Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Stuff specific to S/MIME policy and interoperability.
*/
#include "secmime.h"
#include "secoid.h"
#include "pk11func.h"
#include "ciferfam.h" /* for CIPHER_FAMILY symbols */
#include "secasn1.h"
#include "secitem.h"
#include "sechash.h"
#include "cert.h"
#include "keyhi.h"
#include "secerr.h"
#include "cms.h"
#include "nss.h"
#include "prerror.h"
#include "prinit.h"
SEC_ASN1_MKSUB(CERT_IssuerAndSNTemplate)
SEC_ASN1_MKSUB(SEC_OctetStringTemplate)
SEC_ASN1_CHOOSER_DECLARE(CERT_IssuerAndSNTemplate)
/*
* XXX Would like the "parameters" field to be a SECItem *, but the
* encoder is having trouble with optional pointers to an ANY. Maybe
* once that is fixed, can change this back...
*/
typedef struct {
SECItem capabilityID;
SECItem parameters;
long cipher; /* optimization */
} NSSSMIMECapability;
static const SEC_ASN1Template NSSSMIMECapabilityTemplate[] = {
{ SEC_ASN1_SEQUENCE,
0, NULL, sizeof(NSSSMIMECapability) },
{ SEC_ASN1_OBJECT_ID,
offsetof(NSSSMIMECapability, capabilityID) },
{ SEC_ASN1_OPTIONAL | SEC_ASN1_ANY,
offsetof(NSSSMIMECapability, parameters) },
{ 0 }
};
static const SEC_ASN1Template NSSSMIMECapabilitiesTemplate[] = {
{ SEC_ASN1_SEQUENCE_OF, 0, NSSSMIMECapabilityTemplate }
};
/*
* NSSSMIMEEncryptionKeyPreference - if we find one of these, it needs to prompt us
* to store this and only this certificate permanently for the sender email address.
*/
typedef enum {
NSSSMIMEEncryptionKeyPref_IssuerSN,
NSSSMIMEEncryptionKeyPref_RKeyID,
NSSSMIMEEncryptionKeyPref_SubjectKeyID
} NSSSMIMEEncryptionKeyPrefSelector;
typedef struct {
NSSSMIMEEncryptionKeyPrefSelector selector;
union {
CERTIssuerAndSN *issuerAndSN;
NSSCMSRecipientKeyIdentifier *recipientKeyID;
SECItem *subjectKeyID;
} id;
} NSSSMIMEEncryptionKeyPreference;
extern const SEC_ASN1Template NSSCMSRecipientKeyIdentifierTemplate[];
static const SEC_ASN1Template smime_encryptionkeypref_template[] = {
{ SEC_ASN1_CHOICE,
offsetof(NSSSMIMEEncryptionKeyPreference, selector), NULL,
sizeof(NSSSMIMEEncryptionKeyPreference) },
{ SEC_ASN1_POINTER | SEC_ASN1_CONTEXT_SPECIFIC | SEC_ASN1_XTRN | 0 | SEC_ASN1_CONSTRUCTED,
offsetof(NSSSMIMEEncryptionKeyPreference, id.issuerAndSN),
SEC_ASN1_SUB(CERT_IssuerAndSNTemplate),
NSSSMIMEEncryptionKeyPref_IssuerSN },
{ SEC_ASN1_POINTER | SEC_ASN1_CONTEXT_SPECIFIC | 1 | SEC_ASN1_CONSTRUCTED,
offsetof(NSSSMIMEEncryptionKeyPreference, id.recipientKeyID),
NSSCMSRecipientKeyIdentifierTemplate,
NSSSMIMEEncryptionKeyPref_RKeyID },
{ SEC_ASN1_POINTER | SEC_ASN1_CONTEXT_SPECIFIC | SEC_ASN1_XTRN | 2 | SEC_ASN1_CONSTRUCTED,
offsetof(NSSSMIMEEncryptionKeyPreference, id.subjectKeyID),
SEC_ASN1_SUB(SEC_OctetStringTemplate),
NSSSMIMEEncryptionKeyPref_SubjectKeyID },
{ 0 }
};
/* table of implemented key exchange algorithms. As we add algorithms,
* update this table */
static const SECOidTag implemented_key_encipherment[] = {
SEC_OID_PKCS1_RSA_ENCRYPTION,
SEC_OID_DHSINGLEPASS_STDDH_SHA1KDF_SCHEME,
SEC_OID_DHSINGLEPASS_STDDH_SHA224KDF_SCHEME,
SEC_OID_DHSINGLEPASS_STDDH_SHA256KDF_SCHEME,
SEC_OID_DHSINGLEPASS_STDDH_SHA384KDF_SCHEME,
SEC_OID_DHSINGLEPASS_STDDH_SHA512KDF_SCHEME,
SEC_OID_DHSINGLEPASS_COFACTORDH_SHA1KDF_SCHEME,
SEC_OID_DHSINGLEPASS_COFACTORDH_SHA224KDF_SCHEME,
SEC_OID_DHSINGLEPASS_COFACTORDH_SHA256KDF_SCHEME,
SEC_OID_DHSINGLEPASS_COFACTORDH_SHA384KDF_SCHEME,
SEC_OID_DHSINGLEPASS_COFACTORDH_SHA512KDF_SCHEME,
};
static const int implemented_key_encipherment_len =
PR_ARRAY_SIZE(implemented_key_encipherment);
/* smime_cipher_map - map of SMIME symmetric "ciphers" to algtag & parameters */
typedef struct {
unsigned long cipher;
SECOidTag policytag;
} smime_legacy_map_entry;
/* legacy array of S/MIME values to map old SMIME entries to modern
* algtags. */
static const smime_legacy_map_entry smime_legacy_map[] = {
/* cipher, algtag, policy */
/* --------------------------------------- */
{ SMIME_RC2_CBC_40, SEC_OID_RC2_40_CBC },
{ SMIME_DES_CBC_56, SEC_OID_DES_CBC },
{ SMIME_RC2_CBC_64, SEC_OID_RC2_64_CBC },
{ SMIME_RC2_CBC_128, SEC_OID_RC2_128_CBC },
{ SMIME_DES_EDE3_168, SEC_OID_DES_EDE3_CBC },
{ SMIME_AES_CBC_128, SEC_OID_AES_128_CBC },
{ SMIME_AES_CBC_256, SEC_OID_AES_256_CBC },
};
static const int smime_legacy_map_count = PR_ARRAY_SIZE(smime_legacy_map);
static int
smime_legacy_pref(SECOidTag algtag)
{
int i;
for (i = 0; i < smime_legacy_map_count; i++) {
if (smime_legacy_map[i].policytag == algtag)
return i;
}
return -1;
}
/*
* smime_legacy_to policy - find policy algtag from a legacy input
*/
static SECOidTag
smime_legacy_to_policy(unsigned long which)
{
int i;
for (i = 0; i < smime_legacy_map_count; i++) {
if (smime_legacy_map[i].cipher == which)
return smime_legacy_map[i].policytag;
}
return SEC_OID_UNKNOWN;
}
/* map the old legacy values to modern oids. If the value isn't a recognized
* legacy value, assume it's a SECOidTag and continue. This allows us to use
