Source code

Revision control

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* struct containing the input to nsIFrame::Reflow */
#include "mozilla/ReflowInput.h"
#include "LayoutLogging.h"
#include "nsStyleConsts.h"
#include "nsCSSAnonBoxes.h"
#include "nsIFrame.h"
#include "nsIContent.h"
#include "nsGkAtoms.h"
#include "nsPresContext.h"
#include "nsFontMetrics.h"
#include "nsBlockFrame.h"
#include "nsLineBox.h"
#include "nsImageFrame.h"
#include "nsTableFrame.h"
#include "nsTableCellFrame.h"
#include "nsIPercentBSizeObserver.h"
#include "nsLayoutUtils.h"
#include "nsFontInflationData.h"
#include "StickyScrollContainer.h"
#include "nsIFrameInlines.h"
#include "CounterStyleManager.h"
#include <algorithm>
#include "mozilla/SVGUtils.h"
#include "mozilla/dom/HTMLInputElement.h"
#include "nsGridContainerFrame.h"
using namespace mozilla;
using namespace mozilla::css;
using namespace mozilla::dom;
using namespace mozilla::layout;
enum eNormalLineHeightControl {
eUninitialized = -1,
eNoExternalLeading = 0, // does not include external leading
eIncludeExternalLeading, // use whatever value font vendor provides
eCompensateLeading // compensate leading if leading provided by font vendor
// is not enough
};
static eNormalLineHeightControl sNormalLineHeightControl = eUninitialized;
// Initialize a <b>root</b> reflow input with a rendering context to
// use for measuring things.
ReflowInput::ReflowInput(nsPresContext* aPresContext, nsIFrame* aFrame,
gfxContext* aRenderingContext,
const LogicalSize& aAvailableSpace, uint32_t aFlags)
: SizeComputationInput(aFrame, aRenderingContext) {
MOZ_ASSERT(aRenderingContext, "no rendering context");
MOZ_ASSERT(aPresContext, "no pres context");
MOZ_ASSERT(aFrame, "no frame");
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
AvailableISize() = aAvailableSpace.ISize(mWritingMode);
AvailableBSize() = aAvailableSpace.BSize(mWritingMode);
if (aFlags & DUMMY_PARENT_REFLOW_INPUT) {
mFlags.mDummyParentReflowInput = true;
}
if (aFlags & COMPUTE_SIZE_SHRINK_WRAP) {
mFlags.mShrinkWrap = true;
}
if (aFlags & COMPUTE_SIZE_USE_AUTO_BSIZE) {
mFlags.mUseAutoBSize = true;
}
if (aFlags & STATIC_POS_IS_CB_ORIGIN) {
mFlags.mStaticPosIsCBOrigin = true;
}
if (aFlags & I_CLAMP_MARGIN_BOX_MIN_SIZE) {
mFlags.mIClampMarginBoxMinSize = true;
}
if (aFlags & B_CLAMP_MARGIN_BOX_MIN_SIZE) {
mFlags.mBClampMarginBoxMinSize = true;
}
if (aFlags & I_APPLY_AUTO_MIN_SIZE) {
mFlags.mApplyAutoMinSize = true;
}
if (!(aFlags & CALLER_WILL_INIT)) {
Init(aPresContext);
}
}
static bool CheckNextInFlowParenthood(nsIFrame* aFrame, nsIFrame* aParent) {
nsIFrame* frameNext = aFrame->GetNextInFlow();
nsIFrame* parentNext = aParent->GetNextInFlow();
return frameNext && parentNext && frameNext->GetParent() == parentNext;
}
/**
* Adjusts the margin for a list (ol, ul), if necessary, depending on
* font inflation settings. Unfortunately, because bullets from a list are
* placed in the margin area, we only have ~40px in which to place the
* bullets. When they are inflated, however, this causes problems, since
* the text takes up more space than is available in the margin.
*
* This method will return a small amount (in app units) by which the
* margin can be adjusted, so that the space is available for list
* bullets to be rendered with font inflation enabled.
*/
static nscoord FontSizeInflationListMarginAdjustment(const nsIFrame* aFrame) {
if (!aFrame->IsBlockFrameOrSubclass()) {
return 0;
}
// We only want to adjust the margins if we're dealing with an ordered list.
const nsBlockFrame* blockFrame = static_cast<const nsBlockFrame*>(aFrame);
if (!blockFrame->HasMarker()) {
return 0;
}
float inflation = nsLayoutUtils::FontSizeInflationFor(aFrame);
if (inflation <= 1.0f) {
return 0;
}
// The HTML spec states that the default padding for ordered lists
// begins at 40px, indicating that we have 40px of space to place a
// bullet. When performing font inflation calculations, we add space
// equivalent to this, but simply inflated at the same amount as the
// text, in app units.
auto margin = nsPresContext::CSSPixelsToAppUnits(40) * (inflation - 1);
auto* list = aFrame->StyleList();
if (!list->mCounterStyle.IsAtom()) {
return margin;
}
// NOTE(emilio): @counter-style can override some of the styles from this
// list, and we won't add margin to the counter.
//
nsAtom* type = list->mCounterStyle.AsAtom();
if (type != nsGkAtoms::none && type != nsGkAtoms::disc &&
type != nsGkAtoms::circle && type != nsGkAtoms::square &&
type != nsGkAtoms::disclosure_closed &&
type != nsGkAtoms::disclosure_open) {
return margin;
}
return 0;
}
SizeComputationInput::SizeComputationInput(nsIFrame* aFrame,
gfxContext* aRenderingContext)
: mFrame(aFrame),
mRenderingContext(aRenderingContext),
mWritingMode(aFrame->GetWritingMode()) {}
SizeComputationInput::SizeComputationInput(
nsIFrame* aFrame, gfxContext* aRenderingContext,
WritingMode aContainingBlockWritingMode, nscoord aContainingBlockISize)
: mFrame(aFrame),
mRenderingContext(aRenderingContext),
mWritingMode(aFrame->GetWritingMode()) {
ReflowInputFlags flags;
InitOffsets(aContainingBlockWritingMode, aContainingBlockISize,
mFrame->Type(), flags);
}
// Initialize a reflow input for a child frame's reflow. Some state
// is copied from the parent reflow input; the remaining state is
// computed.
ReflowInput::ReflowInput(nsPresContext* aPresContext,
const ReflowInput& aParentReflowInput,
nsIFrame* aFrame, const LogicalSize& aAvailableSpace,
const Maybe<LogicalSize>& aContainingBlockSize,
uint32_t aFlags)
: SizeComputationInput(aFrame, aParentReflowInput.mRenderingContext),
mParentReflowInput(&aParentReflowInput),
mFloatManager(aParentReflowInput.mFloatManager),
mLineLayout(mFrame->IsFrameOfType(nsIFrame::eLineParticipant)
? aParentReflowInput.mLineLayout
: nullptr),
mPercentBSizeObserver(
(aParentReflowInput.mPercentBSizeObserver &&
aParentReflowInput.mPercentBSizeObserver->NeedsToObserve(*this))
? aParentReflowInput.mPercentBSizeObserver
: nullptr),
mFlags(aParentReflowInput.mFlags),
mReflowDepth(aParentReflowInput.mReflowDepth + 1) {
MOZ_ASSERT(aPresContext, "no pres context");
MOZ_ASSERT(aFrame, "no frame");
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
MOZ_ASSERT(!mFlags.mSpecialBSizeReflow || !aFrame->IsSubtreeDirty(),
"frame should be clean when getting special bsize reflow");
AvailableISize() = aAvailableSpace.ISize(mWritingMode);
AvailableBSize() = aAvailableSpace.BSize(mWritingMode);
if (mWritingMode.IsOrthogonalTo(aParentReflowInput.GetWritingMode())) {
// If we're setting up for an orthogonal flow, and the parent reflow input
// had a constrained ComputedBSize, we can use that as our AvailableISize
// in preference to leaving it unconstrained.
if (AvailableISize() == NS_UNCONSTRAINEDSIZE &&
aParentReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
AvailableISize() = aParentReflowInput.ComputedBSize();
}
}
// Note: mFlags was initialized as a copy of aParentReflowInput.mFlags up in
// this constructor's init list, so the only flags that we need to explicitly
// initialize here are those that may need a value other than our parent's.
