Source code

Revision control

Copy as Markdown

Other Tools

# SPDX-License-Identifier: MIT
"""
Tests for dunder methods from `attrib._make`.
"""
from __future__ import absolute_import, division, print_function
import copy
import pickle
import pytest
from hypothesis import given
from hypothesis.strategies import booleans
import attr
from attr._make import (
NOTHING,
Factory,
_add_repr,
_is_slot_cls,
_make_init,
_Nothing,
fields,
make_class,
)
from attr.validators import instance_of
from .utils import simple_attr, simple_class
EqC = simple_class(eq=True)
EqCSlots = simple_class(eq=True, slots=True)
OrderC = simple_class(order=True)
OrderCSlots = simple_class(order=True, slots=True)
ReprC = simple_class(repr=True)
ReprCSlots = simple_class(repr=True, slots=True)
@attr.s(eq=True)
class EqCallableC(object):
a = attr.ib(eq=str.lower, order=False)
b = attr.ib(eq=True)
@attr.s(eq=True, slots=True)
class EqCallableCSlots(object):
a = attr.ib(eq=str.lower, order=False)
b = attr.ib(eq=True)
@attr.s(order=True)
class OrderCallableC(object):
a = attr.ib(eq=True, order=str.lower)
b = attr.ib(order=True)
@attr.s(order=True, slots=True)
class OrderCallableCSlots(object):
a = attr.ib(eq=True, order=str.lower)
b = attr.ib(order=True)
# HashC is hashable by explicit definition while HashCSlots is hashable
# implicitly. The "Cached" versions are the same, except with hash code
# caching enabled
HashC = simple_class(hash=True)
HashCSlots = simple_class(hash=None, eq=True, frozen=True, slots=True)
HashCCached = simple_class(hash=True, cache_hash=True)
HashCSlotsCached = simple_class(
hash=None, eq=True, frozen=True, slots=True, cache_hash=True
)
# the cached hash code is stored slightly differently in this case
# so it needs to be tested separately
HashCFrozenNotSlotsCached = simple_class(
frozen=True, slots=False, hash=True, cache_hash=True
)
def _add_init(cls, frozen):
"""
Add a __init__ method to *cls*. If *frozen* is True, make it immutable.
This function used to be part of _make. It wasn't used anymore however
the tests for it are still useful to test the behavior of _make_init.
"""
cls.__init__ = _make_init(
cls,
cls.__attrs_attrs__,
getattr(cls, "__attrs_pre_init__", False),
getattr(cls, "__attrs_post_init__", False),
frozen,
_is_slot_cls(cls),
cache_hash=False,
base_attr_map={},
is_exc=False,
cls_on_setattr=None,
attrs_init=False,
)
return cls
class InitC(object):
__attrs_attrs__ = [simple_attr("a"), simple_attr("b")]
InitC = _add_init(InitC, False)
class TestEqOrder(object):
"""
Tests for eq and order related methods.
"""
@given(booleans())
def test_eq_ignore_attrib(self, slots):
"""
If `eq` is False for an attribute, ignore that attribute.
"""
C = make_class(
"C", {"a": attr.ib(eq=False), "b": attr.ib()}, slots=slots
)
assert C(1, 2) == C(2, 2)
@pytest.mark.parametrize("cls", [EqC, EqCSlots])
def test_equal(self, cls):
"""
Equal objects are detected as equal.
"""
assert cls(1, 2) == cls(1, 2)
assert not (cls(1, 2) != cls(1, 2))
@pytest.mark.parametrize("cls", [EqCallableC, EqCallableCSlots])
def test_equal_callable(self, cls):
"""
Equal objects are detected as equal.
"""
assert cls("Test", 1) == cls("test", 1)
assert cls("Test", 1) != cls("test", 2)
assert not (cls("Test", 1) != cls("test", 1))
assert not (cls("Test", 1) == cls("test", 2))
@pytest.mark.parametrize("cls", [EqC, EqCSlots])
def test_unequal_same_class(self, cls):
"""
Unequal objects of correct type are detected as unequal.
"""
assert cls(1, 2) != cls(2, 1)
assert not (cls(1, 2) == cls(2, 1))
@pytest.mark.parametrize("cls", [EqCallableC, EqCallableCSlots])
def test_unequal_same_class_callable(self, cls):
"""
Unequal objects of correct type are detected as unequal.
