Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem.h"
#include "av1/common/idct.h"
#include "av1/common/quant_common.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/rd.h"
void av1_quantize_skip(intptr_t n_coeffs, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
*eob_ptr = 0;
}
int av1_quantize_fp_no_qmatrix(const int16_t quant_ptr[2],
const int16_t dequant_ptr[2],
const int16_t round_ptr[2], int log_scale,
const int16_t *scan, int coeff_count,
const tran_low_t *coeff_ptr,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr) {
memset(qcoeff_ptr, 0, coeff_count * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, coeff_count * sizeof(*dqcoeff_ptr));
const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
ROUND_POWER_OF_TWO(round_ptr[1], log_scale) };
int eob = 0;
for (int i = 0; i < coeff_count; i++) {
const int rc = scan[i];
const int32_t thresh = (int32_t)(dequant_ptr[rc != 0]);
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int tmp32 = 0;
if ((abs_coeff << (1 + log_scale)) >= thresh) {
abs_coeff = clamp64(abs_coeff + rounding[rc != 0], INT16_MIN, INT16_MAX);
tmp32 = (int)((abs_coeff * quant_ptr[rc != 0]) >> (16 - log_scale));
if (tmp32) {
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
const tran_low_t abs_dqcoeff =
(tmp32 * dequant_ptr[rc != 0]) >> log_scale;
dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
}
}
if (tmp32) eob = i + 1;
}
return eob;
}
static void quantize_fp_helper_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
const qm_val_t *iqm_ptr, int log_scale) {
int i, eob = -1;
const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
ROUND_POWER_OF_TWO(round_ptr[1], log_scale) };
// TODO(jingning) Decide the need of these arguments after the
// quantization process is completed.
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)iscan;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (qm_ptr == NULL && iqm_ptr == NULL) {
*eob_ptr = av1_quantize_fp_no_qmatrix(quant_ptr, dequant_ptr, round_ptr,
log_scale, scan, (int)n_coeffs,
coeff_ptr, qcoeff_ptr, dqcoeff_ptr);
} else {
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const qm_val_t wt = qm_ptr ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const qm_val_t iwt = iqm_ptr ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
const int coeff_sign = AOMSIGN(coeff);
int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int tmp32 = 0;
if (abs_coeff * wt >=
(dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
abs_coeff += rounding[rc != 0];
abs_coeff = clamp64(abs_coeff, INT16_MIN, INT16_MAX);
tmp32 = (int)((abs_coeff * wt * quant_ptr[rc != 0]) >>
(16 - log_scale + AOM_QM_BITS));
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
}
if (tmp32) eob = i;
}
*eob_ptr = eob + 1;
}
}
#if CONFIG_AV1_HIGHBITDEPTH
static void highbd_quantize_fp_helper_c(
const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
const qm_val_t *iqm_ptr, int log_scale) {
int i;
int eob = -1;
const int shift = 16 - log_scale;
// TODO(jingning) Decide the need of these arguments after the
// quantization process is completed.