mFlags.mNextInFlowUntouched =
aParentReflowInput.mFlags.mNextInFlowUntouched &&
CheckNextInFlowParenthood(aFrame, aParentReflowInput.mFrame);
mFlags.mAssumingHScrollbar = mFlags.mAssumingVScrollbar = false;
mFlags.mIsColumnBalancing = false;
mFlags.mColumnSetWrapperHasNoBSizeLeft = false;
mFlags.mIsFlexContainerMeasuringBSize = false;
mFlags.mTreatBSizeAsIndefinite = false;
mFlags.mDummyParentReflowInput = false;
mFlags.mShrinkWrap = !!(aFlags & COMPUTE_SIZE_SHRINK_WRAP);
mFlags.mUseAutoBSize = !!(aFlags & COMPUTE_SIZE_USE_AUTO_BSIZE);
mFlags.mStaticPosIsCBOrigin = !!(aFlags & STATIC_POS_IS_CB_ORIGIN);
mFlags.mIOffsetsNeedCSSAlign = mFlags.mBOffsetsNeedCSSAlign = false;
mFlags.mIClampMarginBoxMinSize = !!(aFlags & I_CLAMP_MARGIN_BOX_MIN_SIZE);
mFlags.mBClampMarginBoxMinSize = !!(aFlags & B_CLAMP_MARGIN_BOX_MIN_SIZE);
mFlags.mApplyAutoMinSize = !!(aFlags & I_APPLY_AUTO_MIN_SIZE);
mFlags.mApplyLineClamp = false;
if ((aFlags & DUMMY_PARENT_REFLOW_INPUT) ||
(mParentReflowInput->mFlags.mDummyParentReflowInput &&
mFrame->IsTableFrame())) {
mFlags.mDummyParentReflowInput = true;
}
if (!(aFlags & CALLER_WILL_INIT)) {
Init(aPresContext, aContainingBlockSize);
}
}
template <typename SizeOrMaxSize>
inline nscoord SizeComputationInput::ComputeISizeValue(
nscoord aContainingBlockISize, nscoord aContentEdgeToBoxSizing,
nscoord aBoxSizingToMarginEdge, const SizeOrMaxSize& aSize) const {
return mFrame->ComputeISizeValue(mRenderingContext, aContainingBlockISize,
aContentEdgeToBoxSizing,
aBoxSizingToMarginEdge, aSize);
}
template <typename SizeOrMaxSize>
nscoord SizeComputationInput::ComputeISizeValue(
nscoord aContainingBlockISize, StyleBoxSizing aBoxSizing,
const SizeOrMaxSize& aSize) const {
WritingMode wm = GetWritingMode();
nscoord inside = 0, outside = ComputedLogicalBorderPadding().IStartEnd(wm) +
ComputedLogicalMargin().IStartEnd(wm);
if (aBoxSizing == StyleBoxSizing::Border) {
inside = ComputedLogicalBorderPadding().IStartEnd(wm);
}
outside -= inside;
return ComputeISizeValue(aContainingBlockISize, inside, outside, aSize);
}
nscoord SizeComputationInput::ComputeBSizeValue(
nscoord aContainingBlockBSize, StyleBoxSizing aBoxSizing,
const LengthPercentage& aSize) const {
WritingMode wm = GetWritingMode();
nscoord inside = 0;
if (aBoxSizing == StyleBoxSizing::Border) {
inside = ComputedLogicalBorderPadding().BStartEnd(wm);
}
return nsLayoutUtils::ComputeBSizeValue(aContainingBlockBSize, inside, aSize);
}
bool ReflowInput::ShouldReflowAllKids() const {
// Note that we could make a stronger optimization for IsBResize if
// we use it in a ShouldReflowChild test that replaces the current
// checks of NS_FRAME_IS_DIRTY | NS_FRAME_HAS_DIRTY_CHILDREN, if it
// were tested there along with NS_FRAME_CONTAINS_RELATIVE_BSIZE.
// This would need to be combined with a slight change in which
// frames NS_FRAME_CONTAINS_RELATIVE_BSIZE is marked on.
return mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) || IsIResize() ||
(IsBResize() &&
mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE));
}
void ReflowInput::SetComputedWidth(nscoord aComputedWidth) {
NS_ASSERTION(mFrame, "Must have a frame!");
// It'd be nice to assert that |frame| is not in reflow, but this fails for
// two reasons:
//
// 1) Viewport frames reset the computed width on a copy of their reflow
// input when reflowing fixed-pos kids. In that case we actually don't
// want to mess with the resize flags, because comparing the frame's rect
// to the munged computed width is pointless.
// 2) nsIFrame::BoxReflow creates a reflow input for its parent. This reflow
// input is not used to reflow the parent, but just as a parent for the
// frame's own reflow input. So given a nsBoxFrame inside some non-XUL
// (like a text control, for example), we'll end up creating a reflow
// input for the parent while the parent is reflowing.
MOZ_ASSERT(aComputedWidth >= 0, "Invalid computed width");
if (ComputedWidth() != aComputedWidth) {
ComputedWidth() = aComputedWidth;
LayoutFrameType frameType = mFrame->Type();
if (frameType != LayoutFrameType::Viewport || // Or check GetParent()?
mWritingMode.IsVertical()) {
InitResizeFlags(mFrame->PresContext(), frameType);
}
}
}
void ReflowInput::SetComputedHeight(nscoord aComputedHeight) {
NS_ASSERTION(mFrame, "Must have a frame!");
// It'd be nice to assert that |frame| is not in reflow, but this fails
// because:
//
// nsIFrame::BoxReflow creates a reflow input for its parent. This reflow
// input is not used to reflow the parent, but just as a parent for the
// frame's own reflow input. So given a nsBoxFrame inside some non-XUL
// (like a text control, for example), we'll end up creating a reflow
// input for the parent while the parent is reflowing.
MOZ_ASSERT(aComputedHeight >= 0, "Invalid computed height");
if (ComputedHeight() != aComputedHeight) {
ComputedHeight() = aComputedHeight;
LayoutFrameType frameType = mFrame->Type();
if (frameType != LayoutFrameType::Viewport || !mWritingMode.IsVertical()) {
InitResizeFlags(mFrame->PresContext(), frameType);
}
}
}
void ReflowInput::Init(nsPresContext* aPresContext,
const Maybe<LogicalSize>& aContainingBlockSize,
const nsMargin* aBorder, const nsMargin* aPadding) {
if (AvailableISize() == NS_UNCONSTRAINEDSIZE) {
// Look up the parent chain for an orthogonal inline limit,
// and reset AvailableISize() if found.
for (const ReflowInput* parent = mParentReflowInput; parent != nullptr;
parent = parent->mParentReflowInput) {
if (parent->GetWritingMode().IsOrthogonalTo(mWritingMode) &&
parent->mOrthogonalLimit != NS_UNCONSTRAINEDSIZE) {
AvailableISize() = parent->mOrthogonalLimit;
break;
}
}
}
LAYOUT_WARN_IF_FALSE(AvailableISize() != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
mStylePosition = mFrame->StylePosition();
mStyleDisplay = mFrame->StyleDisplay();
mStyleVisibility = mFrame->StyleVisibility();
mStyleBorder = mFrame->StyleBorder();
mStyleMargin = mFrame->StyleMargin();
mStylePadding = mFrame->StylePadding();
mStyleText = mFrame->StyleText();
InitCBReflowInput();
LayoutFrameType type = mFrame->Type();
if (type == mozilla::LayoutFrameType::Placeholder) {
// Placeholders have a no-op Reflow method that doesn't need the rest of
// this initialization, so we bail out early.
ComputedBSize() = ComputedISize() = 0;
return;
}
InitFrameType(type);
InitConstraints(aPresContext, aContainingBlockSize, aBorder, aPadding, type);
InitResizeFlags(aPresContext, type);
InitDynamicReflowRoot();
nsIFrame* parent = mFrame->GetParent();
if (parent && parent->HasAnyStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE) &&
!(parent->IsScrollFrame() &&
parent->StyleDisplay()->mOverflowY != StyleOverflow::Hidden)) {
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
} else if (type == LayoutFrameType::SVGForeignObject) {
// An SVG foreignObject frame is inherently constrained block-size.
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
} else {
const auto& bSizeCoord = mStylePosition->BSize(mWritingMode);
const auto& maxBSizeCoord = mStylePosition->MaxBSize(mWritingMode);
if ((!bSizeCoord.BehavesLikeInitialValueOnBlockAxis() ||
!maxBSizeCoord.BehavesLikeInitialValueOnBlockAxis()) &&
// Don't set NS_FRAME_IN_CONSTRAINED_BSIZE on body or html elements.
(mFrame->GetContent() && !(mFrame->GetContent()->IsAnyOfHTMLElements(
nsGkAtoms::body, nsGkAtoms::html)))) {
// If our block-size was specified as a percentage, then this could
// actually resolve to 'auto', based on:
nsIFrame* containingBlk = mFrame;
while (containingBlk) {
const nsStylePosition* stylePos = containingBlk->StylePosition();
const auto& bSizeCoord = stylePos->BSize(mWritingMode);
const auto& maxBSizeCoord = stylePos->MaxBSize(mWritingMode);
if ((bSizeCoord.IsLengthPercentage() && !bSizeCoord.HasPercent()) ||
(maxBSizeCoord.IsLengthPercentage() &&
!maxBSizeCoord.HasPercent())) {
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
} else if (bSizeCoord.HasPercent() || maxBSizeCoord.HasPercent()) {
if (!(containingBlk = containingBlk->GetContainingBlock())) {
// If we've reached the top of the tree, then we don't have
// a constrained block-size.
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
}
continue;
} else {
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
}
}
} else {
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
}
}
if (mParentReflowInput &&
mParentReflowInput->GetWritingMode().IsOrthogonalTo(mWritingMode)) {
// Orthogonal frames are always reflowed with an unconstrained
// dimension to avoid incomplete reflow across an orthogonal
// boundary. Normally this is the block-size, but for column sets
// with auto-height it's the inline-size, so that they can add
// columns in the container's block direction
if (type == LayoutFrameType::ColumnSet &&
mStylePosition->ISize(mWritingMode).IsAuto()) {
ComputedISize() = NS_UNCONSTRAINEDSIZE;
} else {
AvailableBSize() = NS_UNCONSTRAINEDSIZE;
}
}
if (mStyleDisplay->IsContainSize()) {
// In the case that a box is size contained, we want to ensure
// that it is also monolithic. We do this by unsetting
// AvailableBSize() to avoid fragmentaiton.