* the old query and set interfaces with modern oids. */
SECOidTag
smime_legacy_to_oid(unsigned long which)
{
unsigned long mask;
/* NOTE: all the legacy values and a CIPHER_FAMILYID of 0x00010000,
* (CIPHER_FAMILYID_MASK is 0xffff0000). SECOidTags start at 0 and
* increase monotonically, so as long as there is less than 16K of
* tags, we can distinguish between values intended to be SMIME ciphers
* and values intended to be SECOidTags */
mask = which & CIPHER_FAMILYID_MASK;
if (mask == CIPHER_FAMILYID_SMIME) {
return smime_legacy_to_policy(which);
}
return (SECOidTag)which;
}
/* SEC_OID_RC2_CBC is actually 3 ciphers with different key lengths. All modern
* symmetric ciphers include the key length with the oid. To handle policy for
* the different keylengths, we include fake oids that let us map the policy based
* on key length */
static SECOidTag
smime_get_policy_tag_from_key_length(SECOidTag algtag, unsigned long keybits)
{
if (algtag == SEC_OID_RC2_CBC) {
switch (keybits) {
case 40:
return SEC_OID_RC2_40_CBC;
case 64:
return SEC_OID_RC2_64_CBC;
case 128:
return SEC_OID_RC2_128_CBC;
default:
break;
}
return SEC_OID_UNKNOWN;
}
return algtag;
}
PRBool
smime_allowed_by_policy(SECOidTag algtag, PRUint32 neededPolicy)
{
PRUint32 policyFlags;
/* some S/MIME algs map to the same underlying KEA mechanism,
* collaps them here */
if ((neededPolicy & (NSS_USE_ALG_IN_SMIME_KX | NSS_USE_ALG_IN_SMIME_KX_LEGACY)) != 0) {
CK_MECHANISM_TYPE mechType = PK11_AlgtagToMechanism(algtag);
switch (mechType) {
case CKM_ECDH1_DERIVE:
case CKM_ECDH1_COFACTOR_DERIVE:
algtag = SEC_OID_ECDH_KEA;
break;
}
}
if ((NSS_GetAlgorithmPolicy(algtag, &policyFlags) == SECFailure) ||
((policyFlags & neededPolicy) != neededPolicy)) {
PORT_SetError(SEC_ERROR_BAD_EXPORT_ALGORITHM);
return PR_FALSE;
}
return PR_TRUE;
}
/*
* We'll need this for the fake policy oids for RC2, but the
* rest of these should be moved to pk11wrap for generic
* algtag to key size values. We already need this for
* sec_pkcs5v2_key_length_by oid.
*/
static int
smime_keysize_by_cipher(SECOidTag algtag)
{
int keysize;
switch (algtag) {
case SEC_OID_RC2_40_CBC:
keysize = 40;
break;
case SEC_OID_RC2_64_CBC:
keysize = 64;
break;
case SEC_OID_RC2_128_CBC:
case SEC_OID_AES_128_CBC:
case SEC_OID_CAMELLIA_128_CBC:
keysize = 128;
break;
case SEC_OID_AES_192_CBC:
case SEC_OID_CAMELLIA_192_CBC:
keysize = 192;
break;
case SEC_OID_AES_256_CBC:
case SEC_OID_CAMELLIA_256_CBC:
keysize = 256;
break;
default:
keysize = 0;
break;
}
return keysize;
}
static int
smime_max_keysize_by_cipher(SECOidTag algtag)
{
int keysize = smime_keysize_by_cipher(algtag);
if (keysize == 0) {
CK_MECHANISM_TYPE mech = PK11_AlgtagToMechanism(algtag);
return PK11_GetMaxKeyLength(mech) * PR_BITS_PER_BYTE;
}
return keysize;
}
SECOidTag
smime_get_alg_from_policy(SECOidTag policy)
{
switch (policy) {
case SEC_OID_RC2_40_CBC:
case SEC_OID_RC2_64_CBC:
case SEC_OID_RC2_128_CBC:
return SEC_OID_RC2_CBC;
default:
break;
}
return policy;
}
typedef struct SMIMEListStr {
SECOidTag *tags;
size_t space_len;
size_t array_len;
} SMIMEList;
static SMIMEList *smime_algorithm_list = NULL;
static PZLock *algorithm_list_lock = NULL;
static PRCallOnceType smime_init_arg = { 0 };
/* return the number of algorithms in the list */
size_t
smime_list_length(const SMIMEList *list)
{
if ((list == NULL) || (list->tags == NULL)) {
return 0;
}
return list->array_len;
}
/* find the index of the algtag in the list. If the algtag isn't on the list,
* return the size of the list */
size_t
smime_list_index_find(const SMIMEList *list, SECOidTag algtag)
{
int i;
if ((list == NULL) || (list->tags == NULL)) {
return 0;
}
for (i = 0; i < list->array_len; i++) {
if (algtag == list->tags[i]) {
return i;
}
}
return list->array_len;
}
#define SMIME_CHUNK_COUNT 10
/* initialize and grow the list if necessary */
static SECStatus
smime_list_grow(SMIMEList **list)
{
/* first make sure the inital list is created */
if (*list == NULL) {
*list = PORT_ZNew(SMIMEList);
if (*list == NULL) {
return SECFailure;
}
}
/* make sure the tag array is intialized */
if ((*list)->tags == NULL) {
(*list)->tags = PORT_ZNewArray(SECOidTag, SMIME_CHUNK_COUNT);
if ((*list)->tags == NULL) {
return SECFailure;
}
(*list)->space_len = SMIME_CHUNK_COUNT;
}
/* grow the tag array if necessary */
if ((*list)->array_len == (*list)->space_len) {
SECOidTag *new_space;
size_t new_len = (*list)->space_len + SMIME_CHUNK_COUNT;
new_space = (SECOidTag *)PORT_Realloc((*list)->tags,
new_len * sizeof(SECOidTag));
if (new_space) {
return SECFailure;
}
(*list)->tags = new_space;
(*list)->space_len = new_len;
}
return SECSuccess;
}
/* add a new algtag to the list. if the algtag is already on the list,
* do nothing */
static SECStatus
smime_list_add(SMIMEList **list, SECOidTag algtag)
{
SECStatus rv;
size_t array_len = smime_list_length(*list);