"""
assert cls("Test", 1) != cls("foo", 2)
assert not (cls("Test", 1) == cls("foo", 2))
@pytest.mark.parametrize(
"cls", [EqC, EqCSlots, EqCallableC, EqCallableCSlots]
)
def test_unequal_different_class(self, cls):
"""
Unequal objects of different type are detected even if their attributes
match.
"""
class NotEqC(object):
a = 1
b = 2
assert cls(1, 2) != NotEqC()
assert not (cls(1, 2) == NotEqC())
@pytest.mark.parametrize("cls", [OrderC, OrderCSlots])
def test_lt(self, cls):
"""
__lt__ compares objects as tuples of attribute values.
"""
for a, b in [
((1, 2), (2, 1)),
((1, 2), (1, 3)),
(("a", "b"), ("b", "a")),
]:
assert cls(*a) < cls(*b)
@pytest.mark.parametrize("cls", [OrderCallableC, OrderCallableCSlots])
def test_lt_callable(self, cls):
"""
__lt__ compares objects as tuples of attribute values.
"""
# Note: "A" < "a"
for a, b in [
(("test1", 1), ("Test1", 2)),
(("test0", 1), ("Test1", 1)),
]:
assert cls(*a) < cls(*b)
@pytest.mark.parametrize(
"cls", [OrderC, OrderCSlots, OrderCallableC, OrderCallableCSlots]
)
def test_lt_unordable(self, cls):
"""
__lt__ returns NotImplemented if classes differ.
"""
assert NotImplemented == (cls(1, 2).__lt__(42))
@pytest.mark.parametrize("cls", [OrderC, OrderCSlots])
def test_le(self, cls):
"""
__le__ compares objects as tuples of attribute values.
"""
for a, b in [
((1, 2), (2, 1)),
((1, 2), (1, 3)),
((1, 1), (1, 1)),
(("a", "b"), ("b", "a")),
(("a", "b"), ("a", "b")),
]:
assert cls(*a) <= cls(*b)
@pytest.mark.parametrize("cls", [OrderCallableC, OrderCallableCSlots])
def test_le_callable(self, cls):
"""
__le__ compares objects as tuples of attribute values.
"""
# Note: "A" < "a"
for a, b in [
(("test1", 1), ("Test1", 1)),
(("test1", 1), ("Test1", 2)),
(("test0", 1), ("Test1", 1)),
(("test0", 2), ("Test1", 1)),
]:
assert cls(*a) <= cls(*b)
@pytest.mark.parametrize(
"cls", [OrderC, OrderCSlots, OrderCallableC, OrderCallableCSlots]
)
def test_le_unordable(self, cls):
"""
__le__ returns NotImplemented if classes differ.
"""
assert NotImplemented == (cls(1, 2).__le__(42))
@pytest.mark.parametrize("cls", [OrderC, OrderCSlots])
def test_gt(self, cls):
"""
__gt__ compares objects as tuples of attribute values.
"""
for a, b in [
((2, 1), (1, 2)),
((1, 3), (1, 2)),
(("b", "a"), ("a", "b")),
]:
assert cls(*a) > cls(*b)
@pytest.mark.parametrize("cls", [OrderCallableC, OrderCallableCSlots])
def test_gt_callable(self, cls):
"""
__gt__ compares objects as tuples of attribute values.
"""
# Note: "A" < "a"
for a, b in [
(("Test1", 2), ("test1", 1)),
(("Test1", 1), ("test0", 1)),
]:
assert cls(*a) > cls(*b)
@pytest.mark.parametrize(
"cls", [OrderC, OrderCSlots, OrderCallableC, OrderCallableCSlots]
)
def test_gt_unordable(self, cls):
"""
__gt__ returns NotImplemented if classes differ.
"""
assert NotImplemented == (cls(1, 2).__gt__(42))
@pytest.mark.parametrize("cls", [OrderC, OrderCSlots])
def test_ge(self, cls):
"""
__ge__ compares objects as tuples of attribute values.
"""
for a, b in [
((2, 1), (1, 2)),
((1, 3), (1, 2)),
((1, 1), (1, 1)),
(("b", "a"), ("a", "b")),
(("a", "b"), ("a", "b")),
]:
assert cls(*a) >= cls(*b)
@pytest.mark.parametrize("cls", [OrderCallableC, OrderCallableCSlots])
def test_ge_callable(self, cls):
"""