AvailableBSize() = NS_UNCONSTRAINEDSIZE;
}
LAYOUT_WARN_IF_FALSE((mFrameType == NS_CSS_FRAME_TYPE_INLINE &&
!mFrame->IsFrameOfType(nsIFrame::eReplaced)) ||
type == LayoutFrameType::Text ||
ComputedISize() != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
}
void ReflowInput::InitCBReflowInput() {
if (!mParentReflowInput) {
mCBReflowInput = nullptr;
return;
}
if (mParentReflowInput->mFlags.mDummyParentReflowInput) {
mCBReflowInput = mParentReflowInput;
return;
}
if (mParentReflowInput->mFrame ==
mFrame->GetContainingBlock(0, mStyleDisplay)) {
// Inner table frames need to use the containing block of the outer
// table frame.
if (mFrame->IsTableFrame()) {
mCBReflowInput = mParentReflowInput->mCBReflowInput;
} else {
mCBReflowInput = mParentReflowInput;
}
} else {
mCBReflowInput = mParentReflowInput->mCBReflowInput;
}
}
/* Check whether CalcQuirkContainingBlockHeight would stop on the
* given reflow input, using its block as a height. (essentially
* returns false for any case in which CalcQuirkContainingBlockHeight
* has a "continue" in its main loop.)
*
* XXX Maybe refactor CalcQuirkContainingBlockHeight so it uses
* this function as well
*/
static bool IsQuirkContainingBlockHeight(const ReflowInput* rs,
LayoutFrameType aFrameType) {
if (LayoutFrameType::Block == aFrameType ||
#ifdef MOZ_XUL
LayoutFrameType::XULLabel == aFrameType ||
#endif
LayoutFrameType::Scroll == aFrameType) {
// Note: This next condition could change due to a style change,
// but that would cause a style reflow anyway, which means we're ok.
if (NS_UNCONSTRAINEDSIZE == rs->ComputedHeight()) {
if (!rs->mFrame->IsAbsolutelyPositioned(rs->mStyleDisplay)) {
return false;
}
}
}
return true;
}
void ReflowInput::InitResizeFlags(nsPresContext* aPresContext,
LayoutFrameType aFrameType) {
SetBResize(false);
SetIResize(false);
mFlags.mIsBResizeForPercentages = false;
const WritingMode wm = mWritingMode; // just a shorthand
// We should report that we have a resize in the inline dimension if
// *either* the border-box size or the content-box size in that
// dimension has changed. It might not actually be necessary to do
// this if the border-box size has changed and the content-box size
// has not changed, but since we've historically used the flag to mean
// border-box size change, continue to do that. (It's possible for
// the content-box size to change without a border-box size change or
// a style change given (1) a fixed width (possibly fixed by max-width
// or min-width), (2) box-sizing:border-box or padding-box, and
// (3) percentage padding.)
//
// However, we don't actually have the information at this point to
// tell whether the content-box size has changed, since both style
// data and the UsedPaddingProperty() have already been updated. So,
// instead, we explicitly check for the case where it's possible for
// the content-box size to have changed without either (a) a change in
// the border-box size or (b) an nsChangeHint_NeedDirtyReflow change
// hint due to change in border or padding. Thus we test using the
// conditions from the previous paragraph, except without testing (1)
// since it's complicated to test properly and less likely to help
// with optimizing cases away.
bool isIResize =
// is the border-box resizing?
mFrame->ISize(wm) !=
ComputedISize() + ComputedLogicalBorderPadding().IStartEnd(wm) ||
// or is the content-box resizing? (see comment above)
(mStylePosition->mBoxSizing != StyleBoxSizing::Content &&
mStylePadding->IsWidthDependent());
if (mFrame->HasAnyStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT) &&
nsLayoutUtils::FontSizeInflationEnabled(aPresContext)) {
// Create our font inflation data if we don't have it already, and
// give it our current width information.
bool dirty = nsFontInflationData::UpdateFontInflationDataISizeFor(*this) &&
// Avoid running this at the box-to-block interface
// (where we shouldn't be inflating anyway, and where
// reflow input construction is probably to construct a
// dummy parent reflow input anyway).
!mFlags.mDummyParentReflowInput;
if (dirty || (!mFrame->GetParent() && isIResize)) {
// When font size inflation is enabled, a change in either:
// * the effective width of a font inflation flow root
// * the width of the frame
// needs to cause a dirty reflow since they change the font size
// inflation calculations, which in turn change the size of text,
// line-heights, etc. This is relatively similar to a classic
// case of style change reflow, except that because inflation
// doesn't affect the intrinsic sizing codepath, there's no need
// to invalidate intrinsic sizes.
//
// Note that this makes horizontal resizing a good bit more
// expensive. However, font size inflation is targeted at a set of
// devices (zoom-and-pan devices) where the main use case for
// horizontal resizing needing to be efficient (window resizing) is
// not present. It does still increase the cost of dynamic changes
// caused by script where a style or content change in one place
// causes a resize in another (e.g., rebalancing a table).
// FIXME: This isn't so great for the cases where
// ReflowInput::SetComputedWidth is called, if the first time
// we go through InitResizeFlags we set IsHResize() to true, and then
// the second time we'd set it to false even without the
// NS_FRAME_IS_DIRTY bit already set.
if (mFrame->IsSVGForeignObjectFrame()) {
// Foreign object frames use dirty bits in a special way.
mFrame->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
nsIFrame* kid = mFrame->PrincipalChildList().FirstChild();
if (kid) {
kid->MarkSubtreeDirty();
}
} else {
mFrame->MarkSubtreeDirty();
}
// Mark intrinsic widths on all descendants dirty. We need to do
// this (1) since we're changing the size of text and need to
// clear text runs on text frames and (2) since we actually are
// changing some intrinsic widths, but only those that live inside
// of containers.
// It makes sense to do this for descendants but not ancestors
// (which is unusual) because we're only changing the unusual
// inflation-dependent intrinsic widths (i.e., ones computed with
// nsPresContext::mInflationDisabledForShrinkWrap set to false),
// which should never affect anything outside of their inflation
// flow root (or, for that matter, even their inflation
// container).
// This is also different from what PresShell::FrameNeedsReflow
// does because it doesn't go through placeholders. It doesn't
// need to because we're actually doing something that cares about
// frame tree geometry (the width on an ancestor) rather than
// style.
AutoTArray<nsIFrame*, 32> stack;
stack.AppendElement(mFrame);
do {
nsIFrame* f = stack.PopLastElement();
for (const auto& childList : f->ChildLists()) {
for (nsIFrame* kid : childList.mList) {
kid->MarkIntrinsicISizesDirty();
stack.AppendElement(kid);
}
}
} while (stack.Length() != 0);
}
}
SetIResize(!mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) && isIResize);
// XXX Should we really need to null check mCBReflowInput? (We do for
// at least nsBoxFrame).
if (mFrame->HasBSizeChange()) {
// When we have an nsChangeHint_UpdateComputedBSize, we'll set a bit
// on the frame to indicate we're resizing. This might catch cases,
// such as a change between auto and a length, where the box doesn't
// actually resize but children with percentages resize (since those
// percentages become auto if their containing block is auto).
SetBResize(true);
mFlags.mIsBResizeForPercentages = true;
// We don't clear the HasBSizeChange state here, since sometimes we
// construct reflow states (e.g., in
// nsBlockReflowContext::ComputeCollapsedBStartMargin) without
// reflowing the frame. Instead, we clear it in nsIFrame::DidReflow.
} else if (mCBReflowInput &&
mCBReflowInput->IsBResizeForPercentagesForWM(wm) &&
(mStylePosition->BSize(wm).HasPercent() ||
mStylePosition->MinBSize(wm).HasPercent() ||
mStylePosition->MaxBSize(wm).HasPercent())) {
// We have a percentage (or calc-with-percentage) block-size, and the
// value it's relative to has changed.
SetBResize(true);
mFlags.mIsBResizeForPercentages = true;
} else if (aFrameType == LayoutFrameType::TableCell &&
(mFlags.mSpecialBSizeReflow ||
mFrame->FirstInFlow()->HasAnyStateBits(
NS_TABLE_CELL_HAD_SPECIAL_REFLOW)) &&
mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
// Need to set the bit on the cell so that
// mCBReflowInput->IsBResize() is set correctly below when
// reflowing descendant.
SetBResize(true);
mFlags.mIsBResizeForPercentages = true;
} else if (mCBReflowInput && mFrame->IsBlockWrapper()) {
// XXX Is this problematic for relatively positioned inlines acting
// as containing block for absolutely positioned elements?
// Possibly; in that case we should at least be checking
// IsSubtreeDirty(), I'd think.
SetBResize(mCBReflowInput->IsBResizeForWM(wm));
mFlags.mIsBResizeForPercentages =
mCBReflowInput->IsBResizeForPercentagesForWM(wm);
} else if (ComputedBSize() == NS_UNCONSTRAINEDSIZE) {
// We have an 'auto' block-size.
if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
mCBReflowInput) {
// FIXME: This should probably also check IsIResize().