size_t c_index = smime_list_index_find(*list, algtag);
if (array_len != c_index) {
/* already on the list */
return SECSuccess;
}
/* go the list if necessary */
rv = smime_list_grow(list);
if (rv != SECSuccess) {
return rv;
}
(*list)->tags[(*list)->array_len++] = algtag;
return SECSuccess;
}
static SECStatus
smime_list_remove(SMIMEList *list, SECOidTag algtag)
{
size_t c_index, i;
size_t cipher_count = smime_list_length(list);
if (cipher_count == 0) {
return SECSuccess;
}
c_index = smime_list_index_find(list, algtag);
if (c_index == cipher_count) {
/* already removed from the list */
return SECSuccess;
}
for (i = c_index; i < cipher_count - 1; i++) {
list->tags[i] = list->tags[i + 1];
}
list->array_len--;
list->tags[i] = 0;
return SECSuccess;
}
static SECOidTag
smime_list_fetch_by_index(const SMIMEList *list, size_t c_index)
{
size_t cipher_count = smime_list_length(list);
if (c_index >= cipher_count) {
return SEC_OID_UNKNOWN;
}
/* we know this is safe because list cipher_count is non-zero (if it were
* any value of c_index will cause the above if to trigger */
return list->tags[c_index];
}
static void
smime_free_list(SMIMEList **list)
{
if (*list) {
if ((*list)->tags) {
PORT_Free((*list)->tags);
}
PORT_Free(*list);
}
*list = NULL;
}
static void
smime_lock_algorithm_list(void)
{
PORT_Assert(algorithm_list_lock);
if (algorithm_list_lock) {
PZ_Lock(algorithm_list_lock);
}
return;
}
static void
smime_unlock_algorithm_list(void)
{
PORT_Assert(algorithm_list_lock);
if (algorithm_list_lock) {
PZ_Unlock(algorithm_list_lock);
}
return;
}
static SECStatus
smime_shutdown(void *appData, void *nssData)
{
if (algorithm_list_lock) {
PZ_DestroyLock(algorithm_list_lock);
algorithm_list_lock = NULL;
}
smime_free_list(&smime_algorithm_list);
memset(&smime_init_arg, 0, sizeof(smime_init_arg));
return SECSuccess;
}
static PRStatus
smime_init_once(void *arg)
{
SECOidTag *tags = NULL;
SECStatus rv;
int tagCount;
int i;
int *error = (int *)arg;
int *lengths = NULL;
int *legacy_prefs = NULL;
rv = NSS_RegisterShutdown(smime_shutdown, NULL);
if (rv != SECSuccess) {
*error = PORT_GetError();
return PR_FAILURE;
}
algorithm_list_lock = PZ_NewLock(nssILockCache);
if (algorithm_list_lock == NULL) {
*error = PORT_GetError();
return PR_FAILURE;
}
/* At initialization time, we need to set up the defaults. We first
* look to see if the system or application has set up certain algorithms
* by policy. If they have set up values by policy we'll only allow those
* algorithms. We'll then look to see if any algorithms are enabled by
* the application. */
rv = NSS_GetAlgorithmPolicyAll(NSS_USE_ALG_IN_SMIME_LEGACY,
NSS_USE_ALG_IN_SMIME_LEGACY,
&tags, &tagCount);
if (tags) {
PORT_Free(tags);
tags = NULL;
}
if ((rv != SECSuccess) || (tagCount == 0)) {
/* No algorithms have been enabled by policy (either by the system
* or by the application, we then will use the traditional default
* algorithms from the policy map */
for (i = smime_legacy_map_count - 1; i >= 0; i--) {
SECOidTag policytag = smime_legacy_map[i].policytag;
/* this enables the algorithm by policy. We need this or
* the policy code will reject attempts to use it */
NSS_SetAlgorithmPolicy(policytag, NSS_USE_ALG_IN_SMIME, 0);
/* We also need to enable the algorithm. This is usually unde
* application control once the defaults are set up, so the
* application can turn off a policy that is already on, but
* not turn on a policy that is already off */
smime_list_add(&smime_algorithm_list, policytag);
}
return PR_SUCCESS;
}
/* We have a system supplied policy, do we also have
* system supplied defaults? If we do we will only actually
* turn on the algorithms that have been specified. */
rv = NSS_GetAlgorithmPolicyAll(NSS_USE_DEFAULT_NOT_VALID |
NSS_USE_DEFAULT_SMIME_ENABLE,
NSS_USE_DEFAULT_SMIME_ENABLE,
&tags, &tagCount);
/* if none found, enable the default algorithms */
if ((rv != SECSuccess) || (tagCount == 0)) {
if (tags) {
PORT_Free(tags);
tags = NULL;
}
for (i = smime_legacy_map_count - 1; i >= 0; i--) {
SECOidTag policytag = smime_legacy_map[i].policytag;
/* we only enable the default algorithm, we don't change
* it's policy, which the system has already set. NOTE:
* what 'enable' means in the S/MIME sense is we advertise
* that we can do the given algorithm in our smime capabilities. */
smime_list_add(&smime_algorithm_list, policytag);
}
return PR_SUCCESS;
}
/* Sort tags by key strength here */
lengths = PORT_ZNewArray(int, tagCount);
if (lengths == NULL) {
*error = PORT_GetError();
goto loser;
}
legacy_prefs = PORT_ZNewArray(int, tagCount);
if (lengths == NULL) {
*error = PORT_GetError();
goto loser;
}
/* Sort the tags array, highest preference at index 0 */
for (i = 0; i < tagCount; i++) {
int len = smime_max_keysize_by_cipher(tags[i]);
int lpref = smime_legacy_pref(tags[i]);
SECOidTag current = tags[i];
PRBool shift = PR_FALSE;
int j;
/* Determine best position for tags[i].
