Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/rd.h"
#include <assert.h>
void av1_copy_tree_context(PICK_MODE_CONTEXT *dst_ctx,
PICK_MODE_CONTEXT *src_ctx) {
dst_ctx->mic = src_ctx->mic;
dst_ctx->mbmi_ext_best = src_ctx->mbmi_ext_best;
dst_ctx->num_4x4_blk = src_ctx->num_4x4_blk;
dst_ctx->skippable = src_ctx->skippable;
#if CONFIG_INTERNAL_STATS
dst_ctx->best_mode_index = src_ctx->best_mode_index;
#endif // CONFIG_INTERNAL_STATS
memcpy(dst_ctx->blk_skip, src_ctx->blk_skip,
sizeof(uint8_t) * src_ctx->num_4x4_blk);
av1_copy_array(dst_ctx->tx_type_map, src_ctx->tx_type_map,
src_ctx->num_4x4_blk);
dst_ctx->rd_stats = src_ctx->rd_stats;
dst_ctx->rd_mode_is_ready = src_ctx->rd_mode_is_ready;
}
void av1_setup_shared_coeff_buffer(const SequenceHeader *const seq_params,
PC_TREE_SHARED_BUFFERS *shared_bufs,
struct aom_internal_error_info *error) {
const int num_planes = seq_params->monochrome ? 1 : MAX_MB_PLANE;
const int max_sb_square_y = 1 << num_pels_log2_lookup[seq_params->sb_size];
const int max_sb_square_uv = max_sb_square_y >> (seq_params->subsampling_x +
seq_params->subsampling_y);
for (int i = 0; i < num_planes; i++) {
const int max_num_pix =
(i == AOM_PLANE_Y) ? max_sb_square_y : max_sb_square_uv;
AOM_CHECK_MEM_ERROR(error, shared_bufs->coeff_buf[i],
aom_memalign(32, max_num_pix * sizeof(tran_low_t)));
AOM_CHECK_MEM_ERROR(error, shared_bufs->qcoeff_buf[i],
aom_memalign(32, max_num_pix * sizeof(tran_low_t)));
AOM_CHECK_MEM_ERROR(error, shared_bufs->dqcoeff_buf[i],
aom_memalign(32, max_num_pix * sizeof(tran_low_t)));
}
}
void av1_free_shared_coeff_buffer(PC_TREE_SHARED_BUFFERS *shared_bufs) {
for (int i = 0; i < 3; i++) {
aom_free(shared_bufs->coeff_buf[i]);
aom_free(shared_bufs->qcoeff_buf[i]);
aom_free(shared_bufs->dqcoeff_buf[i]);
shared_bufs->coeff_buf[i] = NULL;
shared_bufs->qcoeff_buf[i] = NULL;
shared_bufs->dqcoeff_buf[i] = NULL;
}
}
PICK_MODE_CONTEXT *av1_alloc_pmc(const struct AV1_COMP *const cpi,
BLOCK_SIZE bsize,
PC_TREE_SHARED_BUFFERS *shared_bufs) {
PICK_MODE_CONTEXT *volatile ctx = NULL;
const AV1_COMMON *const cm = &cpi->common;
struct aom_internal_error_info error;
if (setjmp(error.jmp)) {
av1_free_pmc(ctx, av1_num_planes(cm));
return NULL;
}
error.setjmp = 1;
AOM_CHECK_MEM_ERROR(&error, ctx, aom_calloc(1, sizeof(*ctx)));
ctx->rd_mode_is_ready = 0;
const int num_planes = av1_num_planes(cm);