SetBResize(mCBReflowInput->IsBResizeForWM(wm));
} else {
SetBResize(IsIResize());
}
SetBResize(IsBResize() || mFrame->IsSubtreeDirty());
} else {
// We have a non-'auto' block-size, i.e., a length. Set the BResize
// flag to whether the size is actually different.
SetBResize(mFrame->BSize(wm) !=
ComputedBSize() + ComputedLogicalBorderPadding().BStartEnd(wm));
}
bool dependsOnCBBSize =
(mStylePosition->BSizeDependsOnContainer(wm) &&
// FIXME: condition this on not-abspos?
!mStylePosition->BSize(wm).IsAuto()) ||
mStylePosition->MinBSizeDependsOnContainer(wm) ||
mStylePosition->MaxBSizeDependsOnContainer(wm) ||
mStylePosition->OffsetHasPercent(wm.PhysicalSide(eLogicalSideBStart)) ||
!mStylePosition->mOffset.GetBEnd(wm).IsAuto() || mFrame->IsXULBoxFrame();
if (mStyleText->mLineHeight.IsMozBlockHeight()) {
// line-height depends on block bsize
mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
// but only on containing blocks if this frame is not a suitable block
dependsOnCBBSize |= !nsLayoutUtils::IsNonWrapperBlock(mFrame);
}
// If we're the descendant of a table cell that performs special bsize
// reflows and we could be the child that requires them, always set
// the block-axis resize in case this is the first pass before the
// special bsize reflow. However, don't do this if it actually is
// the special bsize reflow, since in that case it will already be
// set correctly above if we need it set.
if (!IsBResize() && mCBReflowInput &&
(mCBReflowInput->mFrame->IsTableCellFrame() ||
mCBReflowInput->mFlags.mHeightDependsOnAncestorCell) &&
!mCBReflowInput->mFlags.mSpecialBSizeReflow && dependsOnCBBSize) {
SetBResize(true);
mFlags.mHeightDependsOnAncestorCell = true;
}
// Set NS_FRAME_CONTAINS_RELATIVE_BSIZE if it's needed.
// It would be nice to check that |ComputedBSize != NS_UNCONSTRAINEDSIZE|
// &&ed with the percentage bsize check. However, this doesn't get
// along with table special bsize reflows, since a special bsize
// reflow (a quirk that makes such percentage height work on children
// of table cells) can cause not just a single percentage height to
// become fixed, but an entire descendant chain of percentage height
// to become fixed.
if (dependsOnCBBSize && mCBReflowInput) {
const ReflowInput* rs = this;
bool hitCBReflowInput = false;
do {
rs = rs->mParentReflowInput;
if (!rs) {
break;
}
if (rs->mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
break; // no need to go further
}
rs->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
// Keep track of whether we've hit the containing block, because
// we need to go at least that far.
if (rs == mCBReflowInput) {
hitCBReflowInput = true;
}
// XXX What about orthogonal flows? It doesn't make sense to
// keep propagating this bit across an orthogonal boundary,
// where the meaning of BSize changes. Bug 1175517.
} while (!hitCBReflowInput ||
(eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
!IsQuirkContainingBlockHeight(rs, rs->mFrame->Type())));
// Note: We actually don't need to set the
// NS_FRAME_CONTAINS_RELATIVE_BSIZE bit for the cases
// where we hit the early break statements in
// CalcQuirkContainingBlockHeight. But it doesn't hurt
// us to set the bit in these cases.
}
if (mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY)) {
// If we're reflowing everything, then we'll find out if we need
// to re-set this.
mFrame->RemoveStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
}
void ReflowInput::InitDynamicReflowRoot() {
if (mFrame->CanBeDynamicReflowRoot()) {
mFrame->AddStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
} else {
mFrame->RemoveStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
}
}
nscoord ReflowInput::GetContainingBlockContentISize(
WritingMode aWritingMode) const {
if (!mCBReflowInput) {
return 0;
}
return mCBReflowInput->GetWritingMode().IsOrthogonalTo(aWritingMode)
? mCBReflowInput->ComputedBSize()
: mCBReflowInput->ComputedISize();
}
void ReflowInput::InitFrameType(LayoutFrameType aFrameType) {
const nsStyleDisplay* disp = mStyleDisplay;
nsCSSFrameType frameType;
DISPLAY_INIT_TYPE(mFrame, this);
if (aFrameType == LayoutFrameType::Table) {
mFrameType = NS_CSS_FRAME_TYPE_BLOCK;
return;
}
NS_ASSERTION(mFrame->StyleDisplay()->IsAbsolutelyPositionedStyle() ==
disp->IsAbsolutelyPositionedStyle(),
"Unexpected position style");
NS_ASSERTION(
mFrame->StyleDisplay()->IsFloatingStyle() == disp->IsFloatingStyle(),
"Unexpected float style");
if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
if (disp->IsAbsolutelyPositioned(mFrame)) {
frameType = NS_CSS_FRAME_TYPE_ABSOLUTE;
// XXXfr hack for making frames behave properly when in overflow container
// lists
// see bug 154892; need to revisit later
if (mFrame->GetPrevInFlow()) frameType = NS_CSS_FRAME_TYPE_BLOCK;
} else if (disp->IsFloating(mFrame)) {
frameType = NS_CSS_FRAME_TYPE_FLOATING;
} else {
NS_ASSERTION(disp->mDisplay == StyleDisplay::MozPopup,
"unknown out of flow frame type");
frameType = NS_CSS_FRAME_TYPE_UNKNOWN;
}
} else {
switch (disp->DisplayOutside()) {
case StyleDisplayOutside::Block:
case StyleDisplayOutside::TableCaption:
frameType = NS_CSS_FRAME_TYPE_BLOCK;
break;
case StyleDisplayOutside::Inline:
frameType = NS_CSS_FRAME_TYPE_INLINE;
break;
case StyleDisplayOutside::InternalTable:
frameType = NS_CSS_FRAME_TYPE_INTERNAL_TABLE;
break;
case StyleDisplayOutside::InternalRuby:
switch (disp->DisplayInside()) {
case StyleDisplayInside::RubyTextContainer:
frameType = NS_CSS_FRAME_TYPE_BLOCK;
break;
case StyleDisplayInside::RubyBase:
case StyleDisplayInside::RubyText:
case StyleDisplayInside::RubyBaseContainer:
frameType = NS_CSS_FRAME_TYPE_INLINE;
break;
default:
MOZ_ASSERT_UNREACHABLE("unexpected inside for InternalRuby");
}
break;
default:
frameType = NS_CSS_FRAME_TYPE_UNKNOWN;
break;
}
}
// See if the frame is replaced
if (mFrame->IsFrameOfType(nsIFrame::eReplacedContainsBlock)) {
frameType = NS_FRAME_REPLACED_CONTAINS_BLOCK(frameType);
} else if (mFrame->IsFrameOfType(nsIFrame::eReplaced)) {
frameType = NS_FRAME_REPLACED(frameType);
}
mFrameType = frameType;
}
/* static */
void ReflowInput::ComputeRelativeOffsets(WritingMode aWM, nsIFrame* aFrame,
const LogicalSize& aCBSize,
nsMargin& aComputedOffsets) {
LogicalMargin offsets(aWM);
mozilla::Side inlineStart = aWM.PhysicalSide(eLogicalSideIStart);
mozilla::Side inlineEnd = aWM.PhysicalSide(eLogicalSideIEnd);
mozilla::Side blockStart = aWM.PhysicalSide(eLogicalSideBStart);
mozilla::Side blockEnd = aWM.PhysicalSide(eLogicalSideBEnd);
const nsStylePosition* position = aFrame->StylePosition();
// Compute the 'inlineStart' and 'inlineEnd' values. 'inlineStart'
// moves the boxes to the end of the line, and 'inlineEnd' moves the
// boxes to the start of the line. The computed values are always:
// inlineStart=-inlineEnd
bool inlineStartIsAuto = position->mOffset.Get(inlineStart).IsAuto();
bool inlineEndIsAuto = position->mOffset.Get(inlineEnd).IsAuto();
// If neither 'inlineStart' nor 'inlineEnd' is auto, then we're
// over-constrained and we ignore one of them
if (!inlineStartIsAuto && !inlineEndIsAuto) {
inlineEndIsAuto = true;
}
if (inlineStartIsAuto) {
if (inlineEndIsAuto) {
// If both are 'auto' (their initial values), the computed values are 0
offsets.IStart(aWM) = offsets.IEnd(aWM) = 0;
} else {
// 'inlineEnd' isn't 'auto' so compute its value
offsets.IEnd(aWM) = nsLayoutUtils::ComputeCBDependentValue(
aCBSize.ISize(aWM), position->mOffset.Get(inlineEnd));
// Computed value for 'inlineStart' is minus the value of 'inlineEnd'
offsets.IStart(aWM) = -offsets.IEnd(aWM);
}
} else {
NS_ASSERTION(inlineEndIsAuto, "unexpected specified constraint");
// 'InlineStart' isn't 'auto' so compute its value
offsets.IStart(aWM) = nsLayoutUtils::ComputeCBDependentValue(
aCBSize.ISize(aWM), position->mOffset.Get(inlineStart));
// Computed value for 'inlineEnd' is minus the value of 'inlineStart'
offsets.IEnd(aWM) = -offsets.IStart(aWM);
}
