Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*
* Copyright 2017 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wasm/WasmBuiltins.h"
#include "mozilla/Atomics.h"
#include "fdlibm.h"
#include "jslibmath.h"
#include "jsmath.h"
#include "gc/Allocator.h"
#include "jit/AtomicOperations.h"
#include "jit/InlinableNatives.h"
#include "jit/MacroAssembler.h"
#include "jit/Simulator.h"
#include "js/experimental/JitInfo.h" // JSJitInfo
#include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_*
#include "js/friend/StackLimits.h" // js::AutoCheckRecursionLimit
#include "threading/Mutex.h"
#include "util/Memory.h"
#include "util/Poison.h"
#include "vm/BigIntType.h"
#include "vm/ErrorObject.h"
#include "wasm/TypedObject.h"
#include "wasm/WasmCodegenTypes.h"
#include "wasm/WasmDebug.h"
#include "wasm/WasmDebugFrame.h"
#include "wasm/WasmInstance.h"
#include "wasm/WasmStubs.h"
#include "debugger/DebugAPI-inl.h"
#include "vm/ErrorObject-inl.h"
#include "vm/Stack-inl.h"
#include "wasm/WasmInstance-inl.h"
using namespace js;
using namespace jit;
using namespace wasm;
using mozilla::HashGeneric;
using mozilla::IsNaN;
using mozilla::MakeEnumeratedRange;
static const unsigned BUILTIN_THUNK_LIFO_SIZE = 64 * 1024;
// ============================================================================
// WebAssembly builtin C++ functions called from wasm code to implement internal
// wasm operations: type descriptions.
// Some abbreviations, for the sake of conciseness.
#define _F64 MIRType::Double
#define _F32 MIRType::Float32
#define _I32 MIRType::Int32
#define _I64 MIRType::Int64
#define _PTR MIRType::Pointer
#define _RoN MIRType::RefOrNull
#define _VOID MIRType::None
#define _END MIRType::None
#define _Infallible FailureMode::Infallible
#define _FailOnNegI32 FailureMode::FailOnNegI32
#define _FailOnNullPtr FailureMode::FailOnNullPtr
#define _FailOnInvalidRef FailureMode::FailOnInvalidRef
namespace js {
namespace wasm {
const SymbolicAddressSignature SASigSinD = {
SymbolicAddress::SinD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigCosD = {
SymbolicAddress::CosD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigTanD = {
SymbolicAddress::TanD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigASinD = {
SymbolicAddress::ASinD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigACosD = {
SymbolicAddress::ACosD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigATanD = {
SymbolicAddress::ATanD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigCeilD = {
SymbolicAddress::CeilD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigCeilF = {
SymbolicAddress::CeilF, _F32, _Infallible, 1, {_F32, _END}};
const SymbolicAddressSignature SASigFloorD = {
SymbolicAddress::FloorD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigFloorF = {
SymbolicAddress::FloorF, _F32, _Infallible, 1, {_F32, _END}};
const SymbolicAddressSignature SASigTruncD = {
SymbolicAddress::TruncD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigTruncF = {
SymbolicAddress::TruncF, _F32, _Infallible, 1, {_F32, _END}};
const SymbolicAddressSignature SASigNearbyIntD = {
SymbolicAddress::NearbyIntD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigNearbyIntF = {
SymbolicAddress::NearbyIntF, _F32, _Infallible, 1, {_F32, _END}};
const SymbolicAddressSignature SASigExpD = {
SymbolicAddress::ExpD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigLogD = {
SymbolicAddress::LogD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigPowD = {
SymbolicAddress::PowD, _F64, _Infallible, 2, {_F64, _F64, _END}};
const SymbolicAddressSignature SASigATan2D = {
SymbolicAddress::ATan2D, _F64, _Infallible, 2, {_F64, _F64, _END}};