const int num_pix = block_size_wide[bsize] * block_size_high[bsize];
const int num_blk = num_pix / 16;
AOM_CHECK_MEM_ERROR(&error, ctx->blk_skip,
aom_calloc(num_blk, sizeof(*ctx->blk_skip)));
AOM_CHECK_MEM_ERROR(&error, ctx->tx_type_map,
aom_calloc(num_blk, sizeof(*ctx->tx_type_map)));
ctx->num_4x4_blk = num_blk;
for (int i = 0; i < num_planes; ++i) {
ctx->coeff[i] = shared_bufs->coeff_buf[i];
ctx->qcoeff[i] = shared_bufs->qcoeff_buf[i];
ctx->dqcoeff[i] = shared_bufs->dqcoeff_buf[i];
AOM_CHECK_MEM_ERROR(&error, ctx->eobs[i],
aom_memalign(32, num_blk * sizeof(*ctx->eobs[i])));
AOM_CHECK_MEM_ERROR(
&error, ctx->txb_entropy_ctx[i],
aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i])));
}
if (num_pix <= MAX_PALETTE_SQUARE) {
for (int i = 0; i < 2; ++i) {
if (cm->features.allow_screen_content_tools) {
AOM_CHECK_MEM_ERROR(
&error, ctx->color_index_map[i],
aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i])));
} else {
ctx->color_index_map[i] = NULL;
}
}
}
av1_invalid_rd_stats(&ctx->rd_stats);
return ctx;
}
void av1_reset_pmc(PICK_MODE_CONTEXT *ctx) {
av1_zero_array(ctx->blk_skip, ctx->num_4x4_blk);
av1_zero_array(ctx->tx_type_map, ctx->num_4x4_blk);
av1_invalid_rd_stats(&ctx->rd_stats);
}
void av1_free_pmc(PICK_MODE_CONTEXT *ctx, int num_planes) {
if (ctx == NULL) return;
aom_free(ctx->blk_skip);
ctx->blk_skip = NULL;
aom_free(ctx->tx_type_map);
for (int i = 0; i < num_planes; ++i) {
ctx->coeff[i] = NULL;
ctx->qcoeff[i] = NULL;
ctx->dqcoeff[i] = NULL;
aom_free(ctx->eobs[i]);
ctx->eobs[i] = NULL;
aom_free(ctx->txb_entropy_ctx[i]);
ctx->txb_entropy_ctx[i] = NULL;
}
for (int i = 0; i < 2; ++i) {
if (ctx->color_index_map[i]) {
aom_free(ctx->color_index_map[i]);
ctx->color_index_map[i] = NULL;
}
}
aom_free(ctx);
}
PC_TREE *av1_alloc_pc_tree_node(BLOCK_SIZE bsize) {
PC_TREE *pc_tree = aom_calloc(1, sizeof(*pc_tree));
if (pc_tree == NULL) return NULL;
pc_tree->partitioning = PARTITION_NONE;
pc_tree->block_size = bsize;
return pc_tree;
}
#define FREE_PMC_NODE(CTX) \
do { \
av1_free_pmc(CTX, num_planes); \
CTX = NULL; \
} while (0)
void av1_free_pc_tree_recursive(PC_TREE *pc_tree, int num_planes, int keep_best,
int keep_none,
PARTITION_SEARCH_TYPE partition_search_type) {
if (pc_tree == NULL) return;
// Avoid freeing of extended partitions as they are not supported when
// partition_search_type is VAR_BASED_PARTITION.