// Compute the 'blockStart' and 'blockEnd' values. The 'blockStart'
// and 'blockEnd' properties move relatively positioned elements in
// the block progression direction. They also must be each other's
// negative
bool blockStartIsAuto = position->mOffset.Get(blockStart).IsAuto();
bool blockEndIsAuto = position->mOffset.Get(blockEnd).IsAuto();
// Check for percentage based values and a containing block block-size
// that depends on the content block-size. Treat them like 'auto'
if (NS_UNCONSTRAINEDSIZE == aCBSize.BSize(aWM)) {
if (position->OffsetHasPercent(blockStart)) {
blockStartIsAuto = true;
}
if (position->OffsetHasPercent(blockEnd)) {
blockEndIsAuto = true;
}
}
// If neither is 'auto', 'block-end' is ignored
if (!blockStartIsAuto && !blockEndIsAuto) {
blockEndIsAuto = true;
}
if (blockStartIsAuto) {
if (blockEndIsAuto) {
// If both are 'auto' (their initial values), the computed values are 0
offsets.BStart(aWM) = offsets.BEnd(aWM) = 0;
} else {
// 'blockEnd' isn't 'auto' so compute its value
offsets.BEnd(aWM) = nsLayoutUtils::ComputeBSizeDependentValue(
aCBSize.BSize(aWM), position->mOffset.Get(blockEnd));
// Computed value for 'blockStart' is minus the value of 'blockEnd'
offsets.BStart(aWM) = -offsets.BEnd(aWM);
}
} else {
NS_ASSERTION(blockEndIsAuto, "unexpected specified constraint");
// 'blockStart' isn't 'auto' so compute its value
offsets.BStart(aWM) = nsLayoutUtils::ComputeBSizeDependentValue(
aCBSize.BSize(aWM), position->mOffset.Get(blockStart));
// Computed value for 'blockEnd' is minus the value of 'blockStart'
offsets.BEnd(aWM) = -offsets.BStart(aWM);
}
// Convert the offsets to physical coordinates and store them on the frame
aComputedOffsets = offsets.GetPhysicalMargin(aWM);
nsMargin* physicalOffsets =
aFrame->GetProperty(nsIFrame::ComputedOffsetProperty());
if (physicalOffsets) {
*physicalOffsets = aComputedOffsets;
} else {
aFrame->AddProperty(nsIFrame::ComputedOffsetProperty(),
new nsMargin(aComputedOffsets));
}
}
/* static */
void ReflowInput::ApplyRelativePositioning(nsIFrame* aFrame,
const nsMargin& aComputedOffsets,
nsPoint* aPosition) {
if (!aFrame->IsRelativelyPositioned()) {
NS_ASSERTION(!aFrame->GetProperty(nsIFrame::NormalPositionProperty()),
"We assume that changing the 'position' property causes "
"frame reconstruction. If that ever changes, this code "
"should call "
"aFrame->RemoveProperty(nsIFrame::NormalPositionProperty())");
return;
}
// Store the normal position
nsPoint* normalPosition =
aFrame->GetProperty(nsIFrame::NormalPositionProperty());
if (normalPosition) {
*normalPosition = *aPosition;
} else {
aFrame->AddProperty(nsIFrame::NormalPositionProperty(),
new nsPoint(*aPosition));
}
const nsStyleDisplay* display = aFrame->StyleDisplay();
if (StylePositionProperty::Relative == display->mPosition) {
*aPosition += nsPoint(aComputedOffsets.left, aComputedOffsets.top);
} else if (StylePositionProperty::Sticky == display->mPosition &&
!aFrame->GetNextContinuation() && !aFrame->GetPrevContinuation() &&
!aFrame->HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT)) {
// Sticky positioning for elements with multiple frames needs to be
// computed all at once. We can't safely do that here because we might be
// partway through (re)positioning the frames, so leave it until the scroll
// container reflows and calls StickyScrollContainer::UpdatePositions.
// For single-frame sticky positioned elements, though, go ahead and apply
// it now to avoid unnecessary overflow updates later.
StickyScrollContainer* ssc =
StickyScrollContainer::GetStickyScrollContainerForFrame(aFrame);
if (ssc) {
*aPosition = ssc->ComputePosition(aFrame);
}
}
}
void ReflowInput::ApplyRelativePositioning(
nsIFrame* aFrame, mozilla::WritingMode aWritingMode,
const mozilla::LogicalMargin& aComputedOffsets,
mozilla::LogicalPoint* aPosition, const nsSize& aContainerSize) {
// Subtract the size of the frame from the container size that we
// use for converting between the logical and physical origins of
// the frame. This accounts for the fact that logical origins in RTL
// coordinate systems are at the top right of the frame instead of
// the top left.
nsSize frameSize = aFrame->GetSize();
nsPoint pos =
aPosition->GetPhysicalPoint(aWritingMode, aContainerSize - frameSize);
ApplyRelativePositioning(
aFrame, aComputedOffsets.GetPhysicalMargin(aWritingMode), &pos);
*aPosition =
mozilla::LogicalPoint(aWritingMode, pos, aContainerSize - frameSize);
}
// Returns true if aFrame is non-null, a XUL frame, and "XUL-collapsed" (which
// only becomes a valid question to ask if we know it's a XUL frame).
static bool IsXULCollapsedXULFrame(nsIFrame* aFrame) {
return aFrame && aFrame->IsXULBoxFrame() && aFrame->IsXULCollapsed();
}
nsIFrame* ReflowInput::GetHypotheticalBoxContainer(nsIFrame* aFrame,
nscoord& aCBIStartEdge,
LogicalSize& aCBSize) const {
aFrame = aFrame->GetContainingBlock();
NS_ASSERTION(aFrame != mFrame, "How did that happen?");
/* Now aFrame is the containing block we want */
/* Check whether the containing block is currently being reflowed.
If so, use the info from the reflow input. */
const ReflowInput* reflowInput;
if (aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW)) {
for (reflowInput = mParentReflowInput;
reflowInput && reflowInput->mFrame != aFrame;
reflowInput = reflowInput->mParentReflowInput) {
/* do nothing */
}
} else {
reflowInput = nullptr;
}
if (reflowInput) {
WritingMode wm = reflowInput->GetWritingMode();
NS_ASSERTION(wm == aFrame->GetWritingMode(), "unexpected writing mode");
aCBIStartEdge = reflowInput->ComputedLogicalBorderPadding().IStart(wm);
aCBSize = reflowInput->ComputedSize(wm);
} else {
/* Didn't find a reflow reflowInput for aFrame. Just compute the
information we want, on the assumption that aFrame already knows its
size. This really ought to be true by now. */
NS_ASSERTION(!aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW),
"aFrame shouldn't be in reflow; we'll lie if it is");
WritingMode wm = aFrame->GetWritingMode();
// Compute CB's offset & content-box size by subtracting borderpadding from
// frame size. Exception: if the CB is 0-sized, it *might* be a child of a
// XUL-collapsed frame and might have nonzero borderpadding that was simply
// discarded during its layout. (See the child-zero-sizing in
// nsSprocketLayout::XULLayout()). In that case, we ignore the
// borderpadding here (just like we did when laying it out), or else we'd
// produce a bogus negative content-box size.
aCBIStartEdge = 0;
aCBSize = aFrame->GetLogicalSize(wm);
if (!aCBSize.IsAllZero() ||
(!IsXULCollapsedXULFrame(aFrame->GetParent()))) {
// aFrame is not XUL-collapsed (nor is it a child of a XUL-collapsed
// frame), so we can go ahead and subtract out border padding.
LogicalMargin borderPadding = aFrame->GetLogicalUsedBorderAndPadding(wm);
aCBIStartEdge += borderPadding.IStart(wm);
aCBSize -= borderPadding.Size(wm);
}
}
return aFrame;
}
struct nsHypotheticalPosition {
// offset from inline-start edge of containing block (which is a padding edge)
nscoord mIStart;
// offset from block-start edge of containing block (which is a padding edge)
nscoord mBStart;
WritingMode mWritingMode;
};
static bool GetIntrinsicSizeFor(nsIFrame* aFrame, nsSize& aIntrinsicSize,
LayoutFrameType aFrameType) {
// See if it is an image frame
bool success = false;
// Currently the only type of replaced frame that we can get the intrinsic
// size for is an image frame
// XXX We should add back the GetReflowOutput() function and one of the
// things should be the intrinsic size...
if (aFrameType == LayoutFrameType::Image) {
nsImageFrame* imageFrame = (nsImageFrame*)aFrame;
if (NS_SUCCEEDED(imageFrame->GetIntrinsicImageSize(aIntrinsicSize))) {
success = (aIntrinsicSize != nsSize(0, 0));
}
}
return success;
}
/**
* aInsideBoxSizing returns the part of the padding, border, and margin
* in the aAxis dimension that goes inside the edge given by box-sizing;
* aOutsideBoxSizing returns the rest.