const SymbolicAddressSignature SASigMemoryGrowM32 = {
SymbolicAddress::MemoryGrowM32, _I32, _Infallible, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigMemoryGrowM64 = {
SymbolicAddress::MemoryGrowM64, _I64, _Infallible, 2, {_PTR, _I64, _END}};
const SymbolicAddressSignature SASigMemorySizeM32 = {
SymbolicAddress::MemorySizeM32, _I32, _Infallible, 1, {_PTR, _END}};
const SymbolicAddressSignature SASigMemorySizeM64 = {
SymbolicAddress::MemorySizeM64, _I64, _Infallible, 1, {_PTR, _END}};
const SymbolicAddressSignature SASigWaitI32M32 = {
SymbolicAddress::WaitI32M32,
_I32,
_FailOnNegI32,
4,
{_PTR, _I32, _I32, _I64, _END}};
const SymbolicAddressSignature SASigWaitI32M64 = {
SymbolicAddress::WaitI32M64,
_I32,
_FailOnNegI32,
4,
{_PTR, _I64, _I32, _I64, _END}};
const SymbolicAddressSignature SASigWaitI64M32 = {
SymbolicAddress::WaitI64M32,
_I32,
_FailOnNegI32,
4,
{_PTR, _I32, _I64, _I64, _END}};
const SymbolicAddressSignature SASigWaitI64M64 = {
SymbolicAddress::WaitI64M64,
_I32,
_FailOnNegI32,
4,
{_PTR, _I64, _I64, _I64, _END}};
const SymbolicAddressSignature SASigWakeM32 = {
SymbolicAddress::WakeM32, _I32, _FailOnNegI32, 3, {_PTR, _I32, _I32, _END}};
const SymbolicAddressSignature SASigWakeM64 = {
SymbolicAddress::WakeM64, _I32, _FailOnNegI32, 3, {_PTR, _I64, _I32, _END}};
const SymbolicAddressSignature SASigMemCopyM32 = {
SymbolicAddress::MemCopyM32,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I32, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemCopySharedM32 = {
SymbolicAddress::MemCopySharedM32,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I32, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemCopyM64 = {
SymbolicAddress::MemCopyM64,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I64, _I64, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigMemCopySharedM64 = {
SymbolicAddress::MemCopySharedM64,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I64, _I64, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigDataDrop = {
SymbolicAddress::DataDrop, _VOID, _FailOnNegI32, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigMemFillM32 = {
SymbolicAddress::MemFillM32,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I32, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemFillSharedM32 = {
SymbolicAddress::MemFillSharedM32,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I32, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemFillM64 = {
SymbolicAddress::MemFillM64,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I64, _I32, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigMemFillSharedM64 = {
SymbolicAddress::MemFillSharedM64,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I64, _I32, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigMemInitM32 = {
SymbolicAddress::MemInitM32,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I32, _I32, _I32, _I32, _END}};
const SymbolicAddressSignature SASigMemInitM64 = {
SymbolicAddress::MemInitM64,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I64, _I32, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableCopy = {
SymbolicAddress::TableCopy,
_VOID,
_FailOnNegI32,
6,
{_PTR, _I32, _I32, _I32, _I32, _I32, _END}};
const SymbolicAddressSignature SASigElemDrop = {
SymbolicAddress::ElemDrop, _VOID, _FailOnNegI32, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigTableFill = {
SymbolicAddress::TableFill,
_VOID,
_FailOnNegI32,
5,
{_PTR, _I32, _RoN, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableGet = {SymbolicAddress::TableGet,
_RoN,
_FailOnInvalidRef,
3,
{_PTR, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableGrow = {
