supported_versions[i].ver == this->language_version
&& this->supported_versions[i].es == this->es_shader) {
this->gl_version = this->supported_versions[i].gl_ver;
supported = true;
break;
}
}
if (!supported) {
_mesa_glsl_error(locp, this, "%s is not supported. "
"Supported versions are: %s",
this->get_version_string(),
this->supported_version_string);
/* On exit, the language_version must be set to a valid value.
* Later calls to _mesa_glsl_initialize_types will misbehave if
* the version is invalid.
*/
switch (this->ctx->API) {
case API_OPENGL_COMPAT:
case API_OPENGL_CORE:
this->language_version = this->ctx->Const.GLSLVersion;
break;
case API_OPENGLES:
assert(!"Should not get here.");
/* FALLTHROUGH */
case API_OPENGLES2:
this->language_version = 100;
break;
}
}
}
/* This helper function will append the given message to the shader's
info log and report it via GL_ARB_debug_output. Per that extension,
'type' is one of the enum values classifying the message, and
'id' is the implementation-defined ID of the given message. */
static void
_mesa_glsl_msg(const YYLTYPE *locp, _mesa_glsl_parse_state *state,
GLenum type, const char *fmt, va_list ap)
{
bool error = (type == MESA_DEBUG_TYPE_ERROR);
GLuint msg_id = 0;
assert(state->info_log != NULL);
/* Get the offset that the new message will be written to. */
int msg_offset = strlen(state->info_log);
if (locp->path) {
ralloc_asprintf_append(&state->info_log, "\"%s\"", locp->path);
} else {
ralloc_asprintf_append(&state->info_log, "%u", locp->source);
}
ralloc_asprintf_append(&state->info_log, ":%u(%u): %s: ",
locp->first_line, locp->first_column,
error ? "error" : "warning");
ralloc_vasprintf_append(&state->info_log, fmt, ap);
const char *const msg = &state->info_log[msg_offset];
struct gl_context *ctx = state->ctx;
/* Report the error via GL_ARB_debug_output. */
_mesa_shader_debug(ctx, type, &msg_id, msg);
ralloc_strcat(&state->info_log, "\n");
}
void
_mesa_glsl_error(YYLTYPE *locp, _mesa_glsl_parse_state *state,
const char *fmt, ...)
{
va_list ap;
state->error = true;
va_start(ap, fmt);
_mesa_glsl_msg(locp, state, MESA_DEBUG_TYPE_ERROR, fmt, ap);
va_end(ap);
}
void
_mesa_glsl_warning(const YYLTYPE *locp, _mesa_glsl_parse_state *state,
const char *fmt, ...)
{
if (state->warnings_enabled) {
va_list ap;
va_start(ap, fmt);
_mesa_glsl_msg(locp, state, MESA_DEBUG_TYPE_OTHER, fmt, ap);
va_end(ap);
}
}
/**
* Enum representing the possible behaviors that can be specified in
* an #extension directive.
*/
enum ext_behavior {
extension_disable,
extension_enable,
extension_require,
extension_warn
};
/**
* Element type for _mesa_glsl_supported_extensions
*/
struct _mesa_glsl_extension {
/**
* Name of the extension when referred to in a GLSL extension
* statement
*/
const char *name;
/**
* Whether this extension is a part of AEP
*/
bool aep;
/**
* Predicate that checks whether the relevant extension is available for
* this context.
*/
bool (*available_pred)(const struct gl_context *,
gl_api api, uint8_t version);
/**
* Flag in the _mesa_glsl_parse_state struct that should be set
* when this extension is enabled.
*
* See note in _mesa_glsl_extension::supported_flag about "pointer
* to member" types.
*/
bool _mesa_glsl_parse_state::* enable_flag;
/**
* Flag in the _mesa_glsl_parse_state struct that should be set
* when the shader requests "warn" behavior for this extension.
*
* See note in _mesa_glsl_extension::supported_flag about "pointer
* to member" types.
*/
bool _mesa_glsl_parse_state::* warn_flag;
bool compatible_with_state(const _mesa_glsl_parse_state *state,
gl_api api, uint8_t gl_version) const;
void set_flags(_mesa_glsl_parse_state *state, ext_behavior behavior) const;
};
/** Checks if the context supports a user-facing extension */
#define EXT(name_str, driver_cap, ...) \
static UNUSED bool \
has_##name_str(const struct gl_context *ctx, gl_api api, uint8_t version) \
{ \
return ctx->Extensions.driver_cap && (version >= \
_mesa_extension_table[MESA_EXTENSION_##name_str].version[api]); \
}
#include "main/extensions_table.h"
#undef EXT
#define EXT(NAME) \
{ "GL_" #NAME, false, has_##NAME, \
&_mesa_glsl_parse_state::NAME##_enable, \
&_mesa_glsl_parse_state::NAME##_warn }
#define EXT_AEP(NAME) \
{ "GL_" #NAME, true, has_##NAME, \
&_mesa_glsl_parse_state::NAME##_enable, \
&_mesa_glsl_parse_state::NAME##_warn }
/**
* Table of extensions that can be enabled/disabled within a shader,
* and the conditions under which they are supported.
*/
static const _mesa_glsl_extension _mesa_glsl_supported_extensions[] = {
/* ARB extensions go here, sorted alphabetically.
*/
EXT(ARB_ES3_1_compatibility),
EXT(ARB_ES3_2_compatibility),
EXT(ARB_arrays_of_arrays),
EXT(ARB_bindless_texture),
EXT(ARB_compatibility),
EXT(ARB_compute_shader),
EXT(ARB_compute_variable_group_size),
EXT(ARB_conservative_depth),
EXT(ARB_cull_distance),
EXT(ARB_derivative_control),
EXT(ARB_draw_buffers),
EXT(ARB_draw_instanced),
EXT(ARB_enhanced_layouts),
EXT(ARB_explicit_attrib_location),
EXT(ARB_explicit_uniform_location),
EXT(ARB_fragment_coord_conventions),
EXT(ARB_fragment_layer_viewport),
EXT(ARB_fragment_shader_interlock),
EXT(ARB_gpu_shader5),
EXT(ARB_gpu_shader_fp64),
EXT(ARB_gpu_shader_int64),
EXT(ARB_post_depth_coverage),
EXT(ARB_sample_shading),
EXT(ARB_separate_shader_objects),
EXT(ARB_shader_atomic_counter_ops),
EXT(ARB_shader_atomic_counters),
EXT(ARB_shader_ballot),
EXT(ARB_shader_bit_encoding),
EXT(ARB_shader_clock),
EXT(ARB_shader_draw_parameters),
EXT(ARB_shader_group_vote),
EXT(ARB_shader_image_load_store),
EXT(ARB_shader_image_size),
EXT(ARB_shader_precision),
EXT(ARB_shader_stencil_export),
EXT(ARB_shader_storage_buffer_object),
EXT(ARB_shader_subroutine),
EXT(ARB_shader_texture_image_samples),
EXT(ARB_shader_texture_lod),
EXT(ARB_shader_viewport_layer_array),
EXT(ARB_shading_language_420pack),
EXT(ARB_shading_language_include),
EXT(ARB_shading_language_packing),
EXT(ARB_tessellation_shader),
EXT(ARB_texture_cube_map_array),
EXT(ARB_texture_gather),
EXT(ARB_texture_multisample),
EXT(ARB_texture_query_levels),
EXT(ARB_texture_query_lod),
EXT(ARB_texture_rectangle),
EXT(ARB_uniform_buffer_object),
EXT(ARB_vertex_attrib_64bit),
EXT(ARB_viewport_array),
/* KHR extensions go here, sorted alphabetically.