* For each position j, check if tags [i] has a higher preference.
* If yes, store tags[i] at position j, and move all following
* entries one position to the back of the array.
*/
for (j = 0; j < i; j++) {
int tlen = lengths[j];
int tpref = legacy_prefs[j];
SECOidTag ttag = tags[j];
/* we prefer ciphers with bigger keysizes, then
* we prefer ciphers in our historical list,
* then we prefer ciphers that show up first
* from the oid table */
if (shift || (len > tlen) || ((len == tlen) && (lpref > tpref))) {
tags[j] = current;
lengths[j] = len;
legacy_prefs[j] = lpref;
current = ttag;
len = tlen;
lpref = tpref;
shift = PR_TRUE;
}
}
tags[i] = current;
lengths[i] = len;
legacy_prefs[i] = lpref;
}
/* put them in the enable list */
for (i = 0; i < tagCount; i++) {
smime_list_add(&smime_algorithm_list, tags[i]);
}
PORT_Free(lengths);
PORT_Free(legacy_prefs);
PORT_Free(tags);
return PR_SUCCESS;
loser:
if (lengths)
PORT_Free(lengths);
if (legacy_prefs)
PORT_Free(legacy_prefs);
if (tags)
PORT_Free(tags);
return PR_FAILURE;
}
static SECStatus
smime_init(void)
{
static PRBool smime_policy_initted = PR_FALSE;
static int error = 0;
PRStatus nrv;
/* has NSS been initialized? */
if (!NSS_IsInitialized()) {
PORT_SetError(SEC_ERROR_NOT_INITIALIZED);
return SECFailure;
}
if (smime_policy_initted) {
return SECSuccess;
}
nrv = PR_CallOnceWithArg(&smime_init_arg, smime_init_once, &error);
if (nrv == PR_SUCCESS) {
smime_policy_initted = PR_TRUE;
return SECSuccess;
}
PORT_SetError(error);
return SECFailure;
}
/*
* NSS_SMIME_EnableCipher - this function locally records the user's preference
*/
SECStatus
NSS_SMIMEUtil_EnableCipher(unsigned long which, PRBool on)
{
SECOidTag algtag;
SECStatus rv = smime_init();
if (rv != SECSuccess) {
return SECFailure;
}
algtag = smime_legacy_to_oid(which);
if (!smime_allowed_by_policy(algtag, NSS_USE_ALG_IN_SMIME)) {
PORT_SetError(SEC_ERROR_BAD_EXPORT_ALGORITHM);
return SECFailure;
}
smime_lock_algorithm_list();
if (on) {
rv = smime_list_add(&smime_algorithm_list, algtag);
} else {
rv = smime_list_remove(smime_algorithm_list, algtag);
}
smime_unlock_algorithm_list();
return rv;
}
/*
* this function locally records the export policy
*/
SECStatus
NSS_SMIMEUtil_AllowCipher(unsigned long which, PRBool on)
{
SECOidTag algtag = smime_legacy_to_oid(which);
PRUint32 set = on ? NSS_USE_ALG_IN_SMIME : 0;
PRUint32 clear = on ? 0 : NSS_USE_ALG_IN_SMIME;
/* make sure we are inited before setting, so
* the defaults are correct */
SECStatus rv = smime_init();
if (rv != SECSuccess) {
return SECFailure;
}
return NSS_SetAlgorithmPolicy(algtag, set, clear);
}
PRBool
NSS_SMIMEUtil_DecryptionAllowed(SECAlgorithmID *algid, PK11SymKey *key)
{
SECOidTag algtag;
/* make sure we are inited before checking policy, so
* the defaults are correct */
SECStatus rv = smime_init();
if (rv != SECSuccess) {
return SECFailure;
}
algtag = smime_get_policy_tag_from_key_length(SECOID_GetAlgorithmTag(algid),
PK11_GetKeyStrength(key, algid));
return smime_allowed_by_policy(algtag, NSS_USE_ALG_IN_SMIME_LEGACY);
}
PRBool
NSS_SMIMEUtil_EncryptionAllowed(SECAlgorithmID *algid, PK11SymKey *key)
{
SECOidTag algtag;
/* make sure we are inited before checking policy, so
* the defaults are correct */
SECStatus rv = smime_init();
if (rv != SECSuccess) {
return SECFailure;
}
algtag = smime_get_policy_tag_from_key_length(SECOID_GetAlgorithmTag(algid),
PK11_GetKeyStrength(key, algid));
return smime_allowed_by_policy(algtag, NSS_USE_ALG_IN_SMIME);
}
PRBool
NSS_SMIMEUtil_SigningAllowed(SECAlgorithmID *algid)
{
SECOidTag algtag;
/* we don't adjust SIGNATURE policy based on defaults, so no need
* to call smime_init() */
algtag = SECOID_GetAlgorithmTag(algid);
return smime_allowed_by_policy(algtag, NSS_USE_ALG_IN_SMIME_SIGNATURE);
}
static PRBool
nss_smime_enforce_key_size(void)
{
PRInt32 optFlags;
if (NSS_OptionGet(NSS_KEY_SIZE_POLICY_FLAGS, &optFlags) != SECFailure) {
if (optFlags & NSS_KEY_SIZE_POLICY_SMIME_FLAG) {
return PR_TRUE;
}
}
return PR_FALSE;
}
PRBool
NSS_SMIMEUtil_KeyEncodingAllowed(SECAlgorithmID *algid, CERTCertificate *cert,
SECKEYPublicKey *key)
{
SECOidTag algtag;
/* we don't adjust KEA policy based on defaults, so no need
* to call smime_init() */
/* if required, make sure the key lengths are enforced */
if (nss_smime_enforce_key_size()) {
SECStatus rv;
PRBool freeKey = PR_FALSE;
if (!key) {
/* either the public key or the cert must be supplied. If the
* key wasn't supplied, get it from the certificate */
if (!cert) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return PR_FALSE;
}
key = CERT_ExtractPublicKey(cert);
freeKey = PR_TRUE;
}
rv = SECKEY_EnforceKeySize(key->keyType,
SECKEY_PublicKeyStrengthInBits(key),
SEC_ERROR_BAD_EXPORT_ALGORITHM);
if (freeKey) {
SECKEY_DestroyPublicKey(key);
}
if (rv != SECSuccess) {
return PR_FALSE;
}
}
algtag = SECOID_GetAlgorithmTag(algid);
return smime_allowed_by_policy(algtag, NSS_USE_ALG_IN_SMIME_KX);