SymbolicAddress::TableGrow,
_I32,
_Infallible,
4,
{_PTR, _RoN, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableInit = {
SymbolicAddress::TableInit,
_VOID,
_FailOnNegI32,
6,
{_PTR, _I32, _I32, _I32, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableSet = {SymbolicAddress::TableSet,
_VOID,
_FailOnNegI32,
4,
{_PTR, _I32, _RoN, _I32, _END}};
const SymbolicAddressSignature SASigTableSize = {
SymbolicAddress::TableSize, _I32, _Infallible, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigRefFunc = {
SymbolicAddress::RefFunc, _RoN, _FailOnInvalidRef, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigPreBarrierFiltering = {
SymbolicAddress::PreBarrierFiltering,
_VOID,
_Infallible,
2,
{_PTR, _PTR, _END}};
const SymbolicAddressSignature SASigPostBarrier = {
SymbolicAddress::PostBarrier, _VOID, _Infallible, 2, {_PTR, _PTR, _END}};
const SymbolicAddressSignature SASigPostBarrierPrecise = {
SymbolicAddress::PostBarrierPrecise,
_VOID,
_Infallible,
3,
{_PTR, _PTR, _RoN, _END}};
const SymbolicAddressSignature SASigPostBarrierFiltering = {
SymbolicAddress::PostBarrierFiltering,
_VOID,
_Infallible,
2,
{_PTR, _PTR, _END}};
const SymbolicAddressSignature SASigStructNew = {
SymbolicAddress::StructNew, _RoN, _FailOnNullPtr, 2, {_PTR, _RoN, _END}};
const SymbolicAddressSignature SASigExceptionNew = {
SymbolicAddress::ExceptionNew, _RoN, _FailOnNullPtr, 2, {_PTR, _RoN, _END}};
const SymbolicAddressSignature SASigThrowException = {
SymbolicAddress::ThrowException,
_VOID,
_FailOnNegI32,
2,
{_PTR, _RoN, _END}};
const SymbolicAddressSignature SASigArrayNew = {SymbolicAddress::ArrayNew,
_RoN,
_FailOnNullPtr,
3,
{_PTR, _I32, _RoN, _END}};
const SymbolicAddressSignature SASigRefTest = {
SymbolicAddress::RefTest, _I32, _Infallible, 3, {_PTR, _RoN, _RoN, _END}};
const SymbolicAddressSignature SASigRttSub = {
SymbolicAddress::RttSub, _RoN, _FailOnNullPtr, 3, {_PTR, _RoN, _RoN, _END}};
#define DECL_SAS_FOR_INTRINSIC(op, export, sa_name, abitype, entry, idx) \
const SymbolicAddressSignature SASig##sa_name = { \
SymbolicAddress::sa_name, _VOID, _FailOnNegI32, \
DECLARE_INTRINSIC_PARAM_TYPES_##op};
FOR_EACH_INTRINSIC(DECL_SAS_FOR_INTRINSIC)
#undef DECL_SAS_FOR_INTRINSIC
} // namespace wasm
} // namespace js
#undef _F64
#undef _F32
#undef _I32
#undef _I64
#undef _PTR
#undef _RoN
#undef _VOID
#undef _END
#undef _Infallible
#undef _FailOnNegI32
#undef _FailOnNullPtr
#ifdef DEBUG
ABIArgType ToABIType(FailureMode mode) {
switch (mode) {
case FailureMode::FailOnNegI32:
return ArgType_Int32;
case FailureMode::FailOnNullPtr:
case FailureMode::FailOnInvalidRef:
return ArgType_General;
default:
MOZ_CRASH("unexpected failure mode");
}
}
ABIArgType ToABIType(MIRType type) {
switch (type) {
case MIRType::None:
case MIRType::Int32:
return ArgType_Int32;
case MIRType::Int64:
return ArgType_Int64;
case MIRType::Pointer:
case MIRType::RefOrNull:
return ArgType_General;
case MIRType::Float32:
return ArgType_Float32;
case MIRType::Double:
return ArgType_Float64;
default:
MOZ_CRASH("unexpected type");
}
}
ABIFunctionType ToABIType(const SymbolicAddressSignature& sig) {
MOZ_ASSERT_IF(sig.failureMode != FailureMode::Infallible,
ToABIType(sig.failureMode) == ToABIType(sig.retType));
int abiType = ToABIType(sig.retType) << RetType_Shift;
for (int i = 0; i < sig.numArgs; i++) {
abiType |= (ToABIType(sig.argTypes[i]) << (ArgType_Shift * (i + 1)));
}
return ABIFunctionType(abiType);
}
#endif
// ============================================================================
// WebAssembly builtin C++ functions called from wasm code to implement internal
// wasm operations: implementations.