*/
EXT_AEP(KHR_blend_equation_advanced),
/* OES extensions go here, sorted alphabetically.
*/
EXT(OES_EGL_image_external),
EXT(OES_EGL_image_external_essl3),
EXT(OES_geometry_point_size),
EXT(OES_geometry_shader),
EXT(OES_gpu_shader5),
EXT(OES_primitive_bounding_box),
EXT_AEP(OES_sample_variables),
EXT_AEP(OES_shader_image_atomic),
EXT(OES_shader_io_blocks),
EXT_AEP(OES_shader_multisample_interpolation),
EXT(OES_standard_derivatives),
EXT(OES_tessellation_point_size),
EXT(OES_tessellation_shader),
EXT(OES_texture_3D),
EXT(OES_texture_buffer),
EXT(OES_texture_cube_map_array),
EXT_AEP(OES_texture_storage_multisample_2d_array),
EXT(OES_viewport_array),
/* All other extensions go here, sorted alphabetically.
*/
EXT(AMD_conservative_depth),
EXT(AMD_gpu_shader_int64),
EXT(AMD_shader_stencil_export),
EXT(AMD_shader_trinary_minmax),
EXT(AMD_texture_texture4),
EXT(AMD_vertex_shader_layer),
EXT(AMD_vertex_shader_viewport_index),
EXT(ANDROID_extension_pack_es31a),
EXT(EXT_blend_func_extended),
EXT(EXT_demote_to_helper_invocation),
EXT(EXT_frag_depth),
EXT(EXT_draw_buffers),
EXT(EXT_draw_instanced),
EXT(EXT_clip_cull_distance),
EXT(EXT_geometry_point_size),
EXT_AEP(EXT_geometry_shader),
EXT(EXT_gpu_shader4),
EXT_AEP(EXT_gpu_shader5),
EXT_AEP(EXT_primitive_bounding_box),
EXT(EXT_separate_shader_objects),
EXT(EXT_shader_framebuffer_fetch),
EXT(EXT_shader_framebuffer_fetch_non_coherent),
EXT(EXT_shader_image_load_formatted),
EXT(EXT_shader_image_load_store),
EXT(EXT_shader_implicit_conversions),
EXT(EXT_shader_integer_mix),
EXT_AEP(EXT_shader_io_blocks),
EXT(EXT_shader_samples_identical),
EXT(EXT_tessellation_point_size),
EXT_AEP(EXT_tessellation_shader),
EXT(EXT_texture_array),
EXT_AEP(EXT_texture_buffer),
EXT_AEP(EXT_texture_cube_map_array),
EXT(EXT_texture_query_lod),
EXT(EXT_texture_shadow_lod),
EXT(INTEL_conservative_rasterization),
EXT(INTEL_shader_atomic_float_minmax),
EXT(INTEL_shader_integer_functions2),
EXT(MESA_shader_integer_functions),
EXT(NV_compute_shader_derivatives),
EXT(NV_fragment_shader_interlock),
EXT(NV_image_formats),
EXT(NV_shader_atomic_float),
EXT(NV_viewport_array2),
};
#undef EXT
/**
* Determine whether a given extension is compatible with the target,
* API, and extension information in the current parser state.
*/
bool _mesa_glsl_extension::compatible_with_state(
const _mesa_glsl_parse_state *state, gl_api api, uint8_t gl_version) const
{
return this->available_pred(state->ctx, api, gl_version);
}
/**
* Set the appropriate flags in the parser state to establish the
* given behavior for this extension.
*/
void _mesa_glsl_extension::set_flags(_mesa_glsl_parse_state *state,
ext_behavior behavior) const
{
/* Note: the ->* operator indexes into state by the
* offsets this->enable_flag and this->warn_flag. See
* _mesa_glsl_extension::supported_flag for more info.
*/
state->*(this->enable_flag) = (behavior != extension_disable);
state->*(this->warn_flag) = (behavior == extension_warn);
}
/**
* Find an extension by name in _mesa_glsl_supported_extensions. If
* the name is not found, return NULL.
*/
static const _mesa_glsl_extension *find_extension(const char *name)
{
for (unsigned i = 0; i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) {
if (strcmp(name, _mesa_glsl_supported_extensions[i].name) == 0) {
return &_mesa_glsl_supported_extensions[i];
}
}
return NULL;
}
bool
_mesa_glsl_process_extension(const char *name, YYLTYPE *name_locp,
const char *behavior_string, YYLTYPE *behavior_locp,
_mesa_glsl_parse_state *state)
{
uint8_t gl_version = state->ctx->Extensions.Version;
gl_api api = state->ctx->API;
ext_behavior behavior;
if (strcmp(behavior_string, "warn") == 0) {
behavior = extension_warn;
} else if (strcmp(behavior_string, "require") == 0) {
behavior = extension_require;
} else if (strcmp(behavior_string, "enable") == 0) {
behavior = extension_enable;
} else if (strcmp(behavior_string, "disable") == 0) {
behavior = extension_disable;
} else {
_mesa_glsl_error(behavior_locp, state,
"unknown extension behavior `%s'",
behavior_string);
return false;
}
/* If we're in a desktop context but with an ES shader, use an ES API enum
* to verify extension availability.
*/
if (state->es_shader && api != API_OPENGLES2)
api = API_OPENGLES2;
/* Use the language-version derived GL version to extension checks, unless
* we're using meta, which sets the version to the max.
*/
if (gl_version != 0xff)
gl_version = state->gl_version;
if (strcmp(name, "all") == 0) {
if ((behavior == extension_enable) || (behavior == extension_require)) {
_mesa_glsl_error(name_locp, state, "cannot %s all extensions",
(behavior == extension_enable)
? "enable" : "require");
return false;
} else {
for (unsigned i = 0;
i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) {
const _mesa_glsl_extension *extension
= &_mesa_glsl_supported_extensions[i];
if (extension->compatible_with_state(state, api, gl_version)) {
_mesa_glsl_supported_extensions[i].set_flags(state, behavior);
}
}
}
} else {
const _mesa_glsl_extension *extension = find_extension(name);
if (extension && extension->compatible_with_state(state, api, gl_version)) {
extension->set_flags(state, behavior);
if (extension->available_pred == has_ANDROID_extension_pack_es31a) {
for (unsigned i = 0;
i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) {
const _mesa_glsl_extension *extension =
&_mesa_glsl_supported_extensions[i];
if (!extension->aep)
continue;
/* AEP should not be enabled if all of the sub-extensions can't
* also be enabled. This is not the proper layer to do such
* error-checking though.