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)iscan;
if (qm_ptr || iqm_ptr) {
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < count; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
const int coeff_sign = AOMSIGN(coeff);
const int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int abs_qcoeff = 0;
if (abs_coeff * wt >=
(dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
const int64_t tmp =
abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale);
abs_qcoeff =
(int)((tmp * quant_ptr[rc != 0] * wt) >> (shift + AOM_QM_BITS));
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (abs_qcoeff) eob = i;
} else {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
}
} else {
const int log_scaled_round_arr[2] = {
ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
ROUND_POWER_OF_TWO(round_ptr[1], log_scale),
};
for (i = 0; i < count; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const int rc01 = (rc != 0);
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int log_scaled_round = log_scaled_round_arr[rc01];
if ((abs_coeff << (1 + log_scale)) >= dequant_ptr[rc01]) {
const int quant = quant_ptr[rc01];
const int dequant = dequant_ptr[rc01];
const int64_t tmp = (int64_t)abs_coeff + log_scaled_round;
const int abs_qcoeff = (int)((tmp * quant) >> shift);
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
if (abs_qcoeff) eob = i;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
} else {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
}
}
*eob_ptr = eob + 1;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
void av1_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 0);
}
void av1_quantize_lp_c(const int16_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *round_ptr, const int16_t *quant_ptr,
int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
(void)iscan;
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (int i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
tmp = (tmp * quant_ptr[rc != 0]) >> 16;
qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
if (tmp) eob = i;
}
*eob_ptr = eob + 1;
}
void av1_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 1);
}
void av1_quantize_fp_64x64_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 2);
}
void av1_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
if (qm_ptr != NULL && iqm_ptr != NULL) {
quantize_fp_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
av1_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 1:
av1_quantize_fp_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 2:
av1_quantize_fp_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
default: assert(0);
}
}
}
void av1_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
#if !CONFIG_REALTIME_ONLY
if (qparam->use_quant_b_adapt) {
// TODO(sarahparker) These quantize_b optimizations need SIMD
// implementations
if (qm_ptr != NULL && iqm_ptr != NULL) {
aom_quantize_b_adaptive_helper_c(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
aom_quantize_b_adaptive(coeff_ptr, n_coeffs, p->zbin_QTX,
p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr,
p->dequant_QTX, eob_ptr, sc->scan, sc->iscan);
break;
case 1:
aom_quantize_b_32x32_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
case 2:
aom_quantize_b_64x64_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
default: assert(0);
}
}
return;
}
#endif // !CONFIG_REALTIME_ONLY
if (qm_ptr != NULL && iqm_ptr != NULL) {
aom_quantize_b_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
aom_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 1:
aom_quantize_b_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 2:
aom_quantize_b_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
default: assert(0);
}
}
}
static void quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs,
int skip_block, const int16_t *round_ptr,
const int16_t quant, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr,
uint16_t *eob_ptr, const qm_val_t *qm_ptr,
const qm_val_t *iqm_ptr, const int log_scale) {
const int rc = 0;
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int64_t tmp;
int eob = -1;
int32_t tmp32;
int dequant;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const int iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale),
INT16_MIN, INT16_MAX);
tmp32 = (int32_t)((tmp * wt * quant) >> (16 - log_scale + AOM_QM_BITS));
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
dequant = (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (tmp32) eob = 0;
}
*eob_ptr = eob + 1;
}