*/
void ReflowInput::CalculateBorderPaddingMargin(
LogicalAxis aAxis, nscoord aContainingBlockSize, nscoord* aInsideBoxSizing,
nscoord* aOutsideBoxSizing) const {
WritingMode wm = GetWritingMode();
mozilla::Side startSide =
wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeStart));
mozilla::Side endSide =
wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeEnd));
nsMargin styleBorder = mStyleBorder->GetComputedBorder();
nscoord borderStartEnd =
styleBorder.Side(startSide) + styleBorder.Side(endSide);
nscoord paddingStartEnd, marginStartEnd;
// See if the style system can provide us the padding directly
nsMargin stylePadding;
if (mStylePadding->GetPadding(stylePadding)) {
paddingStartEnd = stylePadding.Side(startSide) + stylePadding.Side(endSide);
} else {
// We have to compute the start and end values
nscoord start, end;
start = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStylePadding->mPadding.Get(startSide));
end = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStylePadding->mPadding.Get(endSide));
paddingStartEnd = start + end;
}
// See if the style system can provide us the margin directly
nsMargin styleMargin;
if (mStyleMargin->GetMargin(styleMargin)) {
marginStartEnd = styleMargin.Side(startSide) + styleMargin.Side(endSide);
} else {
nscoord start, end;
// We have to compute the start and end values
if (mStyleMargin->mMargin.Get(startSide).IsAuto()) {
// We set this to 0 for now, and fix it up later in
// InitAbsoluteConstraints (which is caller of this function, via
// CalculateHypotheticalPosition).
start = 0;
} else {
start = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStyleMargin->mMargin.Get(startSide));
}
if (mStyleMargin->mMargin.Get(endSide).IsAuto()) {
// We set this to 0 for now, and fix it up later in
// InitAbsoluteConstraints (which is caller of this function, via
// CalculateHypotheticalPosition).
end = 0;
} else {
end = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStyleMargin->mMargin.Get(endSide));
}
marginStartEnd = start + end;
}
nscoord outside = paddingStartEnd + borderStartEnd + marginStartEnd;
nscoord inside = 0;
if (mStylePosition->mBoxSizing == StyleBoxSizing::Border) {
inside = borderStartEnd + paddingStartEnd;
}
outside -= inside;
*aInsideBoxSizing = inside;
*aOutsideBoxSizing = outside;
}
/**
* Returns true iff a pre-order traversal of the normal child
* frames rooted at aFrame finds no non-empty frame before aDescendant.
*/
static bool AreAllEarlierInFlowFramesEmpty(nsIFrame* aFrame,
nsIFrame* aDescendant,
bool* aFound) {
if (aFrame == aDescendant) {
*aFound = true;
return true;
}
if (aFrame->IsPlaceholderFrame()) {
auto ph = static_cast<nsPlaceholderFrame*>(aFrame);
MOZ_ASSERT(ph->IsSelfEmpty() && ph->PrincipalChildList().IsEmpty());
ph->SetLineIsEmptySoFar(true);
} else {
if (!aFrame->IsSelfEmpty()) {
*aFound = false;
return false;
}
for (nsIFrame* f : aFrame->PrincipalChildList()) {
bool allEmpty = AreAllEarlierInFlowFramesEmpty(f, aDescendant, aFound);
if (*aFound || !allEmpty) {
return allEmpty;
}
}
}
*aFound = false;
return true;
}
// Calculate the position of the hypothetical box that the element would have
// if it were in the flow.
// The values returned are relative to the padding edge of the absolute
// containing block. The writing-mode of the hypothetical box position will
// have the same block direction as the absolute containing block, but may
// differ in inline-bidi direction.
// In the code below, |aCBReflowInput->frame| is the absolute containing block,
// while |containingBlock| is the nearest block container of the placeholder
// frame, which may be different from the absolute containing block.
void ReflowInput::CalculateHypotheticalPosition(
nsPresContext* aPresContext, nsPlaceholderFrame* aPlaceholderFrame,
const ReflowInput* aCBReflowInput, nsHypotheticalPosition& aHypotheticalPos,
LayoutFrameType aFrameType) const {
NS_ASSERTION(mStyleDisplay->mOriginalDisplay != StyleDisplay::None,
"mOriginalDisplay has not been properly initialized");
// Find the nearest containing block frame to the placeholder frame,
// and its inline-start edge and width.
nscoord blockIStartContentEdge;
// Dummy writing mode for blockContentSize, will be changed as needed by
// GetHypotheticalBoxContainer.
WritingMode cbwm = aCBReflowInput->GetWritingMode();
LogicalSize blockContentSize(cbwm);
nsIFrame* containingBlock = GetHypotheticalBoxContainer(
aPlaceholderFrame, blockIStartContentEdge, blockContentSize);
// Now blockContentSize is in containingBlock's writing mode.
// If it's a replaced element and it has a 'auto' value for
//'inline size', see if we can get the intrinsic size. This will allow
// us to exactly determine both the inline edges
WritingMode wm = containingBlock->GetWritingMode();
const auto& styleISize = mStylePosition->ISize(wm);
bool isAutoISize = styleISize.IsAuto();
nsSize intrinsicSize;
bool knowIntrinsicSize = false;
if (NS_FRAME_IS_REPLACED(mFrameType) && isAutoISize) {
// See if we can get the intrinsic size of the element
knowIntrinsicSize = GetIntrinsicSizeFor(mFrame, intrinsicSize, aFrameType);
}
// See if we can calculate what the box inline size would have been if
// the element had been in the flow
nscoord boxISize;
bool knowBoxISize = false;
if (mStyleDisplay->IsOriginalDisplayInlineOutside() &&
!NS_FRAME_IS_REPLACED(mFrameType)) {
// For non-replaced inline-level elements the 'inline size' property
// doesn't apply, so we don't know what the inline size would have
// been without reflowing it
} else {
// It's either a replaced inline-level element or a block-level element
// Determine the total amount of inline direction
// border/padding/margin that the element would have had if it had
// been in the flow. Note that we ignore any 'auto' and 'inherit'
// values
nscoord insideBoxSizing, outsideBoxSizing;
CalculateBorderPaddingMargin(eLogicalAxisInline, blockContentSize.ISize(wm),
&insideBoxSizing, &outsideBoxSizing);
if (NS_FRAME_IS_REPLACED(mFrameType) && isAutoISize) {
// It's a replaced element with an 'auto' inline size so the box
// inline size is its intrinsic size plus any border/padding/margin
if (knowIntrinsicSize) {
boxISize = LogicalSize(wm, intrinsicSize).ISize(wm) + outsideBoxSizing +
insideBoxSizing;
knowBoxISize = true;
}
} else if (isAutoISize) {
// The box inline size is the containing block inline size
boxISize = blockContentSize.ISize(wm);
knowBoxISize = true;
} else {
// We need to compute it. It's important we do this, because if it's
// percentage based this computed value may be different from the computed
// value calculated using the absolute containing block width
boxISize = ComputeISizeValue(blockContentSize.ISize(wm), insideBoxSizing,
outsideBoxSizing, styleISize) +
insideBoxSizing + outsideBoxSizing;
knowBoxISize = true;
}
}
// Get the placeholder x-offset and y-offset in the coordinate
// space of its containing block
// XXXbz the placeholder is not fully reflowed yet if our containing block is
// relatively positioned...
nsSize containerSize =
containingBlock->HasAnyStateBits(NS_FRAME_IN_REFLOW)
? aCBReflowInput->ComputedSizeAsContainerIfConstrained()
: containingBlock->GetSize();
LogicalPoint placeholderOffset(
wm, aPlaceholderFrame->GetOffsetToIgnoringScrolling(containingBlock),
containerSize);
// First, determine the hypothetical box's mBStart. We want to check the
// content insertion frame of containingBlock for block-ness, but make
// sure to compute all coordinates in the coordinate system of
// containingBlock.
nsBlockFrame* blockFrame =
do_QueryFrame(containingBlock->GetContentInsertionFrame());
if (blockFrame) {
// Use a null containerSize to convert a LogicalPoint functioning as a
// vector into a physical nsPoint vector.
const nsSize nullContainerSize;
LogicalPoint blockOffset(
wm, blockFrame->GetOffsetToIgnoringScrolling(containingBlock),
nullContainerSize);
bool isValid;
nsBlockInFlowLineIterator iter(blockFrame, aPlaceholderFrame, &isValid);
if (!isValid) {
// Give up. We're probably dealing with somebody using
// position:absolute inside native-anonymous content anyway.
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
} else {
NS_ASSERTION(iter.GetContainer() == blockFrame,
"Found placeholder in wrong block!");
nsBlockFrame::LineIterator lineBox = iter.GetLine();
// How we determine the hypothetical box depends on whether the element
// would have been inline-level or block-level
LogicalRect lineBounds = lineBox->GetBounds().ConvertTo(
wm, lineBox->mWritingMode, lineBox->mContainerSize);
if (mStyleDisplay->IsOriginalDisplayInlineOutside()) {
// Use the block-start of the inline box which the placeholder lives in
// as the hypothetical box's block-start.
aHypotheticalPos.mBStart = lineBounds.BStart(wm) + blockOffset.B(wm);
} else {
// The element would have been block-level which means it would
// be below the line containing the placeholder frame, unless
// all the frames before it are empty. In that case, it would
// have been just before this line.