__ge__ compares objects as tuples of attribute values.
"""
# Note: "A" < "a"
for a, b in [
(("Test1", 1), ("test1", 1)),
(("Test1", 2), ("test1", 1)),
(("Test1", 1), ("test0", 1)),
(("Test1", 1), ("test0", 2)),
]:
assert cls(*a) >= cls(*b)
@pytest.mark.parametrize(
"cls", [OrderC, OrderCSlots, OrderCallableC, OrderCallableCSlots]
)
def test_ge_unordable(self, cls):
"""
__ge__ returns NotImplemented if classes differ.
"""
assert NotImplemented == (cls(1, 2).__ge__(42))
class TestAddRepr(object):
"""
Tests for `_add_repr`.
"""
@pytest.mark.parametrize("slots", [True, False])
def test_repr(self, slots):
"""
If `repr` is False, ignore that attribute.
"""
C = make_class(
"C", {"a": attr.ib(repr=False), "b": attr.ib()}, slots=slots
)
assert "C(b=2)" == repr(C(1, 2))
@pytest.mark.parametrize("cls", [ReprC, ReprCSlots])
def test_repr_works(self, cls):
"""
repr returns a sensible value.
"""
assert "C(a=1, b=2)" == repr(cls(1, 2))
def test_custom_repr_works(self):
"""
repr returns a sensible value for attributes with a custom repr
callable.
"""
def custom_repr(value):
return "foo:" + str(value)
@attr.s
class C(object):
a = attr.ib(repr=custom_repr)
assert "C(a=foo:1)" == repr(C(1))
def test_infinite_recursion(self):
"""
In the presence of a cyclic graph, repr will emit an ellipsis and not
raise an exception.
"""
@attr.s
class Cycle(object):
value = attr.ib(default=7)
cycle = attr.ib(default=None)
cycle = Cycle()
cycle.cycle = cycle
assert "Cycle(value=7, cycle=...)" == repr(cycle)
def test_infinite_recursion_long_cycle(self):
"""
A cyclic graph can pass through other non-attrs objects, and repr will
still emit an ellipsis and not raise an exception.
"""
@attr.s
class LongCycle(object):
value = attr.ib(default=14)
cycle = attr.ib(default=None)
cycle = LongCycle()
# Ensure that the reference cycle passes through a non-attrs object.
# This demonstrates the need for a thread-local "global" ID tracker.
cycle.cycle = {"cycle": [cycle]}
assert "LongCycle(value=14, cycle={'cycle': [...]})" == repr(cycle)
def test_underscores(self):
"""
repr does not strip underscores.
"""
class C(object):
__attrs_attrs__ = [simple_attr("_x")]
C = _add_repr(C)
i = C()
i._x = 42
assert "C(_x=42)" == repr(i)
def test_repr_uninitialized_member(self):
"""
repr signals unset attributes
"""
C = make_class("C", {"a": attr.ib(init=False)})
assert "C(a=NOTHING)" == repr(C())
@given(add_str=booleans(), slots=booleans())
def test_str(self, add_str, slots):
"""
If str is True, it returns the same as repr.
This only makes sense when subclassing a class with an poor __str__
(like Exceptions).
"""
@attr.s(str=add_str, slots=slots)
class Error(Exception):
x = attr.ib()
e = Error(42)
assert (str(e) == repr(e)) is add_str
def test_str_no_repr(self):
"""
Raises a ValueError if repr=False and str=True.
"""
with pytest.raises(ValueError) as e:
simple_class(repr=False, str=True)
assert (
"__str__ can only be generated if a __repr__ exists."
) == e.value.args[0]
# these are for use in TestAddHash.test_cache_hash_serialization
# they need to be out here so they can be un-pickled
@attr.attrs(hash=True, cache_hash=False)
class HashCacheSerializationTestUncached(object):
foo_value = attr.ib()
@attr.attrs(hash=True, cache_hash=True)
class HashCacheSerializationTestCached(object):
foo_value = attr.ib()
@attr.attrs(slots=True, hash=True, cache_hash=True)
class HashCacheSerializationTestCachedSlots(object):
foo_value = attr.ib()
class IncrementingHasher(object):
def __init__(self):
self.hash_value = 100
def __hash__(self):
rv = self.hash_value
self.hash_value += 1
return rv
class TestAddHash(object):
"""
Tests for `_add_hash`.