void av1_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
(void)sc;
assert(qparam->log_scale >= 0 && qparam->log_scale < (3));
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX[0],
eob_ptr, qm_ptr, iqm_ptr, qparam->log_scale);
}
#if CONFIG_AV1_HIGHBITDEPTH
void av1_highbd_quantize_fp_facade(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc,
const QUANT_PARAM *qparam) {
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
if (qm_ptr != NULL && iqm_ptr != NULL) {
highbd_quantize_fp_helper_c(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
av1_highbd_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan, qparam->log_scale);
}
}
void av1_highbd_quantize_b_facade(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc,
const QUANT_PARAM *qparam) {
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
#if !CONFIG_REALTIME_ONLY
if (qparam->use_quant_b_adapt) {
if (qm_ptr != NULL && iqm_ptr != NULL) {
aom_highbd_quantize_b_adaptive_helper_c(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
aom_highbd_quantize_b_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
case 1:
aom_highbd_quantize_b_32x32_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
case 2:
aom_highbd_quantize_b_64x64_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
default: assert(0);
}
}
return;
}
#endif // !CONFIG_REALTIME_ONLY
if (qm_ptr != NULL && iqm_ptr != NULL) {
aom_highbd_quantize_b_helper_c(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
aom_highbd_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 1:
aom_highbd_quantize_b_32x32(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
case 2:
aom_highbd_quantize_b_64x64(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
default: assert(0);
}
}
}
static inline void highbd_quantize_dc(
const tran_low_t *coeff_ptr, int n_coeffs, int skip_block,
const int16_t *round_ptr, const int16_t quant, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, uint16_t *eob_ptr,
const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, const int log_scale) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[0] : (1 << AOM_QM_BITS);
const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[0] : (1 << AOM_QM_BITS);
const int coeff = coeff_ptr[0];
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[0], log_scale);
const int64_t tmpw = tmp * wt;
const int abs_qcoeff =
(int)((tmpw * quant) >> (16 - log_scale + AOM_QM_BITS));
qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
const int dequant =
(dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
dqcoeff_ptr[0] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (abs_qcoeff) eob = 0;
}
*eob_ptr = eob + 1;
}
void av1_highbd_quantize_dc_facade(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc,
const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
(void)sc;
highbd_quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr,
p->dequant_QTX[0], eob_ptr, qm_ptr, iqm_ptr,
qparam->log_scale);
}
void av1_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t count,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan,
int log_scale) {
highbd_quantize_fp_helper_c(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr,
dequant_ptr, eob_ptr, scan, iscan, NULL, NULL,
log_scale);
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static void invert_quant(int16_t *quant, int16_t *shift, int d) {
uint32_t t;
int l, m;
t = d;
l = get_msb(t);
m = 1 + (1 << (16 + l)) / d;
*quant = (int16_t)(m - (1 << 16));
*shift = 1 << (16 - l);
}
static int get_qzbin_factor(int q, aom_bit_depth_t bit_depth) {
const int quant = av1_dc_quant_QTX(q, 0, bit_depth);
switch (bit_depth) {
case AOM_BITS_8: return q == 0 ? 64 : (quant < 148 ? 84 : 80);
case AOM_BITS_10: return q == 0 ? 64 : (quant < 592 ? 84 : 80);
case AOM_BITS_12: return q == 0 ? 64 : (quant < 2368 ? 84 : 80);
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
}
void av1_build_quantizer(aom_bit_depth_t bit_depth, int y_dc_delta_q,
int u_dc_delta_q, int u_ac_delta_q, int v_dc_delta_q,
int v_ac_delta_q, QUANTS *const quants,
Dequants *const deq) {
int i, q, quant_QTX;
for (q = 0; q < QINDEX_RANGE; q++) {
const int qzbin_factor = get_qzbin_factor(q, bit_depth);
const int qrounding_factor = q == 0 ? 64 : 48;
for (i = 0; i < 2; ++i) {
const int qrounding_factor_fp = 64;
// y quantizer with TX scale
quant_QTX = i == 0 ? av1_dc_quant_QTX(q, y_dc_delta_q, bit_depth)
: av1_ac_quant_QTX(q, 0, bit_depth);
invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i],
quant_QTX);
quants->y_quant_fp[q][i] = (1 << 16) / quant_QTX;