}
PRBool
NSS_SMIMEUtil_KeyDecodingAllowed(SECAlgorithmID *algid, SECKEYPrivateKey *key)
{
SECOidTag algtag;
/* we don't adjust KEA policy based on defaults, so no need
* to call smime_init() */
/* if required, make sure the key lengths are enforced */
if (nss_smime_enforce_key_size()) {
SECStatus rv;
rv = SECKEY_EnforceKeySize(key->keyType,
SECKEY_PrivateKeyStrengthInBits(key),
SEC_ERROR_BAD_EXPORT_ALGORITHM);
if (rv != SECSuccess) {
return PR_FALSE;
}
}
algtag = SECOID_GetAlgorithmTag(algid);
return smime_allowed_by_policy(algtag, NSS_USE_ALG_IN_SMIME_KX_LEGACY);
}
/*
* NSS_SMIME_EncryptionPossible - check if any encryption is allowed
*
* This tells whether or not *any* S/MIME encryption can be done,
* according to policy. Callers may use this to do nicer user interface
* (say, greying out a checkbox so a user does not even try to encrypt
* a message when they are not allowed to) or for any reason they want
* to check whether S/MIME encryption (or decryption, for that matter)
* may be done.
*
* It takes no arguments. The return value is a simple boolean:
* PR_TRUE means encryption (or decryption) is *possible*
* (but may still fail due to other reasons, like because we cannot
* find all the necessary certs, etc.; PR_TRUE is *not* a guarantee)
* PR_FALSE means encryption (or decryption) is not permitted
*
* There are no errors from this routine.
*/
PRBool
NSS_SMIMEUtil_EncryptionPossible(void)
{
SECStatus rv = smime_init();
size_t len;
if (rv != SECSuccess) {
return SECFailure;
}
smime_lock_algorithm_list();
len = smime_list_length(smime_algorithm_list);
smime_unlock_algorithm_list();
return len != 0 ? PR_TRUE : PR_FALSE;
}
PRBool
NSS_SMIMEUtil_EncryptionEnabled(int which)
{
SECOidTag algtag;
size_t c_index, len;
SECStatus rv = smime_init();
if (rv != SECSuccess) {
return SECFailure;
}
algtag = smime_legacy_to_oid(which);
smime_lock_algorithm_list();
len = smime_list_length(smime_algorithm_list);
c_index = smime_list_index_find(smime_algorithm_list, algtag);
smime_unlock_algorithm_list();
if (len >= c_index) {
return PR_FALSE;
}
return smime_allowed_by_policy(algtag, NSS_USE_ALG_IN_SMIME);
}
static SECOidTag
nss_SMIME_FindCipherForSMIMECap(NSSSMIMECapability *cap)
{
SECOidTag capIDTag;
/* we need the OIDTag here */
capIDTag = SECOID_FindOIDTag(&(cap->capabilityID));
/* RC2 used a generic oid and encoded the key length in the
* parameters */
if (capIDTag == SEC_OID_RC2_CBC) {
SECStatus rv;
unsigned long key_bits;
SECItem keyItem = { siBuffer, NULL, 0 };
rv = SEC_ASN1DecodeItem(NULL, &keyItem,
SEC_ASN1_GET(SEC_IntegerTemplate), &cap->parameters);
if (rv != SECSuccess) {
return SEC_OID_UNKNOWN;
}
rv = SEC_ASN1DecodeInteger(&keyItem, &key_bits);
SECITEM_FreeItem(&keyItem, PR_FALSE);
if (rv != SECSuccess) {
return SEC_OID_UNKNOWN;
}
return smime_get_policy_tag_from_key_length(capIDTag, key_bits);
}
/* everything else uses a null parameter */
if (!cap->parameters.data || !cap->parameters.len) {
return capIDTag;
}
if (cap->parameters.len == 2 &&
cap->parameters.data[0] == SEC_ASN1_NULL &&
cap->parameters.data[1] == 0) {
return capIDTag;
}
return SEC_OID_UNKNOWN;
}
/*
* smime_choose_cipher - choose a cipher that works for all the recipients
*
* "rcerts" - recipient's certificates
*/
static SECOidTag
smime_choose_cipher(CERTCertificate **rcerts)
{
PLArenaPool *poolp = NULL;
SECOidTag chosen_cipher = SEC_OID_UNKNOWN;
size_t cipher_count;
SECOidTag cipher;
int *cipher_abilities;
int *cipher_votes;
size_t weak_index;
size_t strong_index;
size_t aes128_index;
size_t aes256_index;
size_t c_index;
int rcount, max;
smime_lock_algorithm_list();
cipher_count = smime_list_length(smime_algorithm_list);
if (cipher_count == 0) {
goto done;
}
chosen_cipher = SEC_OID_RC2_40_CBC; /* the default, LCD */
weak_index = smime_list_index_find(smime_algorithm_list, chosen_cipher);
strong_index = smime_list_index_find(smime_algorithm_list, SEC_OID_DES_EDE3_CBC);
aes128_index = smime_list_index_find(smime_algorithm_list, SEC_OID_AES_128_CBC);
aes256_index = smime_list_index_find(smime_algorithm_list, SEC_OID_AES_256_CBC);
/* make sure the default selected cipher is enabled */
if (weak_index == cipher_count) {
chosen_cipher = SEC_OID_DES_EDE3_CBC;
if (strong_index == cipher_count) {
chosen_cipher = SEC_OID_AES_128_CBC;
if (aes128_index == cipher_count) {
chosen_cipher = SEC_OID_AES_256_CBC;
if (aes256_index == cipher_count) {
/* none of the standard algorithms are enabled, If the
* recipients don't explicitly include a better cipher
* then fail */
chosen_cipher = SEC_OID_UNKNOWN;
}
}
}
}
poolp = PORT_NewArena(1024); /* XXX what is right value? */
if (poolp == NULL)
goto done;
cipher_abilities = PORT_ArenaZNewArray(poolp, int, cipher_count + 1);
cipher_votes = PORT_ArenaZNewArray(poolp, int, cipher_count + 1);
if (cipher_votes == NULL || cipher_abilities == NULL) {
goto done;
}