"""
def test_enforces_type(self):
"""
The `hash` argument to both attrs and attrib must be None, True, or
False.
"""
exc_args = ("Invalid value for hash. Must be True, False, or None.",)
with pytest.raises(TypeError) as e:
make_class("C", {}, hash=1),
assert exc_args == e.value.args
with pytest.raises(TypeError) as e:
make_class("C", {"a": attr.ib(hash=1)}),
assert exc_args == e.value.args
def test_enforce_no_cache_hash_without_hash(self):
"""
Ensure exception is thrown if caching the hash code is requested
but attrs is not requested to generate `__hash__`.
"""
exc_args = (
"Invalid value for cache_hash. To use hash caching,"
" hashing must be either explicitly or implicitly "
"enabled.",
)
with pytest.raises(TypeError) as e:
make_class("C", {}, hash=False, cache_hash=True)
assert exc_args == e.value.args
# unhashable case
with pytest.raises(TypeError) as e:
make_class(
"C", {}, hash=None, eq=True, frozen=False, cache_hash=True
)
assert exc_args == e.value.args
def test_enforce_no_cached_hash_without_init(self):
"""
Ensure exception is thrown if caching the hash code is requested
but attrs is not requested to generate `__init__`.
"""
exc_args = (
"Invalid value for cache_hash. To use hash caching,"
" init must be True.",
)
with pytest.raises(TypeError) as e:
make_class("C", {}, init=False, hash=True, cache_hash=True)
assert exc_args == e.value.args
@given(booleans(), booleans())
def test_hash_attribute(self, slots, cache_hash):
"""
If `hash` is False on an attribute, ignore that attribute.
"""
C = make_class(
"C",
{"a": attr.ib(hash=False), "b": attr.ib()},
slots=slots,
hash=True,
cache_hash=cache_hash,
)
assert hash(C(1, 2)) == hash(C(2, 2))
@given(booleans())
def test_hash_attribute_mirrors_eq(self, eq):
"""
If `hash` is None, the hash generation mirrors `eq`.
"""
C = make_class("C", {"a": attr.ib(eq=eq)}, eq=True, frozen=True)
if eq:
assert C(1) != C(2)
assert hash(C(1)) != hash(C(2))
assert hash(C(1)) == hash(C(1))
else:
assert C(1) == C(2)
assert hash(C(1)) == hash(C(2))
@given(booleans())
def test_hash_mirrors_eq(self, eq):
"""
If `hash` is None, the hash generation mirrors `eq`.
"""
C = make_class("C", {"a": attr.ib()}, eq=eq, frozen=True)
i = C(1)
assert i == i
assert hash(i) == hash(i)
if eq:
assert C(1) == C(1)
assert hash(C(1)) == hash(C(1))
else:
assert C(1) != C(1)
assert hash(C(1)) != hash(C(1))
@pytest.mark.parametrize(
"cls",
[
HashC,
HashCSlots,
HashCCached,
HashCSlotsCached,
HashCFrozenNotSlotsCached,
],
)
def test_hash_works(self, cls):
"""
__hash__ returns different hashes for different values.
"""
a = cls(1, 2)
b = cls(1, 1)
assert hash(a) != hash(b)
# perform the test again to test the pre-cached path through
# __hash__ for the cached-hash versions
assert hash(a) != hash(b)
def test_hash_default(self):
"""
Classes are not hashable by default.
"""
C = make_class("C", {})
with pytest.raises(TypeError) as e:
hash(C())
assert e.value.args[0] in (
"'C' objects are unhashable", # PyPy
"unhashable type: 'C'", # CPython
)
def test_cache_hashing(self):
"""
Ensure that hash computation if cached if and only if requested
"""
class HashCounter:
"""
A class for testing which counts how many times its hash
has been requested
"""
def __init__(self):
self.times_hash_called = 0
def __hash__(self):
self.times_hash_called += 1
return 12345
Uncached = make_class(
"Uncached",
{"hash_counter": attr.ib(factory=HashCounter)},
hash=True,
cache_hash=False,
)
Cached = make_class(
"Cached",
{"hash_counter": attr.ib(factory=HashCounter)},
hash=True,
cache_hash=True,
)
uncached_instance = Uncached()
cached_instance = Cached()
hash(uncached_instance)
hash(uncached_instance)
hash(cached_instance)
hash(cached_instance)
assert 2 == uncached_instance.hash_counter.times_hash_called
assert 1 == cached_instance.hash_counter.times_hash_called
@pytest.mark.parametrize("cache_hash", [True, False])
@pytest.mark.parametrize("frozen", [True, False])
@pytest.mark.parametrize("slots", [True, False])
def test_copy_hash_cleared(self, cache_hash, frozen, slots):
"""
Test that the default hash is recalculated after a copy operation.