// XXXbz the line box is not fully reflowed yet if our
// containing block is relatively positioned...
if (lineBox != iter.End()) {
nsIFrame* firstFrame = lineBox->mFirstChild;
bool allEmpty = false;
if (firstFrame == aPlaceholderFrame) {
aPlaceholderFrame->SetLineIsEmptySoFar(true);
allEmpty = true;
} else {
auto prev = aPlaceholderFrame->GetPrevSibling();
if (prev && prev->IsPlaceholderFrame()) {
auto ph = static_cast<nsPlaceholderFrame*>(prev);
if (ph->GetLineIsEmptySoFar(&allEmpty)) {
aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
}
}
}
if (!allEmpty) {
bool found = false;
while (firstFrame) { // See bug 223064
allEmpty = AreAllEarlierInFlowFramesEmpty(
firstFrame, aPlaceholderFrame, &found);
if (found || !allEmpty) {
break;
}
firstFrame = firstFrame->GetNextSibling();
}
aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
}
NS_ASSERTION(firstFrame, "Couldn't find placeholder!");
if (allEmpty) {
// The top of the hypothetical box is the top of the line
// containing the placeholder, since there is nothing in the
// line before our placeholder except empty frames.
aHypotheticalPos.mBStart =
lineBounds.BStart(wm) + blockOffset.B(wm);
} else {
// The top of the hypothetical box is just below the line
// containing the placeholder.
aHypotheticalPos.mBStart = lineBounds.BEnd(wm) + blockOffset.B(wm);
}
} else {
// Just use the placeholder's block-offset wrt the containing block
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
}
}
}
} else {
// The containing block is not a block, so it's probably something
// like a XUL box, etc.
// Just use the placeholder's block-offset
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
}
// Second, determine the hypothetical box's mIStart.
// How we determine the hypothetical box depends on whether the element
// would have been inline-level or block-level
if (mStyleDisplay->IsOriginalDisplayInlineOutside() ||
mFlags.mIOffsetsNeedCSSAlign) {
// The placeholder represents the IStart edge of the hypothetical box.
// (Or if mFlags.mIOffsetsNeedCSSAlign is set, it represents the IStart
// edge of the Alignment Container.)
aHypotheticalPos.mIStart = placeholderOffset.I(wm);
} else {
aHypotheticalPos.mIStart = blockIStartContentEdge;
}
// The current coordinate space is that of the nearest block to the
// placeholder. Convert to the coordinate space of the absolute containing
// block.
nsPoint cbOffset =
containingBlock->GetOffsetToIgnoringScrolling(aCBReflowInput->mFrame);
nsSize reflowSize = aCBReflowInput->ComputedSizeAsContainerIfConstrained();
LogicalPoint logCBOffs(wm, cbOffset, reflowSize - containerSize);
aHypotheticalPos.mIStart += logCBOffs.I(wm);
aHypotheticalPos.mBStart += logCBOffs.B(wm);
// The specified offsets are relative to the absolute containing block's
// padding edge and our current values are relative to the border edge, so
// translate.
LogicalMargin border = aCBReflowInput->ComputedLogicalBorderPadding() -
aCBReflowInput->ComputedLogicalPadding();
border = border.ConvertTo(wm, aCBReflowInput->GetWritingMode());
aHypotheticalPos.mIStart -= border.IStart(wm);
aHypotheticalPos.mBStart -= border.BStart(wm);
// At this point, we have computed aHypotheticalPos using the writing mode
// of the placeholder's containing block.
if (cbwm.GetBlockDir() != wm.GetBlockDir()) {
// If the block direction we used in calculating aHypotheticalPos does not
// match the absolute containing block's, we need to convert here so that
// aHypotheticalPos is usable in relation to the absolute containing block.
// This requires computing or measuring the abspos frame's block-size,
// which is not otherwise required/used here (as aHypotheticalPos
// records only the block-start coordinate).
// This is similar to the inline-size calculation for a replaced
// inline-level element or a block-level element (above), except that
// 'auto' sizing is handled differently in the block direction for non-
// replaced elements and replaced elements lacking an intrinsic size.
// Determine the total amount of block direction
// border/padding/margin that the element would have had if it had
// been in the flow. Note that we ignore any 'auto' and 'inherit'
// values.
nscoord insideBoxSizing, outsideBoxSizing;
CalculateBorderPaddingMargin(eLogicalAxisBlock, blockContentSize.BSize(wm),
&insideBoxSizing, &outsideBoxSizing);
nscoord boxBSize;
const auto& styleBSize = mStylePosition->BSize(wm);
if (styleBSize.BehavesLikeInitialValueOnBlockAxis()) {
if (NS_FRAME_IS_REPLACED(mFrameType) && knowIntrinsicSize) {
// It's a replaced element with an 'auto' block size so the box
// block size is its intrinsic size plus any border/padding/margin
boxBSize = LogicalSize(wm, intrinsicSize).BSize(wm) + outsideBoxSizing +
insideBoxSizing;
} else {
// XXX Bug 1191801
// Figure out how to get the correct boxBSize here (need to reflow the
// positioned frame?)
boxBSize = 0;
}
} else {
// We need to compute it. It's important we do this, because if it's
// percentage-based this computed value may be different from the
// computed value calculated using the absolute containing block height.
boxBSize = nsLayoutUtils::ComputeBSizeValue(
blockContentSize.BSize(wm), insideBoxSizing,
styleBSize.AsLengthPercentage()) +
insideBoxSizing + outsideBoxSizing;
}
LogicalSize boxSize(wm, knowBoxISize ? boxISize : 0, boxBSize);
LogicalPoint origin(wm, aHypotheticalPos.mIStart, aHypotheticalPos.mBStart);
origin =
origin.ConvertTo(cbwm, wm, reflowSize - boxSize.GetPhysicalSize(wm));
aHypotheticalPos.mIStart = origin.I(cbwm);
aHypotheticalPos.mBStart = origin.B(cbwm);
aHypotheticalPos.mWritingMode = cbwm;
} else {
aHypotheticalPos.mWritingMode = wm;
}
}
void ReflowInput::InitAbsoluteConstraints(nsPresContext* aPresContext,
const ReflowInput* aCBReflowInput,
const LogicalSize& aCBSize,
LayoutFrameType aFrameType) {
WritingMode wm = GetWritingMode();
WritingMode cbwm = aCBReflowInput->GetWritingMode();
NS_WARNING_ASSERTION(aCBSize.BSize(cbwm) != NS_UNCONSTRAINEDSIZE,
"containing block bsize must be constrained");
NS_ASSERTION(aFrameType != LayoutFrameType::Table,
"InitAbsoluteConstraints should not be called on table frames");
NS_ASSERTION(mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"Why are we here?");
const auto& styleOffset = mStylePosition->mOffset;
bool iStartIsAuto = styleOffset.GetIStart(cbwm).IsAuto();
bool iEndIsAuto = styleOffset.GetIEnd(cbwm).IsAuto();
bool bStartIsAuto = styleOffset.GetBStart(cbwm).IsAuto();
bool bEndIsAuto = styleOffset.GetBEnd(cbwm).IsAuto();
// If both 'left' and 'right' are 'auto' or both 'top' and 'bottom' are
// 'auto', then compute the hypothetical box position where the element would
// have been if it had been in the flow
nsHypotheticalPosition hypotheticalPos;
if ((iStartIsAuto && iEndIsAuto) || (bStartIsAuto && bEndIsAuto)) {
nsPlaceholderFrame* placeholderFrame = mFrame->GetPlaceholderFrame();
MOZ_ASSERT(placeholderFrame, "no placeholder frame");
nsIFrame* placeholderParent = placeholderFrame->GetParent();
MOZ_ASSERT(placeholderParent, "shouldn't have unparented placeholders");
if (placeholderFrame->HasAnyStateBits(
PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN)) {
MOZ_ASSERT(placeholderParent->IsFlexOrGridContainer(),
"This flag should only be set on grid/flex children");
// If the (as-yet unknown) static position will determine the inline
// and/or block offsets, set flags to note those offsets aren't valid
// until we can do CSS Box Alignment on the OOF frame.
mFlags.mIOffsetsNeedCSSAlign = (iStartIsAuto && iEndIsAuto);
mFlags.mBOffsetsNeedCSSAlign = (bStartIsAuto && bEndIsAuto);
}
if (mFlags.mStaticPosIsCBOrigin) {
hypotheticalPos.mWritingMode = cbwm;
hypotheticalPos.mIStart = nscoord(0);
hypotheticalPos.mBStart = nscoord(0);
if (placeholderParent->IsGridContainerFrame() &&
placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY |
NS_STATE_GRID_IS_ROW_MASONRY)) {
// Disable CSS alignment in Masonry layout since we don't have real grid
// areas in that axis. We'll use the placeholder position instead as it
// was calculated by nsGridContainerFrame::MasonryLayout.
auto cbsz = aCBSize.GetPhysicalSize(cbwm);
LogicalPoint pos = placeholderFrame->GetLogicalPosition(cbwm, cbsz);
if (placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY)) {
mFlags.mIOffsetsNeedCSSAlign = false;
hypotheticalPos.mIStart = pos.I(cbwm);
} else {
mFlags.mBOffsetsNeedCSSAlign = false;
hypotheticalPos.mBStart = pos.B(cbwm);
}
}
} else {
// XXXmats all this is broken for orthogonal writing-modes: bug 1521988.
CalculateHypotheticalPosition(aPresContext, placeholderFrame,
aCBReflowInput, hypotheticalPos,
aFrameType);
if (aCBReflowInput->mFrame->IsGridContainerFrame()) {
// 'hypotheticalPos' is relative to the padding rect of the CB *frame*.