/* Make triple-DES the strong cipher. */
/* walk all the recipient's certs */
for (rcount = 0; rcerts[rcount] != NULL; rcount++) {
SECItem *profile;
NSSSMIMECapability **caps;
int pref;
/* the first cipher that matches in the user's SMIME profile gets
* "cipher_count" votes; the next one gets "cipher_count" - 1
* and so on. If every cipher matches, the last one gets 1 (one) vote */
pref = cipher_count;
/* find recipient's SMIME profile */
profile = CERT_FindSMimeProfile(rcerts[rcount]);
if (profile != NULL && profile->data != NULL && profile->len > 0) {
/* we have a profile (still DER-encoded) */
caps = NULL;
/* decode it */
if (SEC_QuickDERDecodeItem(poolp, &caps,
NSSSMIMECapabilitiesTemplate, profile) == SECSuccess &&
caps != NULL) {
int i;
/* walk the SMIME capabilities for this recipient */
for (i = 0; caps[i] != NULL; i++) {
cipher = nss_SMIME_FindCipherForSMIMECap(caps[i]);
c_index = smime_list_index_find(smime_algorithm_list, cipher);
if (c_index < cipher_count) {
/* found the cipher */
cipher_abilities[c_index]++;
cipher_votes[c_index] += pref;
--pref;
}
}
}
} else {
/* no profile found - so we can only assume that the user can do
* the mandatory algorithms which are RC2-40 (weak crypto) and
* 3DES (strong crypto), unless the user has an elliptic curve
* key. For elliptic curve keys, RFC 5753 mandates support
* for AES 128 CBC. */
SECKEYPublicKey *key;
unsigned int pklen_bits;
KeyType key_type;
/*
* if recipient's public key length is > 512, vote for a strong cipher
* please not that the side effect of this is that if only one recipient
* has an export-level public key, the strong cipher is disabled.
*
* XXX This is probably only good for RSA keys. What I would
* really like is a function to just say; Is the public key in
* this cert an export-length key? Then I would not have to
* know things like the value 512, or the kind of key, or what
* a subjectPublicKeyInfo is, etc.
*/
key = CERT_ExtractPublicKey(rcerts[rcount]);
pklen_bits = 0;
key_type = nullKey;
if (key != NULL) {
pklen_bits = SECKEY_PublicKeyStrengthInBits(key);
key_type = SECKEY_GetPublicKeyType(key);
SECKEY_DestroyPublicKey(key);
key = NULL;
}
if (key_type == ecKey) {
/* While RFC 5753 mandates support for AES-128 CBC, should use
* AES 256 if user's key provides more than 128 bits of
* security strength so that symmetric key is not weak link. */
/* RC2-40 is not compatible with elliptic curve keys. */
if (chosen_cipher == SEC_OID_RC2_40_CBC) {
chosen_cipher = SEC_OID_AES_128_CBC;
}
if (pklen_bits > 256) {
cipher_abilities[aes256_index]++;
cipher_votes[aes256_index] += pref;
pref--;
}
cipher_abilities[aes128_index]++;
cipher_votes[aes128_index] += pref;
pref--;
cipher_abilities[strong_index]++;
cipher_votes[strong_index] += pref;
pref--;
} else {
if (pklen_bits > 3072) {
/* While support for AES 256 is a SHOULD+ in RFC 5751
* rather than a MUST, RSA and DSA keys longer than 3072
* bits provide more than 128 bits of security strength.
* So, AES 256 should be used to provide comparable
* security. */
cipher_abilities[aes256_index]++;
cipher_votes[aes256_index] += pref;
pref--;
}
if (pklen_bits > 1023) {
/* RFC 5751 mandates support for AES 128, but also says
* that RSA and DSA signature keys SHOULD NOT be less than
* 1024 bits. So, cast vote for AES 128 if key length
* is at least 1024 bits. */
cipher_abilities[aes128_index]++;
cipher_votes[aes128_index] += pref;
pref--;
}
if (pklen_bits > 512) {
/* cast votes for the strong algorithm */
cipher_abilities[strong_index]++;
cipher_votes[strong_index] += pref;
pref--;
}
/* always cast (possibly less) votes for the weak algorithm */
cipher_abilities[weak_index]++;
cipher_votes[weak_index] += pref;
}
}
if (profile != NULL)
SECITEM_FreeItem(profile, PR_TRUE);
}
/* find cipher that is agreeable by all recipients and that has the most votes */
max = 0;
for (c_index = 0; c_index < cipher_count; c_index++) {
/* if not all of the recipients can do this, forget it */
if (cipher_abilities[c_index] != rcount)
continue;
cipher = smime_list_fetch_by_index(smime_algorithm_list, c_index);
/* if cipher is allowed by policy, forget it */
if (!smime_allowed_by_policy(cipher, NSS_USE_ALG_IN_SMIME)) {
continue;
}
/* now see if this one has more votes than the last best one */
if (cipher_votes[c_index] >= max) {
/* if equal number of votes, prefer the ones further down in the list */
/* with the expectation that these are higher rated ciphers */
chosen_cipher = cipher;
max = cipher_votes[c_index];
}
}
/* if no common cipher was found, chosen_cipher stays at the default */
done:
smime_unlock_algorithm_list();
if (poolp != NULL)
PORT_FreeArena(poolp, PR_FALSE);
return chosen_cipher;
}
/*
* NSS_SMIMEUtil_FindBulkAlgForRecipients - find bulk algorithm suitable for all recipients
*
* it would be great for UI purposes if there would be a way to find out which recipients
* prevented a strong cipher from being used...