"""
kwargs = dict(frozen=frozen, slots=slots, cache_hash=cache_hash)
# Give it an explicit hash if we don't have an implicit one
if not frozen:
kwargs["hash"] = True
@attr.s(**kwargs)
class C(object):
x = attr.ib()
a = C(IncrementingHasher())
# Ensure that any hash cache would be calculated before copy
orig_hash = hash(a)
b = copy.deepcopy(a)
if kwargs["cache_hash"]:
# For cache_hash classes, this call is cached
assert orig_hash == hash(a)
assert orig_hash != hash(b)
@pytest.mark.parametrize(
"klass,cached",
[
(HashCacheSerializationTestUncached, False),
(HashCacheSerializationTestCached, True),
(HashCacheSerializationTestCachedSlots, True),
],
)
def test_cache_hash_serialization_hash_cleared(self, klass, cached):
"""
Tests that the hash cache is cleared on deserialization to fix
This test is intended to guard against a stale hash code surviving
across serialization (which may cause problems when the hash value
is different in different interpreters).
"""
obj = klass(IncrementingHasher())
original_hash = hash(obj)
obj_rt = self._roundtrip_pickle(obj)
if cached:
assert original_hash == hash(obj)
assert original_hash != hash(obj_rt)
@pytest.mark.parametrize("frozen", [True, False])
def test_copy_two_arg_reduce(self, frozen):
"""
If __getstate__ returns None, the tuple returned by object.__reduce__
won't contain the state dictionary; this test ensures that the custom
__reduce__ generated when cache_hash=True works in that case.
"""
@attr.s(frozen=frozen, cache_hash=True, hash=True)
class C(object):
x = attr.ib()
def __getstate__(self):
return None
# By the nature of this test it doesn't really create an object that's
# in a valid state - it basically does the equivalent of
# `object.__new__(C)`, so it doesn't make much sense to assert anything
# about the result of the copy. This test will just check that it
# doesn't raise an *error*.
copy.deepcopy(C(1))
def _roundtrip_pickle(self, obj):
pickle_str = pickle.dumps(obj)
return pickle.loads(pickle_str)
class TestAddInit(object):
"""
Tests for `_add_init`.
"""
@given(booleans(), booleans())
def test_init(self, slots, frozen):
"""
If `init` is False, ignore that attribute.
"""
C = make_class(
"C",
{"a": attr.ib(init=False), "b": attr.ib()},
slots=slots,
frozen=frozen,
)
with pytest.raises(TypeError) as e:
C(a=1, b=2)
assert e.value.args[0].endswith(
"__init__() got an unexpected keyword argument 'a'"
)
@given(booleans(), booleans())
def test_no_init_default(self, slots, frozen):
"""
If `init` is False but a Factory is specified, don't allow passing that
argument but initialize it anyway.
"""
C = make_class(
"C",
{
"_a": attr.ib(init=False, default=42),
"_b": attr.ib(init=False, default=Factory(list)),
"c": attr.ib(),
},
slots=slots,
frozen=frozen,
)
with pytest.raises(TypeError):
C(a=1, c=2)
with pytest.raises(TypeError):
C(b=1, c=2)
i = C(23)
assert (42, [], 23) == (i._a, i._b, i.c)
@given(booleans(), booleans())
def test_no_init_order(self, slots, frozen):
"""
If an attribute is `init=False`, it's legal to come after a mandatory
attribute.
"""
make_class(
"C",
{"a": attr.ib(default=Factory(list)), "b": attr.ib(init=False)},
slots=slots,
frozen=frozen,
)
def test_sets_attributes(self):
"""
The attributes are initialized using the passed keywords.
"""
obj = InitC(a=1, b=2)
assert 1 == obj.a
assert 2 == obj.b
def test_default(self):
"""
If a default value is present, it's used as fallback.