#if defined(JS_CODEGEN_ARM)
extern "C" {
extern MOZ_EXPORT int64_t __aeabi_idivmod(int, int);
extern MOZ_EXPORT int64_t __aeabi_uidivmod(int, int);
}
#endif
// This utility function can only be called for builtins that are called
// directly from wasm code.
static JitActivation* CallingActivation(JSContext* cx) {
Activation* act = cx->activation();
MOZ_ASSERT(act->asJit()->hasWasmExitFP());
return act->asJit();
}
static bool WasmHandleDebugTrap() {
JSContext* cx = TlsContext.get(); // Cold code
JitActivation* activation = CallingActivation(cx);
Frame* fp = activation->wasmExitFP();
Instance* instance = GetNearestEffectiveInstance(fp);
const Code& code = instance->code();
MOZ_ASSERT(code.metadata().debugEnabled);
// The debug trap stub is the innermost frame. It's return address is the
// actual trap site.
const CallSite* site = code.lookupCallSite(fp->returnAddress());
MOZ_ASSERT(site);
// Advance to the actual trapping frame.
fp = fp->wasmCaller();
DebugFrame* debugFrame = DebugFrame::from(fp);
if (site->kind() == CallSite::EnterFrame) {
if (!instance->debug().enterFrameTrapsEnabled()) {
return true;
}
debugFrame->setIsDebuggee();
debugFrame->observe(cx);
if (!DebugAPI::onEnterFrame(cx, debugFrame)) {
if (cx->isPropagatingForcedReturn()) {
cx->clearPropagatingForcedReturn();
// Ignoring forced return because changing code execution order is
// not yet implemented in the wasm baseline.
// TODO properly handle forced return and resume wasm execution.
JS_ReportErrorASCII(cx,
"Unexpected resumption value from onEnterFrame");
}
return false;
}
return true;
}
if (site->kind() == CallSite::LeaveFrame) {
if (!debugFrame->updateReturnJSValue(cx)) {
return false;
}
bool ok = DebugAPI::onLeaveFrame(cx, debugFrame, nullptr, true);
debugFrame->leave(cx);
return ok;
}
DebugState& debug = instance->debug();
MOZ_ASSERT(debug.hasBreakpointTrapAtOffset(site->lineOrBytecode()));
if (debug.stepModeEnabled(debugFrame->funcIndex())) {
if (!DebugAPI::onSingleStep(cx)) {
if (cx->isPropagatingForcedReturn()) {
cx->clearPropagatingForcedReturn();
// TODO properly handle forced return.
JS_ReportErrorASCII(cx,
"Unexpected resumption value from onSingleStep");
}
return false;
}
}
if (debug.hasBreakpointSite(site->lineOrBytecode())) {
if (!DebugAPI::onTrap(cx)) {
if (cx->isPropagatingForcedReturn()) {
cx->clearPropagatingForcedReturn();
// TODO properly handle forced return.
JS_ReportErrorASCII(
cx, "Unexpected resumption value from breakpoint handler");
}
return false;
}
}
return true;
}
// Check if the pending exception, if any, is catchable by wasm.
static bool HasCatchableException(JitActivation* activation, JSContext* cx,
MutableHandleValue exn) {
if (!cx->isExceptionPending()) {
return false;
}
// Traps are generally not catchable as wasm exceptions. The only case in
// which they are catchable is for Trap::ThrowReported, which the wasm
// compiler uses to throw exceptions and is the source of exceptions from C++.
if (activation->isWasmTrapping() &&
activation->wasmTrapData().trap != Trap::ThrowReported) {
return false;
}
if (cx->isThrowingOverRecursed() || cx->isThrowingOutOfMemory()) {
return false;
}
// Write the exception out here to exn to avoid having to get the pending
// exception and checking for OOM multiple times.
if (cx->getPendingException(exn)) {
// Check if a JS exception originated from a wasm trap.
if (exn.isObject() && exn.toObject().is<ErrorObject>()) {
ErrorObject& err = exn.toObject().as<ErrorObject>();
if (err.fromWasmTrap()) {
return false;
}
}
return true;
}
MOZ_ASSERT(cx->isThrowingOutOfMemory());
return false;
}
// Unwind the entire activation in response to a thrown exception. This function
// is responsible for notifying the debugger of each unwound frame. The return
// value is the new stack address which the calling stub will set to the sp
// register before executing a return instruction.