if (partition_search_type == VAR_BASED_PARTITION && !keep_best &&
!keep_none) {
FREE_PMC_NODE(pc_tree->none);
for (int i = 0; i < 2; ++i) {
FREE_PMC_NODE(pc_tree->horizontal[i]);
FREE_PMC_NODE(pc_tree->vertical[i]);
}
#if !defined(NDEBUG) && !CONFIG_REALTIME_ONLY
for (int i = 0; i < 3; ++i) {
assert(pc_tree->horizontala[i] == NULL);
assert(pc_tree->horizontalb[i] == NULL);
assert(pc_tree->verticala[i] == NULL);
assert(pc_tree->verticalb[i] == NULL);
}
for (int i = 0; i < 4; ++i) {
assert(pc_tree->horizontal4[i] == NULL);
assert(pc_tree->vertical4[i] == NULL);
}
#endif
for (int i = 0; i < 4; ++i) {
if (pc_tree->split[i] != NULL) {
av1_free_pc_tree_recursive(pc_tree->split[i], num_planes, 0, 0,
partition_search_type);
pc_tree->split[i] = NULL;
}
}
aom_free(pc_tree);
return;
}
const PARTITION_TYPE partition = pc_tree->partitioning;
if (!keep_none && (!keep_best || (partition != PARTITION_NONE)))
FREE_PMC_NODE(pc_tree->none);
for (int i = 0; i < 2; ++i) {
if (!keep_best || (partition != PARTITION_HORZ))
FREE_PMC_NODE(pc_tree->horizontal[i]);
if (!keep_best || (partition != PARTITION_VERT))
FREE_PMC_NODE(pc_tree->vertical[i]);
}
#if !CONFIG_REALTIME_ONLY
for (int i = 0; i < 3; ++i) {
if (!keep_best || (partition != PARTITION_HORZ_A))
FREE_PMC_NODE(pc_tree->horizontala[i]);
if (!keep_best || (partition != PARTITION_HORZ_B))
FREE_PMC_NODE(pc_tree->horizontalb[i]);
if (!keep_best || (partition != PARTITION_VERT_A))
FREE_PMC_NODE(pc_tree->verticala[i]);
if (!keep_best || (partition != PARTITION_VERT_B))
FREE_PMC_NODE(pc_tree->verticalb[i]);
}
for (int i = 0; i < 4; ++i) {
if (!keep_best || (partition != PARTITION_HORZ_4))
FREE_PMC_NODE(pc_tree->horizontal4[i]);
if (!keep_best || (partition != PARTITION_VERT_4))
FREE_PMC_NODE(pc_tree->vertical4[i]);
}
#endif
if (!keep_best || (partition != PARTITION_SPLIT)) {
for (int i = 0; i < 4; ++i) {
if (pc_tree->split[i] != NULL) {
av1_free_pc_tree_recursive(pc_tree->split[i], num_planes, 0, 0,
partition_search_type);
pc_tree->split[i] = NULL;
}
}
}
if (!keep_best && !keep_none) aom_free(pc_tree);
}
int av1_setup_sms_tree(AV1_COMP *const cpi, ThreadData *td) {
// The structure 'sms_tree' is used to store the simple motion search data for
// partition pruning in inter frames. Hence, the memory allocations and
// initializations related to it are avoided for allintra encoding mode.
if (cpi->oxcf.kf_cfg.key_freq_max == 0) return 0;
AV1_COMMON *const cm = &cpi->common;
const int stat_generation_stage = is_stat_generation_stage(cpi);
const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
const int tree_nodes =
av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
int sms_tree_index = 0;
SIMPLE_MOTION_DATA_TREE *this_sms;
int square_index = 1;
int nodes;
aom_free(td->sms_tree);
td->sms_tree =
(SIMPLE_MOTION_DATA_TREE *)aom_calloc(tree_nodes, sizeof(*td->sms_tree));
if (!td->sms_tree) return -1;
this_sms = &td->sms_tree[0];
if (!stat_generation_stage) {
const int leaf_factor = is_sb_size_128 ? 4 : 1;
const int leaf_nodes = 256 * leaf_factor;
// Sets up all the leaf nodes in the tree.
for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) {
SIMPLE_MOTION_DATA_TREE *const tree = &td->sms_tree[sms_tree_index];
tree->block_size = square[0];
}
// Each node has 4 leaf nodes, fill each block_size level of the tree
// from leafs to the root.
for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
for (int i = 0; i < nodes; ++i) {
SIMPLE_MOTION_DATA_TREE *const tree = &td->sms_tree[sms_tree_index];
tree->block_size = square[square_index];
for (int j = 0; j < 4; j++) tree->split[j] = this_sms++;
++sms_tree_index;
}
++square_index;
}
} else {
// Allocation for firstpass/LAP stage
// TODO(Mufaddal): refactor square_index to use a common block_size macro
// from firstpass.c
SIMPLE_MOTION_DATA_TREE *const tree = &td->sms_tree[sms_tree_index];
square_index = 2;
tree->block_size = square[square_index];
}
// Set up the root node for the largest superblock size
td->sms_root = &td->sms_tree[tree_nodes - 1];
return 0;
}
void av1_free_sms_tree(ThreadData *td) {
aom_free(td->sms_tree);
td->sms_tree = NULL;
}