*/
assert(extension->compatible_with_state(state, api, gl_version));
extension->set_flags(state, behavior);
}
}
} else {
static const char fmt[] = "extension `%s' unsupported in %s shader";
if (behavior == extension_require) {
_mesa_glsl_error(name_locp, state, fmt,
name, _mesa_shader_stage_to_string(state->stage));
return false;
} else {
_mesa_glsl_warning(name_locp, state, fmt,
name, _mesa_shader_stage_to_string(state->stage));
}
}
}
return true;
}
/**
* Recurses through <type> and <expr> if <expr> is an aggregate initializer
* and sets <expr>'s <constructor_type> field to <type>. Gives later functions
* (process_array_constructor, et al) sufficient information to do type
* checking.
*
* Operates on assignments involving an aggregate initializer. E.g.,
*
* vec4 pos = {1.0, -1.0, 0.0, 1.0};
*
* or more ridiculously,
*
* struct S {
* vec4 v[2];
* };
*
* struct {
* S a[2], b;
* int c;
* } aggregate = {
* {
* {
* {
* {1.0, 2.0, 3.0, 4.0}, // a[0].v[0]
* {5.0, 6.0, 7.0, 8.0} // a[0].v[1]
* } // a[0].v
* }, // a[0]
* {
* {
* {1.0, 2.0, 3.0, 4.0}, // a[1].v[0]
* {5.0, 6.0, 7.0, 8.0} // a[1].v[1]
* } // a[1].v
* } // a[1]
* }, // a
* {
* {
* {1.0, 2.0, 3.0, 4.0}, // b.v[0]
* {5.0, 6.0, 7.0, 8.0} // b.v[1]
* } // b.v
* }, // b
* 4 // c
* };
*
* This pass is necessary because the right-hand side of <type> e = { ... }
* doesn't contain sufficient information to determine if the types match.
*/
void
_mesa_ast_set_aggregate_type(const glsl_type *type,
ast_expression *expr)
{
ast_aggregate_initializer *ai = (ast_aggregate_initializer *)expr;
ai->constructor_type = type;
/* If the aggregate is an array, recursively set its elements' types. */
if (type->is_array()) {
/* Each array element has the type type->fields.array.
*
* E.g., if <type> if struct S[2] we want to set each element's type to
* struct S.
*/
for (exec_node *expr_node = ai->expressions.get_head_raw();
!expr_node->is_tail_sentinel();
expr_node = expr_node->next) {
ast_expression *expr = exec_node_data(ast_expression, expr_node,
link);
if (expr->oper == ast_aggregate)
_mesa_ast_set_aggregate_type(type->fields.array, expr);
}
/* If the aggregate is a struct, recursively set its fields' types. */
} else if (type->is_struct()) {
exec_node *expr_node = ai->expressions.get_head_raw();
/* Iterate through the struct's fields. */
for (unsigned i = 0; !expr_node->is_tail_sentinel() && i < type->length;
i++, expr_node = expr_node->next) {
ast_expression *expr = exec_node_data(ast_expression, expr_node,
link);
if (expr->oper == ast_aggregate) {
_mesa_ast_set_aggregate_type(type->fields.structure[i].type, expr);
}
}
/* If the aggregate is a matrix, set its columns' types. */
} else if (type->is_matrix()) {
for (exec_node *expr_node = ai->expressions.get_head_raw();
!expr_node->is_tail_sentinel();
expr_node = expr_node->next) {
ast_expression *expr = exec_node_data(ast_expression, expr_node,
link);
if (expr->oper == ast_aggregate)
_mesa_ast_set_aggregate_type(type->column_type(), expr);
}
}
}
void
_mesa_ast_process_interface_block(YYLTYPE *locp,
_mesa_glsl_parse_state *state,
ast_interface_block *const block,
const struct ast_type_qualifier &q)
{
if (q.flags.q.buffer) {
if (!state->has_shader_storage_buffer_objects()) {
_mesa_glsl_error(locp, state,
"#version 430 / GL_ARB_shader_storage_buffer_object "
"required for defining shader storage blocks");
} else if (state->ARB_shader_storage_buffer_object_warn) {
_mesa_glsl_warning(locp, state,
"#version 430 / GL_ARB_shader_storage_buffer_object "
"required for defining shader storage blocks");
}
} else if (q.flags.q.uniform) {
if (!state->has_uniform_buffer_objects()) {
_mesa_glsl_error(locp, state,
"#version 140 / GL_ARB_uniform_buffer_object "
"required for defining uniform blocks");
} else if (state->ARB_uniform_buffer_object_warn) {
_mesa_glsl_warning(locp, state,
"#version 140 / GL_ARB_uniform_buffer_object "
"required for defining uniform blocks");
}
} else {
if (!state->has_shader_io_blocks()) {
if (state->es_shader) {
_mesa_glsl_error(locp, state,
"GL_OES_shader_io_blocks or #version 320 "
"required for using interface blocks");
} else {
_mesa_glsl_error(locp, state,
"#version 150 required for using "
"interface blocks");
}
}
}
/* From the GLSL 1.50.11 spec, section 4.3.7 ("Interface Blocks"):
* "It is illegal to have an input block in a vertex shader
* or an output block in a fragment shader"
*/
if ((state->stage == MESA_SHADER_VERTEX) && q.flags.q.in) {
_mesa_glsl_error(locp, state,
"`in' interface block is not allowed for "
"a vertex shader");
} else if ((state->stage == MESA_SHADER_FRAGMENT) && q.flags.q.out) {
_mesa_glsl_error(locp, state,
"`out' interface block is not allowed for "
"a fragment shader");
}
/* Since block arrays require names, and both features are added in
* the same language versions, we don't have to explicitly
* version-check both things.
*/
if (block->instance_name != NULL) {
state->check_version(150, 300, locp, "interface blocks with "
"an instance name are not allowed");
}
ast_type_qualifier::bitset_t interface_type_mask;
struct ast_type_qualifier temp_type_qualifier;
/* Get a bitmask containing only the in/out/uniform/buffer
* flags, allowing us to ignore other irrelevant flags like
* interpolation qualifiers.
*/
temp_type_qualifier.flags.i = 0;
temp_type_qualifier.flags.q.uniform = true;
temp_type_qualifier.flags.q.in = true;
temp_type_qualifier.flags.q.out = true;
temp_type_qualifier.flags.q.buffer = true;
temp_type_qualifier.flags.q.patch = true;
interface_type_mask = temp_type_qualifier.flags.i;
/* Get the block's interface qualifier. The interface_qualifier
* production rule guarantees that only one bit will be set (and
* it will be in/out/uniform).