//
// This function will also look for try-catch handlers and, if not trapping or
// throwing an uncatchable exception, will write the handler info in the return
// argument and return true.
//
// Returns false if a handler isn't found or shouldn't be used (e.g., traps).
bool wasm::HandleThrow(JSContext* cx, WasmFrameIter& iter,
jit::ResumeFromException* rfe) {
// WasmFrameIter iterates down wasm frames in the activation starting at
// JitActivation::wasmExitFP(). Calling WasmFrameIter::startUnwinding pops
// JitActivation::wasmExitFP() once each time WasmFrameIter is incremented,
// ultimately leaving exit FP null when the WasmFrameIter is done(). This
// is necessary to prevent a DebugFrame from being observed again after we
// just called onLeaveFrame (which would lead to the frame being re-added
// to the map of live frames, right as it becomes trash).
MOZ_ASSERT(CallingActivation(cx) == iter.activation());
MOZ_ASSERT(!iter.done());
iter.setUnwind(WasmFrameIter::Unwind::True);
// Live wasm code on the stack is kept alive (in TraceJitActivation) by
// marking the instance of every wasm::Frame found by WasmFrameIter.
// However, as explained above, we're popping frames while iterating which
// means that a GC during this loop could collect the code of frames whose
// code is still on the stack. This is actually mostly fine: as soon as we
// return to the throw stub, the entire stack will be popped as a whole,
// returning to the C++ caller. However, we must keep the throw stub alive
// itself which is owned by the innermost instance.
RootedWasmInstanceObject keepAlive(cx, iter.instance()->object());
JitActivation* activation = CallingActivation(cx);
RootedValue exn(cx);
bool hasCatchableException = HasCatchableException(activation, cx, &exn);
for (; !iter.done(); ++iter) {
// Wasm code can enter same-compartment realms, so reset cx->realm to
// this frame's realm.
cx->setRealmForJitExceptionHandler(iter.instance()->realm());
// Only look for an exception handler if there's a catchable exception.
if (hasCatchableException) {
const wasm::Code& code = iter.instance()->code();
const uint8_t* pc = iter.resumePCinCurrentFrame();
Tier tier;
const wasm::WasmTryNote* tryNote =
code.lookupWasmTryNote((void*)pc, &tier);
if (tryNote) {
cx->clearPendingException();
RootedAnyRef ref(cx, AnyRef::null());
if (!BoxAnyRef(cx, exn, &ref)) {
MOZ_ASSERT(cx->isThrowingOutOfMemory());
hasCatchableException = false;
continue;
}
MOZ_ASSERT(iter.instance() == iter.instance());
iter.instance()->setPendingException(ref);
rfe->kind = ExceptionResumeKind::WasmCatch;
rfe->framePointer = (uint8_t*)iter.frame();
rfe->instance = iter.instance();
rfe->stackPointer =
(uint8_t*)(rfe->framePointer - tryNote->landingPadFramePushed());
rfe->target =
iter.instance()->codeBase(tier) + tryNote->landingPadEntryPoint();
// Make sure to clear trapping state if we got here due to a trap.
if (activation->isWasmTrapping()) {
activation->finishWasmTrap();
}
return true;
}
}
if (!iter.debugEnabled()) {
continue;
}
DebugFrame* frame = iter.debugFrame();
frame->clearReturnJSValue();
// Assume ResumeMode::Terminate if no exception is pending --
// no onExceptionUnwind handlers must be fired.
if (cx->isExceptionPending()) {
if (!DebugAPI::onExceptionUnwind(cx, frame)) {
if (cx->isPropagatingForcedReturn()) {
cx->clearPropagatingForcedReturn();
// Unexpected trap return -- raising error since throw recovery
// is not yet implemented in the wasm baseline.