quants->y_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
quants->y_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
deq->y_dequant_QTX[q][i] = quant_QTX;
// u quantizer with TX scale
quant_QTX = i == 0 ? av1_dc_quant_QTX(q, u_dc_delta_q, bit_depth)
: av1_ac_quant_QTX(q, u_ac_delta_q, bit_depth);
invert_quant(&quants->u_quant[q][i], &quants->u_quant_shift[q][i],
quant_QTX);
quants->u_quant_fp[q][i] = (1 << 16) / quant_QTX;
quants->u_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
quants->u_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
quants->u_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
deq->u_dequant_QTX[q][i] = quant_QTX;
// v quantizer with TX scale
quant_QTX = i == 0 ? av1_dc_quant_QTX(q, v_dc_delta_q, bit_depth)
: av1_ac_quant_QTX(q, v_ac_delta_q, bit_depth);
invert_quant(&quants->v_quant[q][i], &quants->v_quant_shift[q][i],
quant_QTX);
quants->v_quant_fp[q][i] = (1 << 16) / quant_QTX;
quants->v_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
quants->v_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
quants->v_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
deq->v_dequant_QTX[q][i] = quant_QTX;
}
for (i = 2; i < 8; i++) { // 8: SIMD width
quants->y_quant[q][i] = quants->y_quant[q][1];
quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1];
quants->y_round_fp[q][i] = quants->y_round_fp[q][1];
quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1];
quants->y_zbin[q][i] = quants->y_zbin[q][1];
quants->y_round[q][i] = quants->y_round[q][1];
deq->y_dequant_QTX[q][i] = deq->y_dequant_QTX[q][1];
quants->u_quant[q][i] = quants->u_quant[q][1];
quants->u_quant_fp[q][i] = quants->u_quant_fp[q][1];
quants->u_round_fp[q][i] = quants->u_round_fp[q][1];
quants->u_quant_shift[q][i] = quants->u_quant_shift[q][1];
quants->u_zbin[q][i] = quants->u_zbin[q][1];
quants->u_round[q][i] = quants->u_round[q][1];
deq->u_dequant_QTX[q][i] = deq->u_dequant_QTX[q][1];
quants->v_quant[q][i] = quants->v_quant[q][1];
quants->v_quant_fp[q][i] = quants->v_quant_fp[q][1];
quants->v_round_fp[q][i] = quants->v_round_fp[q][1];
quants->v_quant_shift[q][i] = quants->v_quant_shift[q][1];
quants->v_zbin[q][i] = quants->v_zbin[q][1];
quants->v_round[q][i] = quants->v_round[q][1];
deq->v_dequant_QTX[q][i] = deq->v_dequant_QTX[q][1];
}
}
}
static inline bool deltaq_params_have_changed(
const DeltaQuantParams *prev_deltaq_params,
const CommonQuantParams *quant_params) {
return (prev_deltaq_params->y_dc_delta_q != quant_params->y_dc_delta_q ||
prev_deltaq_params->u_dc_delta_q != quant_params->u_dc_delta_q ||
prev_deltaq_params->v_dc_delta_q != quant_params->v_dc_delta_q ||
prev_deltaq_params->u_ac_delta_q != quant_params->u_ac_delta_q ||
prev_deltaq_params->v_ac_delta_q != quant_params->v_ac_delta_q);
}
void av1_init_quantizer(EncQuantDequantParams *const enc_quant_dequant_params,
const CommonQuantParams *quant_params,
aom_bit_depth_t bit_depth) {
DeltaQuantParams *const prev_deltaq_params =
&enc_quant_dequant_params->prev_deltaq_params;
// Re-initialize the quantizer only if any of the dc/ac deltaq parameters
// change.
if (!deltaq_params_have_changed(prev_deltaq_params, quant_params)) return;
QUANTS *const quants = &enc_quant_dequant_params->quants;
Dequants *const dequants = &enc_quant_dequant_params->dequants;
av1_build_quantizer(bit_depth, quant_params->y_dc_delta_q,
quant_params->u_dc_delta_q, quant_params->u_ac_delta_q,
quant_params->v_dc_delta_q, quant_params->v_ac_delta_q,
quants, dequants);
// Record the state of deltaq parameters.
prev_deltaq_params->y_dc_delta_q = quant_params->y_dc_delta_q;
prev_deltaq_params->u_dc_delta_q = quant_params->u_dc_delta_q;
prev_deltaq_params->v_dc_delta_q = quant_params->v_dc_delta_q;
prev_deltaq_params->u_ac_delta_q = quant_params->u_ac_delta_q;
prev_deltaq_params->v_ac_delta_q = quant_params->v_ac_delta_q;
}
/*!\brief Update quantize parameters in MACROBLOCK
*
* \param[in] enc_quant_dequant_params This parameter cached the quantize and
* dequantize parameters for all q
* indices.
* \param[in] qindex Quantize index used for the current
* superblock.
* \param[out] x A superblock data structure for
* encoder.
*/
static void set_q_index(const EncQuantDequantParams *enc_quant_dequant_params,
int qindex, MACROBLOCK *x) {
const QUANTS *const quants = &enc_quant_dequant_params->quants;
const Dequants *const dequants = &enc_quant_dequant_params->dequants;
x->qindex = qindex;
x->seg_skip_block =
0; // TODO(angiebird): Find a proper place to init this variable.