*/
ast_type_qualifier::bitset_t block_interface_qualifier = q.flags.i;
block->default_layout.flags.i |= block_interface_qualifier;
if (state->stage == MESA_SHADER_GEOMETRY &&
state->has_explicit_attrib_stream() &&
block->default_layout.flags.q.out) {
/* Assign global layout's stream value. */
block->default_layout.flags.q.stream = 1;
block->default_layout.flags.q.explicit_stream = 0;
block->default_layout.stream = state->out_qualifier->stream;
}
if (state->has_enhanced_layouts() && block->default_layout.flags.q.out) {
/* Assign global layout's xfb_buffer value. */
block->default_layout.flags.q.xfb_buffer = 1;
block->default_layout.flags.q.explicit_xfb_buffer = 0;
block->default_layout.xfb_buffer = state->out_qualifier->xfb_buffer;
}
foreach_list_typed (ast_declarator_list, member, link, &block->declarations) {
ast_type_qualifier& qualifier = member->type->qualifier;
if ((qualifier.flags.i & interface_type_mask) == 0) {
/* GLSLangSpec.1.50.11, 4.3.7 (Interface Blocks):
* "If no optional qualifier is used in a member declaration, the
* qualifier of the variable is just in, out, or uniform as declared
* by interface-qualifier."
*/
qualifier.flags.i |= block_interface_qualifier;
} else if ((qualifier.flags.i & interface_type_mask) !=
block_interface_qualifier) {
/* GLSLangSpec.1.50.11, 4.3.7 (Interface Blocks):
* "If optional qualifiers are used, they can include interpolation
* and storage qualifiers and they must declare an input, output,
* or uniform variable consistent with the interface qualifier of
* the block."
*/
_mesa_glsl_error(locp, state,
"uniform/in/out qualifier on "
"interface block member does not match "
"the interface block");
}
if (!(q.flags.q.in || q.flags.q.out) && qualifier.flags.q.invariant)
_mesa_glsl_error(locp, state,
"invariant qualifiers can be used only "
"in interface block members for shader "
"inputs or outputs");
}
}
static void
_mesa_ast_type_qualifier_print(const struct ast_type_qualifier *q)
{
if (q->is_subroutine_decl())
printf("subroutine ");
if (q->subroutine_list) {
printf("subroutine (");
q->subroutine_list->print();
printf(")");
}
if (q->flags.q.constant)
printf("const ");
if (q->flags.q.invariant)
printf("invariant ");
if (q->flags.q.attribute)
printf("attribute ");
if (q->flags.q.varying)
printf("varying ");
if (q->flags.q.in && q->flags.q.out)
printf("inout ");
else {
if (q->flags.q.in)
printf("in ");
if (q->flags.q.out)
printf("out ");
}
if (q->flags.q.centroid)
printf("centroid ");
if (q->flags.q.sample)
printf("sample ");
if (q->flags.q.patch)
printf("patch ");
if (q->flags.q.uniform)
printf("uniform ");
if (q->flags.q.buffer)
printf("buffer ");
if (q->flags.q.smooth)
printf("smooth ");
if (q->flags.q.flat)
printf("flat ");
if (q->flags.q.noperspective)
printf("noperspective ");
}
void
ast_node::print(void) const
{
printf("unhandled node ");
}
ast_node::ast_node(void)
{
this->location.source = 0;
this->location.first_line = 0;
this->location.first_column = 0;
this->location.last_line = 0;
this->location.last_column = 0;
}
static void
ast_opt_array_dimensions_print(const ast_array_specifier *array_specifier)
{
if (array_specifier)
array_specifier->print();
}
void
ast_compound_statement::print(void) const
{
printf("{\n");
foreach_list_typed(ast_node, ast, link, &this->statements) {
ast->print();
}
printf("}\n");
}
ast_compound_statement::ast_compound_statement(int new_scope,
ast_node *statements)
{
this->new_scope = new_scope;
if (statements != NULL) {
this->statements.push_degenerate_list_at_head(&statements->link);
}
}
void
ast_expression::print(void) const
{
switch (oper) {
case ast_assign:
case ast_mul_assign:
case ast_div_assign:
case ast_mod_assign:
case ast_add_assign:
case ast_sub_assign:
case ast_ls_assign:
case ast_rs_assign:
case ast_and_assign:
case ast_xor_assign:
case ast_or_assign:
subexpressions[0]->print();
printf("%s ", operator_string(oper));
subexpressions[1]->print();
break;
case ast_field_selection:
subexpressions[0]->print();
printf(". %s ", primary_expression.identifier);
break;
case ast_plus:
case ast_neg:
case ast_bit_not:
case ast_logic_not:
case ast_pre_inc:
case ast_pre_dec:
printf("%s ", operator_string(oper));
subexpressions[0]->print();
break;
case ast_post_inc:
case ast_post_dec:
subexpressions[0]->print();
printf("%s ", operator_string(oper));
break;
case ast_conditional:
subexpressions[0]->print();
printf("? ");
subexpressions[1]->print();
printf(": ");
subexpressions[2]->print();
break;
case ast_array_index:
subexpressions[0]->print();
printf("[ ");
subexpressions[1]->print();
printf("] ");
break;
case ast_function_call: {
subexpressions[0]->print();
printf("( ");
foreach_list_typed (ast_node, ast, link, &this->expressions) {
if (&ast->link != this->expressions.get_head())
printf(", ");
ast->print();
}
printf(") ");
break;
}
case ast_identifier:
printf("%s ", primary_expression.identifier);
break;
case ast_int_constant:
printf("%d ", primary_expression.int_constant);
break;
case ast_uint_constant:
printf("%u ", primary_expression.uint_constant);
break;
case ast_float_constant:
printf("%f ", primary_expression.float_constant);
break;
case ast_double_constant:
printf("%f ", primary_expression.double_constant);
break;
case ast_int64_constant:
printf("%" PRId64 " ", primary_expression.int64_constant);
break;
case ast_uint64_constant:
printf("%" PRIu64 " ", primary_expression.uint64_constant);
break;
case ast_bool_constant:
printf("%s ",
primary_expression.bool_constant
? "true" : "false");
break;
case ast_sequence: {
printf("( ");
foreach_list_typed (ast_node, ast, link, & this->expressions) {
if (&ast->link != this->expressions.get_head())
printf(", ");
ast->print();
}
printf(") ");
break;
}
case ast_aggregate: {
printf("{ ");
foreach_list_typed (ast_node, ast, link, & this->expressions) {
if (&ast->link != this->expressions.get_head())
printf(", ");
ast->print();
}
printf("} ");
break;
}
default:
assert(0);
break;
}
}
ast_expression::ast_expression(int oper,
ast_expression *ex0,
ast_expression *ex1,
ast_expression *ex2) :
primary_expression()
{
this->oper = ast_operators(oper);
this->subexpressions[0] = ex0;
this->subexpressions[1] = ex1;
this->subexpressions[2] = ex2;
this->non_lvalue_description = NULL;
this->is_lhs = false;
}
void
ast_expression_statement::print(void) const
{
if (expression)
expression->print();
printf("; ");
}
ast_expression_statement::ast_expression_statement(ast_expression *ex) :