// In grid layout the CB is the grid area rectangle, so we translate
// 'hypotheticalPos' to be relative that rectangle here.
nsRect cb = nsGridContainerFrame::GridItemCB(mFrame);
nscoord left(0);
nscoord right(0);
if (cbwm.IsBidiLTR()) {
left = cb.X();
} else {
right = aCBReflowInput->ComputedWidth() +
aCBReflowInput->ComputedPhysicalPadding().LeftRight() -
cb.XMost();
}
LogicalMargin offsets(cbwm, nsMargin(cb.Y(), right, nscoord(0), left));
hypotheticalPos.mIStart -= offsets.IStart(cbwm);
hypotheticalPos.mBStart -= offsets.BStart(cbwm);
}
}
}
// Initialize the 'left' and 'right' computed offsets
// XXX Handle new 'static-position' value...
// Size of the containing block in its writing mode
LogicalSize cbSize = aCBSize;
LogicalMargin offsets = ComputedLogicalOffsets().ConvertTo(cbwm, wm);
if (iStartIsAuto) {
offsets.IStart(cbwm) = 0;
} else {
offsets.IStart(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
cbSize.ISize(cbwm), styleOffset.GetIStart(cbwm));
}
if (iEndIsAuto) {
offsets.IEnd(cbwm) = 0;
} else {
offsets.IEnd(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
cbSize.ISize(cbwm), styleOffset.GetIEnd(cbwm));
}
if (iStartIsAuto && iEndIsAuto) {
if (cbwm.IsBidiLTR() != hypotheticalPos.mWritingMode.IsBidiLTR()) {
offsets.IEnd(cbwm) = hypotheticalPos.mIStart;
iEndIsAuto = false;
} else {
offsets.IStart(cbwm) = hypotheticalPos.mIStart;
iStartIsAuto = false;
}
}
if (bStartIsAuto) {
offsets.BStart(cbwm) = 0;
} else {
offsets.BStart(cbwm) = nsLayoutUtils::ComputeBSizeDependentValue(
cbSize.BSize(cbwm), styleOffset.GetBStart(cbwm));
}
if (bEndIsAuto) {
offsets.BEnd(cbwm) = 0;
} else {
offsets.BEnd(cbwm) = nsLayoutUtils::ComputeBSizeDependentValue(
cbSize.BSize(cbwm), styleOffset.GetBEnd(cbwm));
}
if (bStartIsAuto && bEndIsAuto) {
// Treat 'top' like 'static-position'
offsets.BStart(cbwm) = hypotheticalPos.mBStart;
bStartIsAuto = false;
}
SetComputedLogicalOffsets(offsets.ConvertTo(wm, cbwm));
typedef nsIFrame::ComputeSizeFlags ComputeSizeFlags;
ComputeSizeFlags computeSizeFlags = ComputeSizeFlags::eDefault;
if (mFlags.mIClampMarginBoxMinSize) {
computeSizeFlags = ComputeSizeFlags(
computeSizeFlags | ComputeSizeFlags::eIClampMarginBoxMinSize);
}
if (mFlags.mBClampMarginBoxMinSize) {
computeSizeFlags = ComputeSizeFlags(
computeSizeFlags | ComputeSizeFlags::eBClampMarginBoxMinSize);
}
if (mFlags.mApplyAutoMinSize) {
computeSizeFlags = ComputeSizeFlags(computeSizeFlags |
ComputeSizeFlags::eIApplyAutoMinSize);
}
if (mFlags.mShrinkWrap) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
if (mFlags.mUseAutoBSize) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eUseAutoBSize);
}
if (wm.IsOrthogonalTo(cbwm)) {
if (bStartIsAuto || bEndIsAuto) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
} else {
if (iStartIsAuto || iEndIsAuto) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
}
LogicalSize computedSize(wm);
{
AutoMaybeDisableFontInflation an(mFrame);
computedSize = mFrame->ComputeSize(
mRenderingContext, wm, cbSize.ConvertTo(wm, cbwm),
cbSize.ConvertTo(wm, cbwm).ISize(wm), // XXX or AvailableISize()?
ComputedLogicalMargin().Size(wm) + ComputedLogicalOffsets().Size(wm),
ComputedLogicalBorderPadding().Size(wm) -
ComputedLogicalPadding().Size(wm),
ComputedLogicalPadding().Size(wm), computeSizeFlags);
ComputedISize() = computedSize.ISize(wm);
ComputedBSize() = computedSize.BSize(wm);
NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
NS_ASSERTION(
ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
"Bogus block-size");
}
computedSize = computedSize.ConvertTo(cbwm, wm);
// XXX Now that we have ComputeSize, can we condense many of the
// branches off of widthIsAuto?
LogicalMargin margin = ComputedLogicalMargin().ConvertTo(cbwm, wm);
const LogicalMargin borderPadding =
ComputedLogicalBorderPadding().ConvertTo(cbwm, wm);
bool iSizeIsAuto = mStylePosition->ISize(cbwm).IsAuto();
bool marginIStartIsAuto = false;
bool marginIEndIsAuto = false;
bool marginBStartIsAuto = false;
bool marginBEndIsAuto = false;
if (iStartIsAuto) {
// We know 'right' is not 'auto' anymore thanks to the hypothetical
// box code above.
// Solve for 'left'.
if (iSizeIsAuto) {
// XXXldb This, and the corresponding code in
// nsAbsoluteContainingBlock.cpp, could probably go away now that
// we always compute widths.
offsets.IStart(cbwm) = NS_AUTOOFFSET;
} else {
offsets.IStart(cbwm) = cbSize.ISize(cbwm) - offsets.IEnd(cbwm) -
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm);
}
} else if (iEndIsAuto) {
// We know 'left' is not 'auto' anymore thanks to the hypothetical
// box code above.
// Solve for 'right'.
if (iSizeIsAuto) {
// XXXldb This, and the corresponding code in
// nsAbsoluteContainingBlock.cpp, could probably go away now that
// we always compute widths.
offsets.IEnd(cbwm) = NS_AUTOOFFSET;
} else {
offsets.IEnd(cbwm) = cbSize.ISize(cbwm) - offsets.IStart(cbwm) -
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm);
}
} else {
// Neither 'inline-start' nor 'inline-end' is 'auto'.
if (wm.IsOrthogonalTo(cbwm)) {
// For orthogonal blocks, we need to handle the case where the block had
// unconstrained block-size, which mapped to unconstrained inline-size
// in the containing block's writing mode.
nscoord autoISize = cbSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm) -
offsets.IStartEnd(cbwm);
if (autoISize < 0) {
autoISize = 0;
}
if (computedSize.ISize(cbwm) == NS_UNCONSTRAINEDSIZE) {
// For non-replaced elements with block-size auto, the block-size
// fills the remaining space.
computedSize.ISize(cbwm) = autoISize;
// XXX Do these need box-sizing adjustments?
LogicalSize maxSize = ComputedMaxSize(cbwm);
LogicalSize minSize = ComputedMinSize(cbwm);
if (computedSize.ISize(cbwm) > maxSize.ISize(cbwm)) {
computedSize.ISize(cbwm) = maxSize.ISize(cbwm);
}
if (computedSize.ISize(cbwm) < minSize.ISize(cbwm)) {
computedSize.ISize(cbwm) = minSize.ISize(cbwm);
}
}
}
// However, the inline-size might
// still not fill all the available space (even though we didn't
// shrink-wrap) in case:
// * inline-size was specified
// * we're dealing with a replaced element
// * width was constrained by min- or max-inline-size.
nscoord availMarginSpace =
aCBSize.ISize(cbwm) - offsets.IStartEnd(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm) - computedSize.ISize(cbwm);
marginIStartIsAuto = mStyleMargin->mMargin.GetIStart(cbwm).IsAuto();
marginIEndIsAuto = mStyleMargin->mMargin.GetIEnd(cbwm).IsAuto();
if (marginIStartIsAuto) {
if (marginIEndIsAuto) {
if (availMarginSpace < 0) {
// Note that this case is different from the neither-'auto'
// case below, where the spec says to ignore 'left'/'right'.
// Ignore the specified value for 'margin-right'.
margin.IEnd(cbwm) = availMarginSpace;
} else {
// Both 'margin-left' and 'margin-right' are 'auto', so they get
// equal values
margin.IStart(cbwm) = availMarginSpace / 2;
margin.IEnd(cbwm) = availMarginSpace - margin.IStart(cbwm);
}
} else {
// Just 'margin-left' is 'auto'
margin.IStart(cbwm) = availMarginSpace;
}
} else {
if (marginIEndIsAuto) {
// Just 'margin-right' is 'auto'
margin.IEnd(cbwm) = availMarginSpace;
} else {
// We're over-constrained so use the direction of the containing
// block to dictate which value to ignore. (And note that the
// spec says to ignore 'left' or 'right' rather than
// 'margin-left' or 'margin-right'.)
// Note that this case is different from the both-'auto' case
// above, where the spec says to ignore
// 'margin-left'/'margin-right'.
// Ignore the specified value for 'right'.
offsets.IEnd(cbwm) += availMarginSpace;
}
}
}
bool bSizeIsAuto =
mStylePosition->BSize(cbwm).BehavesLikeInitialValueOnBlockAxis();
if (bStartIsAuto) {
// solve for block-start
if (bSizeIsAuto) {
offsets.BStart(cbwm) = NS_AUTOOFFSET;
} else {
offsets.BStart(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) -
computedSize.BSize(cbwm) - offsets