*/
SECStatus
NSS_SMIMEUtil_FindBulkAlgForRecipients(CERTCertificate **rcerts,
SECOidTag *bulkalgtag, int *keysize)
{
SECOidTag cipher;
SECStatus rv = smime_init();
if (rv != SECSuccess) {
return SECFailure;
}
cipher = smime_choose_cipher(rcerts);
if (cipher == SEC_OID_UNKNOWN) {
PORT_SetError(SEC_ERROR_BAD_EXPORT_ALGORITHM);
return SECFailure;
}
*bulkalgtag = smime_get_alg_from_policy(cipher);
*keysize = smime_keysize_by_cipher(cipher);
return SECSuccess;
}
/*
* Create a new Capability from an oid tag
*/
static NSSSMIMECapability *
smime_create_capability(SECOidTag cipher)
{
NSSSMIMECapability *cap = NULL;
SECOidData *oiddata = NULL;
SECItem *dummy = NULL;
oiddata = SECOID_FindOIDByTag(smime_get_alg_from_policy(cipher));
if (oiddata == NULL) {
return NULL;
}
cap = PORT_ZNew(NSSSMIMECapability);
if (cap == NULL) {
return NULL;
}
cap->capabilityID.data = oiddata->oid.data;
cap->capabilityID.len = oiddata->oid.len;
if (cipher == SEC_OID_RC2_CBC) {
SECItem keyItem = { siBuffer, NULL, 0 };
unsigned long keybits = smime_get_alg_from_policy(cipher);
dummy = SEC_ASN1EncodeInteger(NULL, &keyItem, keybits);
if (dummy == NULL) {
PORT_Free(cap);
return NULL;
}
dummy = SEC_ASN1EncodeItem(NULL, &cap->parameters,
&keyItem, SEC_ASN1_GET(SEC_IntegerTemplate));
SECITEM_FreeItem(&keyItem, PR_FALSE);
if (dummy == NULL) {
PORT_Free(cap);
return NULL;
}
} else {
cap->parameters.data = NULL;
cap->parameters.len = 0;
}
return cap;
}
/*
* NSS_SMIMEUtil_CreateSMIMECapabilities - get S/MIME capabilities for this instance of NSS
*
* scans the list of allowed and enabled ciphers and construct a PKCS9-compliant
* S/MIME capabilities attribute value.
*
* XXX Please note that, in contradiction to RFC2633 2.5.2, the capabilities only include
* symmetric ciphers, NO signature algorithms or key encipherment algorithms.
*
* "poolp" - arena pool to create the S/MIME capabilities data on
* "dest" - SECItem to put the data in
*/
SECStatus
NSS_SMIMEUtil_CreateSMIMECapabilities(PLArenaPool *poolp, SECItem *dest)
{
NSSSMIMECapability *cap = NULL;
NSSSMIMECapability **smime_capabilities = NULL;
SECItem *dummy = NULL;
int i, capIndex;
int cap_count;
int cipher_count;
int hash_count;
SECStatus rv = smime_init();
if (rv != SECSuccess) {
return SECFailure;
}
/* First get the hash count */
for (i = HASH_AlgNULL + 1;; i++) {
if (HASH_GetHashOidTagByHashType(i) == SEC_OID_UNKNOWN) {
break;
}
}
hash_count = i - 1;
smime_lock_algorithm_list();
/* now get the cipher count */
cipher_count = smime_list_length(smime_algorithm_list);
if (cipher_count == 0) {
smime_unlock_algorithm_list();
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
return SECFailure;
}
cap_count = cipher_count + hash_count + implemented_key_encipherment_len;
/* cipher_count + 1 is an upper bound - we might end up with less */
smime_capabilities = PORT_ZNewArray(NSSSMIMECapability *, cap_count + 1);
if (smime_capabilities == NULL) {
smime_unlock_algorithm_list();
return SECFailure;
}
capIndex = 0;
/* Add all the symmetric ciphers
* We walk the cipher list, as it is ordered by decreasing strength,
* we prefer the stronger cipher over a weaker one, and we have to list the
* preferred algorithm first */
for (i = 0; i < cipher_count; i++) {
SECOidTag cipher = smime_list_fetch_by_index(smime_algorithm_list, i);
/* is it allowed by policy? */
if (!smime_allowed_by_policy(cipher, NSS_USE_ALG_IN_SMIME)) {
continue;
}
cipher = smime_get_alg_from_policy(cipher);
cap = smime_create_capability(cipher);
if (cap == NULL)
break;
smime_capabilities[capIndex++] = cap;
}
/* add signature algorithms = hash algs.
* probably also need to figure how what
* actual signatures we support in secvfy
* as well. We currently don't look a these
* when choosing hash and signature (hash is
* chosen by the application and signature
* type is chosen by the signing cert/key) */
smime_unlock_algorithm_list();
for (i = HASH_AlgNULL + 1; i < hash_count + 1; i++) {
SECOidTag hash_alg = HASH_GetHashOidTagByHashType(i);
if (!smime_allowed_by_policy(hash_alg,
NSS_USE_ALG_IN_SMIME_SIGNATURE | NSS_USE_ALG_IN_SIGNATURE)) {
continue;
}
cap = smime_create_capability(hash_alg);
/* get next SMIME capability */
if (cap == NULL)
break;
smime_capabilities[capIndex++] = cap;
}
/* add key encipherment algorithms . These are static
* to the s/mime library, so we can just use the table.