expression(ex)
{
/* empty */
}
void
ast_function::print(void) const
{
return_type->print();
printf(" %s (", identifier);
foreach_list_typed(ast_node, ast, link, & this->parameters) {
ast->print();
}
printf(")");
}
ast_function::ast_function(void)
: return_type(NULL), identifier(NULL), is_definition(false),
signature(NULL)
{
/* empty */
}
void
ast_fully_specified_type::print(void) const
{
_mesa_ast_type_qualifier_print(& qualifier);
specifier->print();
}
void
ast_parameter_declarator::print(void) const
{
type->print();
if (identifier)
printf("%s ", identifier);
ast_opt_array_dimensions_print(array_specifier);
}
void
ast_function_definition::print(void) const
{
prototype->print();
body->print();
}
void
ast_declaration::print(void) const
{
printf("%s ", identifier);
ast_opt_array_dimensions_print(array_specifier);
if (initializer) {
printf("= ");
initializer->print();
}
}
ast_declaration::ast_declaration(const char *identifier,
ast_array_specifier *array_specifier,
ast_expression *initializer)
{
this->identifier = identifier;
this->array_specifier = array_specifier;
this->initializer = initializer;
}
void
ast_declarator_list::print(void) const
{
assert(type || invariant);
if (type)
type->print();
else if (invariant)
printf("invariant ");
else
printf("precise ");
foreach_list_typed (ast_node, ast, link, & this->declarations) {
if (&ast->link != this->declarations.get_head())
printf(", ");
ast->print();
}
printf("; ");
}
ast_declarator_list::ast_declarator_list(ast_fully_specified_type *type)
{
this->type = type;
this->invariant = false;
this->precise = false;
}
void
ast_jump_statement::print(void) const
{
switch (mode) {
case ast_continue:
printf("continue; ");
break;
case ast_break:
printf("break; ");
break;
case ast_return:
printf("return ");
if (opt_return_value)
opt_return_value->print();
printf("; ");
break;
case ast_discard:
printf("discard; ");
break;
}
}
ast_jump_statement::ast_jump_statement(int mode, ast_expression *return_value)
: opt_return_value(NULL)
{
this->mode = ast_jump_modes(mode);
if (mode == ast_return)
opt_return_value = return_value;
}
void
ast_demote_statement::print(void) const
{
printf("demote; ");
}
void
ast_selection_statement::print(void) const
{
printf("if ( ");
condition->print();
printf(") ");
then_statement->print();
if (else_statement) {
printf("else ");
else_statement->print();
}
}
ast_selection_statement::ast_selection_statement(ast_expression *condition,
ast_node *then_statement,
ast_node *else_statement)
{
this->condition = condition;
this->then_statement = then_statement;
this->else_statement = else_statement;
}
void
ast_switch_statement::print(void) const
{
printf("switch ( ");
test_expression->print();
printf(") ");
body->print();
}
ast_switch_statement::ast_switch_statement(ast_expression *test_expression,
ast_node *body)
{
this->test_expression = test_expression;
this->body = body;
}
void
ast_switch_body::print(void) const
{
printf("{\n");
if (stmts != NULL) {
stmts->print();
}
printf("}\n");
}
ast_switch_body::ast_switch_body(ast_case_statement_list *stmts)
{
this->stmts = stmts;
}
void ast_case_label::print(void) const
{
if (test_value != NULL) {
printf("case ");
test_value->print();
printf(": ");
} else {
printf("default: ");
}
}
ast_case_label::ast_case_label(ast_expression *test_value)
{
this->test_value = test_value;
}
void ast_case_label_list::print(void) const
{
foreach_list_typed(ast_node, ast, link, & this->labels) {
ast->print();
}
printf("\n");
}
ast_case_label_list::ast_case_label_list(void)
{
}
void ast_case_statement::print(void) const
{
labels->print();
foreach_list_typed(ast_node, ast, link, & this->stmts) {
ast->print();
printf("\n");
}
}
ast_case_statement::ast_case_statement(ast_case_label_list *labels)
{
this->labels = labels;
}
void ast_case_statement_list::print(void) const
{
foreach_list_typed(ast_node, ast, link, & this->cases) {
ast->print();
}
}
ast_case_statement_list::ast_case_statement_list(void)
{
}
void
ast_iteration_statement::print(void) const
{
switch (mode) {
case ast_for:
printf("for( ");
if (init_statement)
init_statement->print();
printf("; ");
if (condition)
condition->print();
printf("; ");
if (rest_expression)
rest_expression->print();
printf(") ");
body->print();
break;
case ast_while:
printf("while ( ");
if (condition)
condition->print();
printf(") ");
body->print();
break;
case ast_do_while:
printf("do ");
body->print();
printf("while ( ");
if (condition)
condition->print();
printf("); ");
break;
}
}
ast_iteration_statement::ast_iteration_statement(int mode,
ast_node *init,
ast_node *condition,
ast_expression *rest_expression,
ast_node *body)
{
this->mode = ast_iteration_modes(mode);
this->init_statement = init;
this->condition = condition;
this->rest_expression = rest_expression;
this->body = body;
}
void
ast_struct_specifier::print(void) const
{
printf("struct %s { ", name);
foreach_list_typed(ast_node, ast, link, &this->declarations) {
ast->print();
}
printf("} ");
}
ast_struct_specifier::ast_struct_specifier(const char *identifier,
ast_declarator_list *declarator_list)
: name(identifier), layout(NULL), declarations(), is_declaration(true),
type(NULL)
{
this->declarations.push_degenerate_list_at_head(&declarator_list->link);
}
void ast_subroutine_list::print(void) const
{
foreach_list_typed (ast_node, ast, link, & this->declarations) {
if (&ast->link != this->declarations.get_head())
printf(", ");
ast->print();
}
}
static void
set_shader_inout_layout(struct gl_shader *shader,
struct _mesa_glsl_parse_state *state)
{
/* Should have been prevented by the parser. */
if (shader->Stage != MESA_SHADER_GEOMETRY &&
shader->Stage != MESA_SHADER_TESS_EVAL &&
shader->Stage != MESA_SHADER_COMPUTE) {
assert(!state->in_qualifier->flags.i);
}
if (shader->Stage != MESA_SHADER_COMPUTE) {
/* Should have been prevented by the parser. */
assert(!state->cs_input_local_size_specified);
assert(!state->cs_input_local_size_variable_specified);
assert(state->cs_derivative_group == DERIVATIVE_GROUP_NONE);
}
if (shader->Stage != MESA_SHADER_FRAGMENT) {
/* Should have been prevented by the parser. */
assert(!state->fs_uses_gl_fragcoord);
assert(!state->fs_redeclares_gl_fragcoord);
assert(!state->fs_pixel_center_integer);
assert(!state->fs_origin_upper_left);
assert(!state->fs_early_fragment_tests);
assert(!state->fs_inner_coverage);
assert(!state->fs_post_depth_coverage);
assert(!state->fs_pixel_interlock_ordered);