// Y
x->plane[0].quant_QTX = quants->y_quant[qindex];
x->plane[0].quant_fp_QTX = quants->y_quant_fp[qindex];
x->plane[0].round_fp_QTX = quants->y_round_fp[qindex];
x->plane[0].quant_shift_QTX = quants->y_quant_shift[qindex];
x->plane[0].zbin_QTX = quants->y_zbin[qindex];
x->plane[0].round_QTX = quants->y_round[qindex];
x->plane[0].dequant_QTX = dequants->y_dequant_QTX[qindex];
// U
x->plane[1].quant_QTX = quants->u_quant[qindex];
x->plane[1].quant_fp_QTX = quants->u_quant_fp[qindex];
x->plane[1].round_fp_QTX = quants->u_round_fp[qindex];
x->plane[1].quant_shift_QTX = quants->u_quant_shift[qindex];
x->plane[1].zbin_QTX = quants->u_zbin[qindex];
x->plane[1].round_QTX = quants->u_round[qindex];
x->plane[1].dequant_QTX = dequants->u_dequant_QTX[qindex];
// V
x->plane[2].quant_QTX = quants->v_quant[qindex];
x->plane[2].quant_fp_QTX = quants->v_quant_fp[qindex];
x->plane[2].round_fp_QTX = quants->v_round_fp[qindex];
x->plane[2].quant_shift_QTX = quants->v_quant_shift[qindex];
x->plane[2].zbin_QTX = quants->v_zbin[qindex];
x->plane[2].round_QTX = quants->v_round[qindex];
x->plane[2].dequant_QTX = dequants->v_dequant_QTX[qindex];
}
/*!\brief Update quantize matrix in MACROBLOCKD based on segment id
*
* \param[in] quant_params Quantize parameters used by encoder and decoder
* \param[in] segment_id Segment id.
* \param[out] xd A superblock data structure used by encoder and
* decoder.
*/
static void set_qmatrix(const CommonQuantParams *quant_params, int segment_id,
MACROBLOCKD *xd) {
const int use_qmatrix = av1_use_qmatrix(quant_params, xd, segment_id);
const int qmlevel_y =
use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1;
const int qmlevel_u =
use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1;
const int qmlevel_v =
use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1;
const int qmlevel_ls[MAX_MB_PLANE] = { qmlevel_y, qmlevel_u, qmlevel_v };
for (int i = 0; i < MAX_MB_PLANE; ++i) {
const int qmlevel = qmlevel_ls[i];
memcpy(&xd->plane[i].seg_qmatrix[segment_id],
quant_params->gqmatrix[qmlevel][i],
sizeof(quant_params->gqmatrix[qmlevel][i]));
memcpy(&xd->plane[i].seg_iqmatrix[segment_id],
quant_params->giqmatrix[qmlevel][i],
sizeof(quant_params->giqmatrix[qmlevel][i]));
}
}
void av1_init_plane_quantizers(const AV1_COMP *cpi, MACROBLOCK *x,
int segment_id, const int do_update) {
const AV1_COMMON *const cm = &cpi->common;
const CommonQuantParams *const quant_params = &cm->quant_params;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
int qindex_rd;
const int current_qindex = AOMMAX(
0,
AOMMIN(QINDEX_RANGE - 1, cm->delta_q_info.delta_q_present_flag
? quant_params->base_qindex + x->delta_qindex
: quant_params->base_qindex));
const int qindex = av1_get_qindex(&cm->seg, segment_id, current_qindex);
if (cpi->oxcf.sb_qp_sweep) {
const int current_rd_qindex =
AOMMAX(0, AOMMIN(QINDEX_RANGE - 1, cm->delta_q_info.delta_q_present_flag
? quant_params->base_qindex +
x->rdmult_delta_qindex
: quant_params->base_qindex));
qindex_rd = av1_get_qindex(&cm->seg, segment_id, current_rd_qindex);
} else {
qindex_rd = qindex;
}
const int qindex_rdmult = qindex_rd + quant_params->y_dc_delta_q;
const int rdmult = av1_compute_rd_mult(
qindex_rdmult, cm->seq_params->bit_depth,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning);
const int qindex_change = x->qindex != qindex;
if (qindex_change || do_update) {