// TODO properly handle forced return and resume wasm execution.
JS_ReportErrorASCII(
cx, "Unexpected resumption value from onExceptionUnwind");
}
}
}
bool ok = DebugAPI::onLeaveFrame(cx, frame, nullptr, false);
if (ok) {
// Unexpected success from the handler onLeaveFrame -- raising error
// since throw recovery is not yet implemented in the wasm baseline.
// TODO properly handle success and resume wasm execution.
JS_ReportErrorASCII(cx, "Unexpected success from onLeaveFrame");
}
frame->leave(cx);
}
MOZ_ASSERT(!cx->activation()->asJit()->isWasmTrapping(),
"unwinding clears the trapping state");
// In case of no handler, exit wasm via ret().
// FailFP signals to wasm stub to do a failure return.
rfe->kind = ExceptionResumeKind::Wasm;
rfe->framePointer = (uint8_t*)wasm::FailFP;
rfe->stackPointer = (uint8_t*)iter.unwoundAddressOfReturnAddress();
rfe->target = nullptr;
return false;
}
static void* WasmHandleThrow(jit::ResumeFromException* rfe) {
JSContext* cx = TlsContext.get(); // Cold code
JitActivation* activation = CallingActivation(cx);
WasmFrameIter iter(activation);
// We can ignore the return result here because the throw stub code
// can just check the resume kind to see if a handler was found or not.
HandleThrow(cx, iter, rfe);
return rfe;
}
// Has the same return-value convention as HandleTrap().
static void* CheckInterrupt(JSContext* cx, JitActivation* activation) {
ResetInterruptState(cx);
if (!CheckForInterrupt(cx)) {
return nullptr;
}
void* resumePC = activation->wasmTrapData().resumePC;
activation->finishWasmTrap();
return resumePC;
}
// The calling convention between this function and its caller in the stub
// generated by GenerateTrapExit() is:
// - return nullptr if the stub should jump to the throw stub to unwind
// the activation;
// - return the (non-null) resumePC that should be jumped if execution should
// resume after the trap.
static void* WasmHandleTrap() {
JSContext* cx = TlsContext.get(); // Cold code
JitActivation* activation = CallingActivation(cx);
switch (activation->wasmTrapData().trap) {
case Trap::Unreachable: {
ReportTrapError(cx, JSMSG_WASM_UNREACHABLE);
return nullptr;
}
case Trap::IntegerOverflow: {
ReportTrapError(cx, JSMSG_WASM_INTEGER_OVERFLOW);
return nullptr;
}
case Trap::InvalidConversionToInteger: {
ReportTrapError(cx, JSMSG_WASM_INVALID_CONVERSION);
return nullptr;
}
case Trap::IntegerDivideByZero: {
ReportTrapError(cx, JSMSG_WASM_INT_DIVIDE_BY_ZERO);
return nullptr;
}
case Trap::IndirectCallToNull: {
ReportTrapError(cx, JSMSG_WASM_IND_CALL_TO_NULL);
return nullptr;
}
case Trap::IndirectCallBadSig: {
ReportTrapError(cx, JSMSG_WASM_IND_CALL_BAD_SIG);
return nullptr;
}
case Trap::NullPointerDereference: {
ReportTrapError(cx, JSMSG_WASM_DEREF_NULL);
return nullptr;
}
case Trap::BadCast: {
ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
return nullptr;
}
case Trap::OutOfBounds: {
ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
return nullptr;
}
case Trap::UnalignedAccess: {
ReportTrapError(cx, JSMSG_WASM_UNALIGNED_ACCESS);
return nullptr;
}
case Trap::CheckInterrupt:
return CheckInterrupt(cx, activation);
case Trap::StackOverflow: {
// Instance::setInterrupt() causes a fake stack overflow. Since
// Instance::setInterrupt() is called racily, it's possible for a real
// stack overflow to trap, followed by a racy call to setInterrupt().