assert(!state->fs_pixel_interlock_unordered);
assert(!state->fs_sample_interlock_ordered);
assert(!state->fs_sample_interlock_unordered);
}
for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
if (state->out_qualifier->out_xfb_stride[i]) {
unsigned xfb_stride;
if (state->out_qualifier->out_xfb_stride[i]->
process_qualifier_constant(state, "xfb_stride", &xfb_stride,
true)) {
shader->TransformFeedbackBufferStride[i] = xfb_stride;
}
}
}
switch (shader->Stage) {
case MESA_SHADER_TESS_CTRL:
shader->info.TessCtrl.VerticesOut = 0;
if (state->tcs_output_vertices_specified) {
unsigned vertices;
if (state->out_qualifier->vertices->
process_qualifier_constant(state, "vertices", &vertices,
false)) {
YYLTYPE loc = state->out_qualifier->vertices->get_location();
if (vertices > state->Const.MaxPatchVertices) {
_mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
"GL_MAX_PATCH_VERTICES", vertices);
}
shader->info.TessCtrl.VerticesOut = vertices;
}
}
break;
case MESA_SHADER_TESS_EVAL:
shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
if (state->in_qualifier->flags.q.prim_type)
shader->info.TessEval.PrimitiveMode = state->in_qualifier->prim_type;
shader->info.TessEval.Spacing = TESS_SPACING_UNSPECIFIED;
if (state->in_qualifier->flags.q.vertex_spacing)
shader->info.TessEval.Spacing = state->in_qualifier->vertex_spacing;
shader->info.TessEval.VertexOrder = 0;
if (state->in_qualifier->flags.q.ordering)
shader->info.TessEval.VertexOrder = state->in_qualifier->ordering;
shader->info.TessEval.PointMode = -1;
if (state->in_qualifier->flags.q.point_mode)
shader->info.TessEval.PointMode = state->in_qualifier->point_mode;
break;
case MESA_SHADER_GEOMETRY:
shader->info.Geom.VerticesOut = -1;
if (state->out_qualifier->flags.q.max_vertices) {
unsigned qual_max_vertices;
if (state->out_qualifier->max_vertices->
process_qualifier_constant(state, "max_vertices",
&qual_max_vertices, true)) {
if (qual_max_vertices > state->Const.MaxGeometryOutputVertices) {
YYLTYPE loc = state->out_qualifier->max_vertices->get_location();
_mesa_glsl_error(&loc, state,
"maximum output vertices (%d) exceeds "
"GL_MAX_GEOMETRY_OUTPUT_VERTICES",
qual_max_vertices);
}
shader->info.Geom.VerticesOut = qual_max_vertices;
}
}
if (state->gs_input_prim_type_specified) {
shader->info.Geom.InputType = state->in_qualifier->prim_type;
} else {
shader->info.Geom.InputType = PRIM_UNKNOWN;
}
if (state->out_qualifier->flags.q.prim_type) {
shader->info.Geom.OutputType = state->out_qualifier->prim_type;
} else {
shader->info.Geom.OutputType = PRIM_UNKNOWN;
}
shader->info.Geom.Invocations = 0;
if (state->in_qualifier->flags.q.invocations) {
unsigned invocations;
if (state->in_qualifier->invocations->
process_qualifier_constant(state, "invocations",
&invocations, false)) {
YYLTYPE loc = state->in_qualifier->invocations->get_location();
if (invocations > state->Const.MaxGeometryShaderInvocations) {
_mesa_glsl_error(&loc, state,
"invocations (%d) exceeds "
"GL_MAX_GEOMETRY_SHADER_INVOCATIONS",
invocations);
}
shader->info.Geom.Invocations = invocations;
}
}
break;
case MESA_SHADER_COMPUTE:
if (state->cs_input_local_size_specified) {
for (int i = 0; i < 3; i++)
shader->info.Comp.LocalSize[i] = state->cs_input_local_size[i];
} else {
for (int i = 0; i < 3; i++)
shader->info.Comp.LocalSize[i] = 0;
}
shader->info.Comp.LocalSizeVariable =
state->cs_input_local_size_variable_specified;
shader->info.Comp.DerivativeGroup = state->cs_derivative_group;
if (state->NV_compute_shader_derivatives_enable) {
/* We allow multiple cs_input_layout nodes, but do not store them in
* a convenient place, so for now live with an empty location error.
*/
YYLTYPE loc = {0};
if (shader->info.Comp.DerivativeGroup == DERIVATIVE_GROUP_QUADS) {
if (shader->info.Comp.LocalSize[0] % 2 != 0) {
_mesa_glsl_error(&loc, state, "derivative_group_quadsNV must be used with a "
"local group size whose first dimension "
"is a multiple of 2\n");
}
if (shader->info.Comp.LocalSize[1] % 2 != 0) {
_mesa_glsl_error(&loc, state, "derivative_group_quadsNV must be used with a "
"local group size whose second dimension "
"is a multiple of 2\n");
}
} else if (shader->info.Comp.DerivativeGroup == DERIVATIVE_GROUP_LINEAR) {
if ((shader->info.Comp.LocalSize[0] *
shader->info.Comp.LocalSize[1] *
shader->info.Comp.LocalSize[2]) % 4 != 0) {
_mesa_glsl_error(&loc, state, "derivative_group_linearNV must be used with a "
"local group size whose total number of invocations "
"is a multiple of 4\n");
}
}
}
break;
case MESA_SHADER_FRAGMENT:
shader->redeclares_gl_fragcoord = state->fs_redeclares_gl_fragcoord;
shader->uses_gl_fragcoord = state->fs_uses_gl_fragcoord;
shader->pixel_center_integer = state->fs_pixel_center_integer;
shader->origin_upper_left = state->fs_origin_upper_left;
shader->ARB_fragment_coord_conventions_enable =
state->ARB_fragment_coord_conventions_enable;
shader->EarlyFragmentTests = state->fs_early_fragment_tests;
shader->InnerCoverage = state->fs_inner_coverage;
shader->PostDepthCoverage = state->fs_post_depth_coverage;
shader->PixelInterlockOrdered = state->fs_pixel_interlock_ordered;
shader->PixelInterlockUnordered = state->fs_pixel_interlock_unordered;
shader->SampleInterlockOrdered = state->fs_sample_interlock_ordered;
shader->SampleInterlockUnordered = state->fs_sample_interlock_unordered;
shader->BlendSupport = state->fs_blend_support;
break;
default:
/* Nothing to do. */
break;
}
shader->bindless_sampler = state->bindless_sampler_specified;
shader->bindless_image = state->bindless_image_specified;
shader->bound_sampler = state->bound_sampler_specified;
shader->bound_image = state->bound_image_specified;
shader->redeclares_gl_layer = state->redeclares_gl_layer;
shader->layer_viewport_relative = state->layer_viewport_relative;
}
/* src can be NULL if only the symbols found in the exec_list should be
* copied
*/
void
_mesa_glsl_copy_symbols_from_table(struct exec_list *shader_ir,
struct glsl_symbol_table *src,
struct glsl_symbol_table *dest)
{
foreach_in_list (ir_instruction, ir, shader_ir) {
switch (ir->ir_type) {
case ir_type_function:
dest->add_function((ir_function *) ir);
break;
case ir_type_variable: {
ir_variable *const var = (ir_variable *) ir;
if (var->data.mode != ir_var_temporary)
dest->add_variable(var);
break;
}
default:
break;
}
}
if (src != NULL) {
/* Explicitly copy the gl_PerVertex interface definitions because these
* are needed to check they are the same during the interstage link.