set_q_index(&cpi->enc_quant_dequant_params, qindex, x);
}
MACROBLOCKD *const xd = &x->e_mbd;
if ((segment_id != x->prev_segment_id) ||
av1_use_qmatrix(quant_params, xd, segment_id)) {
set_qmatrix(quant_params, segment_id, xd);
}
x->seg_skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
av1_set_error_per_bit(&x->errorperbit, rdmult);
av1_set_sad_per_bit(cpi, &x->sadperbit, qindex_rd);
x->prev_segment_id = segment_id;
}
void av1_frame_init_quantizer(AV1_COMP *cpi) {
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
x->prev_segment_id = -1;
av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 1);
}
static int adjust_hdr_cb_deltaq(int base_qindex) {
double baseQp = base_qindex / QP_SCALE_FACTOR;
const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET;
const double dcbQP = CHROMA_CB_QP_SCALE * chromaQp * QP_SCALE_FACTOR;
int dqpCb = (int)(dcbQP + (dcbQP < 0 ? -0.5 : 0.5));
dqpCb = AOMMIN(0, dqpCb);
dqpCb = (int)CLIP(dqpCb, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR);
return dqpCb;
}
static int adjust_hdr_cr_deltaq(int base_qindex) {
double baseQp = base_qindex / QP_SCALE_FACTOR;
const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET;
const double dcrQP = CHROMA_CR_QP_SCALE * chromaQp * QP_SCALE_FACTOR;
int dqpCr = (int)(dcrQP + (dcrQP < 0 ? -0.5 : 0.5));
dqpCr = AOMMIN(0, dqpCr);
dqpCr = (int)CLIP(dqpCr, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR);
return dqpCr;
}
void av1_set_quantizer(AV1_COMMON *const cm, int min_qmlevel, int max_qmlevel,
int q, int enable_chroma_deltaq, int enable_hdr_deltaq,
bool is_allintra, aom_tune_metric tuning) {
// quantizer has to be reinitialized with av1_init_quantizer() if any
// delta_q changes.
CommonQuantParams *quant_params = &cm->quant_params;
quant_params->base_qindex = AOMMAX(cm->delta_q_info.delta_q_present_flag, q);
quant_params->y_dc_delta_q = 0;
if (enable_chroma_deltaq) {
if (is_allintra && tuning == AOM_TUNE_SSIMULACRA2) {
int chroma_dc_delta_q = 0;
int chroma_ac_delta_q = 0;
if (cm->seq_params->subsampling_x == 1 &&
cm->seq_params->subsampling_y == 1) {
// 4:2:0 subsampling: Constant chroma delta_q decrease (i.e. improved
// chroma quality relative to luma) with gradual ramp-down for very low
// qindexes.
// Lowering chroma delta_q by 16 was found to improve SSIMULACRA 2
// BD-Rate by 1.5-2% on Daala's subset1, as well as reducing chroma
// artifacts (smudging, discoloration) during subjective quality
// evaluations.
// The ramp-down of chroma increase was determined by generating the
// convex hull of SSIMULACRA 2 scores (for all boosts from 0-16), and
// finding a linear equation that fits the convex hull.
chroma_dc_delta_q = -clamp((quant_params->base_qindex / 2) - 14, 0, 16);
chroma_ac_delta_q = chroma_dc_delta_q;
} else if (cm->seq_params->subsampling_x == 0 &&
cm->seq_params->subsampling_y == 0) {
// 4:4:4 subsampling: Constant chroma AC delta_q increase (i.e. improved
// luma quality relative to chroma) with gradual ramp-down for very low
// qindexes.
// Raising chroma AC delta_q by 24 was found to improve SSIMULACRA 2
// BD-Rate by 2.5-3% on Daala's subset1, as well as providing a more
// balanced bit allocation between the (relatively-starved) luma and
// chroma channels.
// Raising chroma DC delta_q appears to be harmful, both for SSIMULACRA
// 2 scores and subjective quality (harshens blocking artifacts).