// Thus, we must check for a real stack overflow first before we
// CheckInterrupt() and possibly resume execution.
AutoCheckRecursionLimit recursion(cx);
if (!recursion.check(cx)) {
return nullptr;
}
if (activation->wasmExitInstance()->isInterrupted()) {
return CheckInterrupt(cx, activation);
}
ReportTrapError(cx, JSMSG_OVER_RECURSED);
return nullptr;
}
case Trap::ThrowReported:
// Error was already reported under another name.
return nullptr;
case Trap::Limit:
break;
}
MOZ_CRASH("unexpected trap");
}
static void WasmReportV128JSCall() {
JSContext* cx = TlsContext.get(); // Cold code
JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr,
JSMSG_WASM_BAD_VAL_TYPE);
}
static int32_t CoerceInPlace_ToInt32(Value* rawVal) {
JSContext* cx = TlsContext.get(); // Cold code
int32_t i32;
RootedValue val(cx, *rawVal);
if (!ToInt32(cx, val, &i32)) {
*rawVal = PoisonedObjectValue(0x42);
return false;
}
*rawVal = Int32Value(i32);
return true;
}
static int32_t CoerceInPlace_ToBigInt(Value* rawVal) {
JSContext* cx = TlsContext.get(); // Cold code
RootedValue val(cx, *rawVal);
BigInt* bi = ToBigInt(cx, val);
if (!bi) {
*rawVal = PoisonedObjectValue(0x43);
return false;
}
*rawVal = BigIntValue(bi);
return true;
}
static int32_t CoerceInPlace_ToNumber(Value* rawVal) {
JSContext* cx = TlsContext.get(); // Cold code
double dbl;
RootedValue val(cx, *rawVal);
if (!ToNumber(cx, val, &dbl)) {
*rawVal = PoisonedObjectValue(0x42);
return false;
}
*rawVal = DoubleValue(dbl);
return true;
}
static void* BoxValue_Anyref(Value* rawVal) {
JSContext* cx = TlsContext.get(); // Cold code
RootedValue val(cx, *rawVal);
RootedAnyRef result(cx, AnyRef::null());
if (!BoxAnyRef(cx, val, &result)) {
return nullptr;
}
return result.get().forCompiledCode();
}
static int32_t CoerceInPlace_JitEntry(int funcExportIndex, Instance* instance,
Value* argv) {
JSContext* cx = TlsContext.get(); // Cold code
const Code& code = instance->code();
const FuncExport& fe =
code.metadata(code.stableTier()).funcExports[funcExportIndex];
for (size_t i = 0; i < fe.funcType().args().length(); i++) {
HandleValue arg = HandleValue::fromMarkedLocation(&argv[i]);
switch (fe.funcType().args()[i].kind()) {
case ValType::I32: {
int32_t i32;
if (!ToInt32(cx, arg, &i32)) {
return false;
}
argv[i] = Int32Value(i32);
break;
}
case ValType::I64: {
// In this case we store a BigInt value as there is no value type
// corresponding directly to an I64. The conversion to I64 happens
// in the JIT entry stub.
BigInt* bigint = ToBigInt(cx, arg);
if (!bigint) {
return false;
}
argv[i] = BigIntValue(bigint);
break;
}
case ValType::F32:
case ValType::F64: {
double dbl;
if (!ToNumber(cx, arg, &dbl)) {
return false;
}
// No need to convert double-to-float for f32, it's done inline
// in the wasm stub later.
argv[i] = DoubleValue(dbl);
break;
}
case ValType::Ref: {
switch (fe.funcType().args()[i].refTypeKind()) {
case RefType::Extern:
// Leave Object and Null alone, we will unbox inline. All we need
// to do is convert other values to an Object representation.