* They can’t necessarily be found via the exec_list because the members
* might not be referenced. The GL spec still requires that they match
* in that case.
*/
const glsl_type *iface =
src->get_interface("gl_PerVertex", ir_var_shader_in);
if (iface)
dest->add_interface(iface->name, iface, ir_var_shader_in);
iface = src->get_interface("gl_PerVertex", ir_var_shader_out);
if (iface)
dest->add_interface(iface->name, iface, ir_var_shader_out);
}
}
extern "C" {
static void
assign_subroutine_indexes(struct _mesa_glsl_parse_state *state)
{
int j, k;
int index = 0;
for (j = 0; j < state->num_subroutines; j++) {
while (state->subroutines[j]->subroutine_index == -1) {
for (k = 0; k < state->num_subroutines; k++) {
if (state->subroutines[k]->subroutine_index == index)
break;
else if (k == state->num_subroutines - 1) {
state->subroutines[j]->subroutine_index = index;
}
}
index++;
}
}
}
void
add_builtin_defines(struct _mesa_glsl_parse_state *state,
void (*add_builtin_define)(struct glcpp_parser *, const char *, int),
struct glcpp_parser *data,
unsigned version,
bool es)
{
unsigned gl_version = state->ctx->Extensions.Version;
gl_api api = state->ctx->API;
if (gl_version != 0xff) {
unsigned i;
for (i = 0; i < state->num_supported_versions; i++) {
if (state->supported_versions[i].ver == version &&
state->supported_versions[i].es == es) {
gl_version = state->supported_versions[i].gl_ver;
break;
}
}
if (i == state->num_supported_versions)
return;
}
if (es)
api = API_OPENGLES2;
for (unsigned i = 0;
i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) {
const _mesa_glsl_extension *extension
= &_mesa_glsl_supported_extensions[i];
if (extension->compatible_with_state(state, api, gl_version)) {
add_builtin_define(data, extension->name, 1);
}
}
}
/* Implements parsing checks that we can't do during parsing */
static void
do_late_parsing_checks(struct _mesa_glsl_parse_state *state)
{
if (state->stage == MESA_SHADER_COMPUTE && !state->has_compute_shader()) {
YYLTYPE loc;
memset(&loc, 0, sizeof(loc));
_mesa_glsl_error(&loc, state, "Compute shaders require "
"GLSL 4.30 or GLSL ES 3.10");
}
}
static void
opt_shader_and_create_symbol_table(struct gl_context *ctx,
struct glsl_symbol_table *source_symbols,
struct gl_shader *shader)
{
assert(shader->CompileStatus != COMPILE_FAILURE &&
!shader->ir->is_empty());
struct gl_shader_compiler_options *options =
&ctx->Const.ShaderCompilerOptions[shader->Stage];
/* Do some optimization at compile time to reduce shader IR size
* and reduce later work if the same shader is linked multiple times
*/
if (ctx->Const.GLSLOptimizeConservatively) {
/* Run it just once. */
do_common_optimization(shader->ir, false, false, options,
ctx->Const.NativeIntegers);
} else {
/* Repeat it until it stops making changes. */
while (do_common_optimization(shader->ir, false, false, options,
ctx->Const.NativeIntegers))
;
}
validate_ir_tree(shader->ir);
enum ir_variable_mode other;
switch (shader->Stage) {
case MESA_SHADER_VERTEX:
other = ir_var_shader_in;
break;
case MESA_SHADER_FRAGMENT:
other = ir_var_shader_out;
break;
default:
/* Something invalid to ensure optimize_dead_builtin_uniforms
* doesn't remove anything other than uniforms or constants.
*/
other = ir_var_mode_count;
break;
}
optimize_dead_builtin_variables(shader->ir, other);
validate_ir_tree(shader->ir);
/* Retain any live IR, but trash the rest. */
reparent_ir(shader->ir, shader->ir);
/* Destroy the symbol table. Create a new symbol table that contains only
* the variables and functions that still exist in the IR. The symbol
* table will be used later during linking.
*
* There must NOT be any freed objects still referenced by the symbol
* table. That could cause the linker to dereference freed memory.
*
* We don't have to worry about types or interface-types here because those
* are fly-weights that are looked up by glsl_type.
*/
_mesa_glsl_copy_symbols_from_table(shader->ir, source_symbols,
shader->symbols);
}
static bool
can_skip_compile(struct gl_context *ctx, struct gl_shader *shader,
const char *source, bool force_recompile,
bool source_has_shader_include)
{
if (!force_recompile) {
if (ctx->Cache) {
char buf[41];
disk_cache_compute_key(ctx->Cache, source, strlen(source),
shader->sha1);
if (disk_cache_has_key(ctx->Cache, shader->sha1)) {
/* We've seen this shader before and know it compiles */
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
_mesa_sha1_format(buf, shader->sha1);
fprintf(stderr, "deferring compile of shader: %s\n", buf);
}
shader->CompileStatus = COMPILE_SKIPPED;
free((void *)shader->FallbackSource);
/* Copy pre-processed shader include to fallback source otherwise
* we have no guarantee the shader include source tree has not
* changed.
*/
shader->FallbackSource = source_has_shader_include ?
strdup(source) : NULL;
return true;
}
}
} else {
/* We should only ever end up here if a re-compile has been forced by a
* shader cache miss. In which case we can skip the compile if its
* already been done by a previous fallback or the initial compile call.
*/
if (shader->CompileStatus == COMPILE_SUCCESS)
return true;
}
return false;
}
void
_mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader,
bool dump_ast, bool dump_hir, bool force_recompile)
{
const char *source = force_recompile && shader->FallbackSource ?
shader->FallbackSource : shader->Source;
/* Note this will be true for shaders the have #include inside comments
* however that should be rare enough not to worry about.
*/
bool source_has_shader_include =
strstr(source, "#include") == NULL ? false : true;
/* If there was no shader include we can check the shader cache and skip
* compilation before we run the preprocessor. We never skip compiling
* shaders that use ARB_shading_language_include because we would need to
* keep duplicate copies of the shader include source tree and paths.
*/
if (!source_has_shader_include &&
can_skip_compile(ctx, shader, source, force_recompile, false))
return;
struct _mesa_glsl_parse_state *state =
new(shader) _mesa_glsl_parse_state(ctx, shader->Stage, shader);
if (ctx->Const.GenerateTemporaryNames)
(void) p_atomic_cmpxchg(&ir_variable::temporaries_allocate_names,
false, true);
if (!source_has_shader_include || !force_recompile) {
state->error = glcpp_preprocess(state, &source, &state->info_log,
add_builtin_defines, state, ctx);
}
/* Now that we have run the preprocessor we can check the shader cache and
* skip compilation if possible for those shaders that contained a shader
* include.