// The ramp-down of chroma decrease was put into place so (lossy) QP 0
// encodes still score within 0.1 SSIMULACRA 2 points of the equivalent
// with no chroma delta_q (with a small efficiency improvement), while
// encodes in the SSIMULACRA 2 <=90 range yield full benefits from this
// adjustment.
chroma_dc_delta_q = 0;
chroma_ac_delta_q = clamp((quant_params->base_qindex / 2), 0, 24);
}
// values for 4:2:2 subsampling mode.
quant_params->u_dc_delta_q = chroma_dc_delta_q;
quant_params->u_ac_delta_q = chroma_ac_delta_q;
quant_params->v_dc_delta_q = chroma_dc_delta_q;
quant_params->v_ac_delta_q = chroma_ac_delta_q;
} else {
// TODO(aomedia:2717): need to design better delta
quant_params->u_dc_delta_q = 2;
quant_params->u_ac_delta_q = 2;
quant_params->v_dc_delta_q = 2;
quant_params->v_ac_delta_q = 2;
}
} else {
quant_params->u_dc_delta_q = 0;
quant_params->u_ac_delta_q = 0;
quant_params->v_dc_delta_q = 0;
quant_params->v_ac_delta_q = 0;
}
// following section 8.3.2 in T-REC-H.Sup15 document
// to apply to AV1 qindex in the range of [0, 255]
if (enable_hdr_deltaq) {
int dqpCb = adjust_hdr_cb_deltaq(quant_params->base_qindex);
int dqpCr = adjust_hdr_cr_deltaq(quant_params->base_qindex);
quant_params->u_dc_delta_q = quant_params->u_ac_delta_q = dqpCb;
quant_params->v_dc_delta_q = quant_params->v_ac_delta_q = dqpCr;
if (dqpCb != dqpCr) {
cm->seq_params->separate_uv_delta_q = 1;
}
}
// Select the best luma and chroma QM formulas based on encoding mode and
// tuning
int (*get_luma_qmlevel)(int, int, int);
int (*get_chroma_qmlevel)(int, int, int);
if (is_allintra) {
get_luma_qmlevel = aom_get_qmlevel_allintra;
} else {
get_luma_qmlevel = aom_get_qmlevel;
}
if (is_allintra) {
if (tuning == AOM_TUNE_SSIMULACRA2 && cm->seq_params->subsampling_x == 0 &&
cm->seq_params->subsampling_y == 0) {
// 4:4:4 subsampling mode has 4x the number of chroma coefficients
// compared to 4:2:0 (2x on each dimension). This means the encoder should
// use lower chroma QM levels that more closely match the scaling of an
// equivalent 4:2:0 chroma QM.
get_chroma_qmlevel = aom_get_qmlevel_444_chroma_ssimulacra2;
} else {
get_chroma_qmlevel = aom_get_qmlevel_allintra;
}
} else {
get_chroma_qmlevel = aom_get_qmlevel;
}
quant_params->qmatrix_level_y =
get_luma_qmlevel(quant_params->base_qindex, min_qmlevel, max_qmlevel);
quant_params->qmatrix_level_u =
get_chroma_qmlevel(quant_params->base_qindex + quant_params->u_ac_delta_q,
min_qmlevel, max_qmlevel);
if (cm->seq_params->separate_uv_delta_q) {
quant_params->qmatrix_level_v = get_chroma_qmlevel(
quant_params->base_qindex + quant_params->v_ac_delta_q, min_qmlevel,
max_qmlevel);
} else {
quant_params->qmatrix_level_v = quant_params->qmatrix_level_u;
}
}
// Table that converts 0-63 Q-range values passed in outside to the Qindex
// range used internally.
static const int quantizer_to_qindex[] = {
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48,
52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100,
104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152,
156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204,
208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255,
};
int av1_quantizer_to_qindex(int quantizer) {
return quantizer_to_qindex[quantizer];
}
int av1_qindex_to_quantizer(int qindex) {
int quantizer;
for (quantizer = 0; quantizer < 64; ++quantizer)
if (quantizer_to_qindex[quantizer] >= qindex) return quantizer;
return 63;
}