"""
class C(object):
__attrs_attrs__ = [
simple_attr(name="a", default=2),
simple_attr(name="b", default="hallo"),
simple_attr(name="c", default=None),
]
C = _add_init(C, False)
i = C()
assert 2 == i.a
assert "hallo" == i.b
assert None is i.c
def test_factory(self):
"""
If a default factory is present, it's used as fallback.
"""
class D(object):
pass
class C(object):
__attrs_attrs__ = [
simple_attr(name="a", default=Factory(list)),
simple_attr(name="b", default=Factory(D)),
]
C = _add_init(C, False)
i = C()
assert [] == i.a
assert isinstance(i.b, D)
def test_validator(self):
"""
If a validator is passed, call it with the preliminary instance, the
Attribute, and the argument.
"""
class VException(Exception):
pass
def raiser(*args):
raise VException(*args)
C = make_class("C", {"a": attr.ib("a", validator=raiser)})
with pytest.raises(VException) as e:
C(42)
assert (fields(C).a, 42) == e.value.args[1:]
assert isinstance(e.value.args[0], C)
def test_validator_slots(self):
"""
If a validator is passed, call it with the preliminary instance, the
Attribute, and the argument.
"""
class VException(Exception):
pass
def raiser(*args):
raise VException(*args)
C = make_class("C", {"a": attr.ib("a", validator=raiser)}, slots=True)
with pytest.raises(VException) as e:
C(42)
assert (fields(C)[0], 42) == e.value.args[1:]
assert isinstance(e.value.args[0], C)
@given(booleans())
def test_validator_others(self, slots):
"""
Does not interfere when setting non-attrs attributes.
"""
C = make_class(
"C", {"a": attr.ib("a", validator=instance_of(int))}, slots=slots
)
i = C(1)
assert 1 == i.a
if not slots:
i.b = "foo"
assert "foo" == i.b
else:
with pytest.raises(AttributeError):
i.b = "foo"
def test_underscores(self):
"""
The argument names in `__init__` are without leading and trailing
underscores.
"""
class C(object):
__attrs_attrs__ = [simple_attr("_private")]
C = _add_init(C, False)
i = C(private=42)
assert 42 == i._private
class TestNothing(object):
"""
Tests for `_Nothing`.
"""
def test_copy(self):
"""
__copy__ returns the same object.
"""
n = _Nothing()
assert n is copy.copy(n)
def test_deepcopy(self):
"""
__deepcopy__ returns the same object.
"""
n = _Nothing()
assert n is copy.deepcopy(n)
def test_eq(self):
"""
All instances are equal.
"""
assert _Nothing() == _Nothing() == NOTHING
assert not (_Nothing() != _Nothing())
assert 1 != _Nothing()
def test_false(self):
"""
NOTHING evaluates as falsey.
"""
assert not NOTHING
assert False is bool(NOTHING)
@attr.s(hash=True, order=True)
class C(object):
pass
# Store this class so that we recreate it.
OriginalC = C
@attr.s(hash=True, order=True)
class C(object):
pass
CopyC = C
@attr.s(hash=True, order=True)
class C(object):
"""A different class, to generate different methods."""
a = attr.ib()
class TestFilenames(object):
def test_filenames(self):
"""
The created dunder methods have a "consistent" filename.
"""
assert (
OriginalC.__init__.__code__.co_filename
== "<attrs generated init tests.test_dunders.C>"
)
assert (
OriginalC.__eq__.__code__.co_filename
== "<attrs generated eq tests.test_dunders.C>"
)
assert (
OriginalC.__hash__.__code__.co_filename
== "<attrs generated hash tests.test_dunders.C>"
)
assert (
CopyC.__init__.__code__.co_filename
== "<attrs generated init tests.test_dunders.C>"
)
assert (
CopyC.__eq__.__code__.co_filename
== "<attrs generated eq tests.test_dunders.C>"
)
assert (
CopyC.__hash__.__code__.co_filename
== "<attrs generated hash tests.test_dunders.C>"
)
assert (
C.__init__.__code__.co_filename
== "<attrs generated init tests.test_dunders.C-1>"
)
assert (
C.__eq__.__code__.co_filename
== "<attrs generated eq tests.test_dunders.C-1>"
)
assert (
C.__hash__.__code__.co_filename
== "<attrs generated hash tests.test_dunders.C-1>"
)