*/
if (source_has_shader_include &&
can_skip_compile(ctx, shader, source, force_recompile, true))
return;
if (!state->error) {
_mesa_glsl_lexer_ctor(state, source);
_mesa_glsl_parse(state);
_mesa_glsl_lexer_dtor(state);
do_late_parsing_checks(state);
}
if (dump_ast) {
foreach_list_typed(ast_node, ast, link, &state->translation_unit) {
ast->print();
}
printf("\n\n");
}
ralloc_free(shader->ir);
shader->ir = new(shader) exec_list;
if (!state->error && !state->translation_unit.is_empty())
_mesa_ast_to_hir(shader->ir, state);
if (!state->error) {
validate_ir_tree(shader->ir);
/* Print out the unoptimized IR. */
if (dump_hir) {
_mesa_print_ir(stdout, shader->ir, state);
}
}
if (shader->InfoLog)
ralloc_free(shader->InfoLog);
if (!state->error)
set_shader_inout_layout(shader, state);
shader->symbols = new(shader->ir) glsl_symbol_table;
shader->CompileStatus = state->error ? COMPILE_FAILURE : COMPILE_SUCCESS;
shader->InfoLog = state->info_log;
shader->Version = state->language_version;
shader->IsES = state->es_shader;
struct gl_shader_compiler_options *options =
&ctx->Const.ShaderCompilerOptions[shader->Stage];
if (!state->error && !shader->ir->is_empty()) {
if (options->LowerPrecision)
lower_precision(shader->ir);
lower_builtins(shader->ir);
assign_subroutine_indexes(state);
lower_subroutine(shader->ir, state);
opt_shader_and_create_symbol_table(ctx, state->symbols, shader);
}
if (!force_recompile) {
free((void *)shader->FallbackSource);
/* Copy pre-processed shader include to fallback source otherwise we
* have no guarantee the shader include source tree has not changed.
*/
shader->FallbackSource = source_has_shader_include ?
strdup(source) : NULL;
}
delete state->symbols;
ralloc_free(state);
if (ctx->Cache && shader->CompileStatus == COMPILE_SUCCESS) {
char sha1_buf[41];
disk_cache_put_key(ctx->Cache, shader->sha1);
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
_mesa_sha1_format(sha1_buf, shader->sha1);
fprintf(stderr, "marking shader: %s\n", sha1_buf);
}
}
}
} /* extern "C" */
/**
* Do the set of common optimizations passes
*
* \param ir List of instructions to be optimized
* \param linked Is the shader linked? This enables
* optimizations passes that remove code at
* global scope and could cause linking to
* fail.
* \param uniform_locations_assigned Have locations already been assigned for
* uniforms? This prevents the declarations
* of unused uniforms from being removed.
* The setting of this flag only matters if
* \c linked is \c true.
* \param options The driver's preferred shader options.
* \param native_integers Selects optimizations that depend on the
* implementations supporting integers
* natively (as opposed to supporting
* integers in floating point registers).
*/
bool
do_common_optimization(exec_list *ir, bool linked,
bool uniform_locations_assigned,
const struct gl_shader_compiler_options *options,
bool native_integers)
{
const bool debug = false;
bool progress = false;
#define OPT(PASS, ...) do { \
if (debug) { \
fprintf(stderr, "START GLSL optimization %s\n", #PASS); \
const bool opt_progress = PASS(__VA_ARGS__); \
progress = opt_progress || progress; \
if (opt_progress) \
_mesa_print_ir(stderr, ir, NULL); \
fprintf(stderr, "GLSL optimization %s: %s progress\n", \
#PASS, opt_progress ? "made" : "no"); \
} else { \
progress = PASS(__VA_ARGS__) || progress; \
} \
} while (false)
OPT(lower_instructions, ir, SUB_TO_ADD_NEG);
if (linked) {
OPT(do_function_inlining, ir);
OPT(do_dead_functions, ir);
OPT(do_structure_splitting, ir);
}
propagate_invariance(ir);
OPT(do_if_simplification, ir);
OPT(opt_flatten_nested_if_blocks, ir);
OPT(opt_conditional_discard, ir);
OPT(do_copy_propagation_elements, ir);
if (options->OptimizeForAOS && !linked)
OPT(opt_flip_matrices, ir);
if (linked && options->OptimizeForAOS) {
OPT(do_vectorize, ir);
}
if (linked)
OPT(do_dead_code, ir, uniform_locations_assigned);
else
OPT(do_dead_code_unlinked, ir);
OPT(do_dead_code_local, ir);
OPT(do_tree_grafting, ir);
OPT(do_constant_propagation, ir);
if (linked)
OPT(do_constant_variable, ir);
else
OPT(do_constant_variable_unlinked, ir);
OPT(do_constant_folding, ir);
OPT(do_minmax_prune, ir);
OPT(do_rebalance_tree, ir);
OPT(do_algebraic, ir, native_integers, options);
OPT(do_lower_jumps, ir, true, true, options->EmitNoMainReturn,
options->EmitNoCont, options->EmitNoLoops);
OPT(do_vec_index_to_swizzle, ir);
OPT(lower_vector_insert, ir, false);
OPT(optimize_swizzles, ir);
/* Some drivers only call do_common_optimization() once rather than in a
* loop, and split arrays causes each element of a constant array to
* dereference is own copy of the entire array initilizer. This IR is not
* something that can be generated manually in a shader and is not
* accounted for by NIR optimisations, the result is an exponential slow
* down in compilation speed as a constant arrays element count grows. To
* avoid that here we make sure to always clean up the mess split arrays
* causes to constant arrays.
*/
bool array_split = optimize_split_arrays(ir, linked);
if (array_split)
do_constant_propagation(ir);
progress |= array_split;
OPT(optimize_redundant_jumps, ir);
if (options->MaxUnrollIterations) {
loop_state *ls = analyze_loop_variables(ir);
if (ls->loop_found) {
bool loop_progress = unroll_loops(ir, ls, options);
while (loop_progress) {
loop_progress = false;
loop_progress |= do_constant_propagation(ir);
loop_progress |= do_if_simplification(ir);
/* Some drivers only call do_common_optimization() once rather
* than in a loop. So we must call do_lower_jumps() after
* unrolling a loop because for drivers that use LLVM validation
* will fail if a jump is not the last instruction in the block.
* For example the following will fail LLVM validation:
*
* (loop (
* ...
* break
* (assign (x) (var_ref v124) (expression int + (var_ref v124)
* (constant int (1)) ) )
* ))
*/
loop_progress |= do_lower_jumps(ir, true, true,
options->EmitNoMainReturn,
options->EmitNoCont,
options->EmitNoLoops);
}
progress |= loop_progress;
}
delete ls;
}
#undef OPT
return progress;
}