* new kea algs should be implemented. We don't use these
* because the senders key pretty much selects what time
* of kea we are going to implement */
for (i = 0; i < implemented_key_encipherment_len; i++) {
SECOidTag kea_alg = implemented_key_encipherment[i];
if (!smime_allowed_by_policy(kea_alg, NSS_USE_ALG_IN_SMIME_KX)) {
continue;
}
cap = smime_create_capability(kea_alg);
/* get next SMIME capability */
if (cap == NULL)
break;
smime_capabilities[capIndex++] = cap;
}
smime_capabilities[capIndex] = NULL; /* last one - now encode */
dummy = SEC_ASN1EncodeItem(poolp, dest, &smime_capabilities, NSSSMIMECapabilitiesTemplate);
/* now that we have the proper encoded SMIMECapabilities (or not),
* free the work data */
for (i = 0; smime_capabilities[i] != NULL; i++) {
if (smime_capabilities[i]->parameters.data) {
PORT_Free(smime_capabilities[i]->parameters.data);
}
PORT_Free(smime_capabilities[i]);
}
PORT_Free(smime_capabilities);
return (dummy == NULL) ? SECFailure : SECSuccess;
}
/*
* NSS_SMIMEUtil_CreateSMIMEEncKeyPrefs - create S/MIME encryption key preferences attr value
*
* "poolp" - arena pool to create the attr value on
* "dest" - SECItem to put the data in
* "cert" - certificate that should be marked as preferred encryption key
* cert is expected to have been verified for EmailRecipient usage.
*/
SECStatus
NSS_SMIMEUtil_CreateSMIMEEncKeyPrefs(PLArenaPool *poolp, SECItem *dest, CERTCertificate *cert)
{
NSSSMIMEEncryptionKeyPreference ekp;
SECItem *dummy = NULL;
PLArenaPool *tmppoolp = NULL;
if (cert == NULL)
goto loser;
tmppoolp = PORT_NewArena(1024);
if (tmppoolp == NULL)
goto loser;
/* XXX hardcoded IssuerSN choice for now */
ekp.selector = NSSSMIMEEncryptionKeyPref_IssuerSN;
ekp.id.issuerAndSN = CERT_GetCertIssuerAndSN(tmppoolp, cert);
if (ekp.id.issuerAndSN == NULL)
goto loser;
dummy = SEC_ASN1EncodeItem(poolp, dest, &ekp, smime_encryptionkeypref_template);
loser:
if (tmppoolp)
PORT_FreeArena(tmppoolp, PR_FALSE);
return (dummy == NULL) ? SECFailure : SECSuccess;
}
/*
* NSS_SMIMEUtil_CreateSMIMEEncKeyPrefs - create S/MIME encryption key preferences attr value using MS oid
*
* "poolp" - arena pool to create the attr value on
* "dest" - SECItem to put the data in
* "cert" - certificate that should be marked as preferred encryption key
* cert is expected to have been verified for EmailRecipient usage.
*/
SECStatus
NSS_SMIMEUtil_CreateMSSMIMEEncKeyPrefs(PLArenaPool *poolp, SECItem *dest, CERTCertificate *cert)
{
SECItem *dummy = NULL;
PLArenaPool *tmppoolp = NULL;
CERTIssuerAndSN *isn;
if (cert == NULL)
goto loser;
tmppoolp = PORT_NewArena(1024);
if (tmppoolp == NULL)
goto loser;
isn = CERT_GetCertIssuerAndSN(tmppoolp, cert);
if (isn == NULL)
goto loser;
dummy = SEC_ASN1EncodeItem(poolp, dest, isn, SEC_ASN1_GET(CERT_IssuerAndSNTemplate));
loser:
if (tmppoolp)
PORT_FreeArena(tmppoolp, PR_FALSE);
return (dummy == NULL) ? SECFailure : SECSuccess;
}
/*
* NSS_SMIMEUtil_GetCertFromEncryptionKeyPreference -
* find cert marked by EncryptionKeyPreference attribute
*
* "certdb" - handle for the cert database to look in
* "DERekp" - DER-encoded value of S/MIME Encryption Key Preference attribute
*
* if certificate is supposed to be found among the message's included certificates,
* they are assumed to have been imported already.
*/
CERTCertificate *
NSS_SMIMEUtil_GetCertFromEncryptionKeyPreference(CERTCertDBHandle *certdb, SECItem *DERekp)
{
PLArenaPool *tmppoolp = NULL;
CERTCertificate *cert = NULL;
NSSSMIMEEncryptionKeyPreference ekp;
tmppoolp = PORT_NewArena(1024);
if (tmppoolp == NULL)
return NULL;
/* decode DERekp */
if (SEC_QuickDERDecodeItem(tmppoolp, &ekp, smime_encryptionkeypref_template,
DERekp) != SECSuccess)
goto loser;
/* find cert */
switch (ekp.selector) {
case NSSSMIMEEncryptionKeyPref_IssuerSN:
cert = CERT_FindCertByIssuerAndSN(certdb, ekp.id.issuerAndSN);
break;
case NSSSMIMEEncryptionKeyPref_RKeyID:
case NSSSMIMEEncryptionKeyPref_SubjectKeyID:
/* XXX not supported yet - we need to be able to look up certs by SubjectKeyID */
break;
default:
PORT_Assert(0);
}
loser:
if (tmppoolp)
PORT_FreeArena(tmppoolp, PR_FALSE);
return cert;
}
extern const char __nss_smime_version[];
PRBool
NSSSMIME_VersionCheck(const char *importedVersion)
{
#define NSS_VERSION_VARIABLE __nss_smime_version
#include "verref.h"
/*
* This is the secret handshake algorithm.
*
* This release has a simple version compatibility
* check algorithm. This release is not backward
* compatible with previous major releases. It is
* not compatible with future major, minor, or
* patch releases.
*/
return NSS_VersionCheck(importedVersion);
}
const char *
NSSSMIME_GetVersion(void)
{
return NSS_VERSION;
}