if (!arg.isObjectOrNull()) {
RootedAnyRef result(cx, AnyRef::null());
if (!BoxAnyRef(cx, arg, &result)) {
return false;
}
argv[i].setObject(*result.get().asJSObject());
}
break;
case RefType::Func:
case RefType::Eq:
case RefType::TypeIndex:
// Guarded against by temporarilyUnsupportedReftypeForEntry()
MOZ_CRASH("unexpected input argument in CoerceInPlace_JitEntry");
}
break;
}
case ValType::V128: {
// Guarded against by hasV128ArgOrRet()
MOZ_CRASH("unexpected input argument in CoerceInPlace_JitEntry");
}
default: {
MOZ_CRASH("unexpected input argument in CoerceInPlace_JitEntry");
}
}
}
return true;
}
// Allocate a BigInt without GC, corresponds to the similar VMFunction.
static BigInt* AllocateBigIntTenuredNoGC() {
JSContext* cx = TlsContext.get(); // Cold code (the caller is elaborate)
return js::AllocateBigInt<NoGC>(cx, gc::TenuredHeap);
}
static int64_t DivI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi,
uint32_t y_lo) {
int64_t x = ((uint64_t)x_hi << 32) + x_lo;
int64_t y = ((uint64_t)y_hi << 32) + y_lo;
MOZ_ASSERT(x != INT64_MIN || y != -1);
MOZ_ASSERT(y != 0);
return x / y;
}
static int64_t UDivI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi,
uint32_t y_lo) {
uint64_t x = ((uint64_t)x_hi << 32) + x_lo;
uint64_t y = ((uint64_t)y_hi << 32) + y_lo;
MOZ_ASSERT(y != 0);
return x / y;
}
static int64_t ModI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi,
uint32_t y_lo) {
int64_t x = ((uint64_t)x_hi << 32) + x_lo;
int64_t y = ((uint64_t)y_hi << 32) + y_lo;
MOZ_ASSERT(x != INT64_MIN || y != -1);
MOZ_ASSERT(y != 0);
return x % y;
}
static int64_t UModI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi,
uint32_t y_lo) {
uint64_t x = ((uint64_t)x_hi << 32) + x_lo;
uint64_t y = ((uint64_t)y_hi << 32) + y_lo;
MOZ_ASSERT(y != 0);
return x % y;
}
static int64_t TruncateDoubleToInt64(double input) {
// Note: INT64_MAX is not representable in double. It is actually
// INT64_MAX + 1. Therefore also sending the failure value.
if (input >= double(INT64_MAX) || input < double(INT64_MIN) || IsNaN(input)) {
return 0x8000000000000000;
}
return int64_t(input);
}
static uint64_t TruncateDoubleToUint64(double input) {
// Note: UINT64_MAX is not representable in double. It is actually
// UINT64_MAX + 1. Therefore also sending the failure value.
if (input >= double(UINT64_MAX) || input <= -1.0 || IsNaN(input)) {
return 0x8000000000000000;
}
return uint64_t(input);
}
static int64_t SaturatingTruncateDoubleToInt64(double input) {
// Handle in-range values (except INT64_MIN).
if (fabs(input) < -double(INT64_MIN)) {
return int64_t(input);
}
// Handle NaN.
if (IsNaN(input)) {
return 0;
}
// Handle positive overflow.
if (input > 0) {
return INT64_MAX;
}
// Handle negative overflow.
return INT64_MIN;
}
static uint64_t SaturatingTruncateDoubleToUint64(double input) {
// Handle positive overflow.
if (input >= -double(INT64_MIN) * 2.0) {
return UINT64_MAX;
}
// Handle in-range values.
if (input > -1.0) {
return uint64_t(input);
}
// Handle NaN and negative overflow.
return 0;
}
static double Int64ToDouble(int32_t x_hi, uint32_t x_lo) {
int64_t x = int64_t((uint64_t(x_hi) << 32)) + int64_t(x_lo);
return double(x);
}
static float Int64ToFloat32(int32_t x_hi, uint32_t x_lo) {
int64_t x = int64_t((uint64_t(x_hi) << 32)) + int64_t(x_lo);
return float(x);
}
static double Uint64ToDouble(int32_t x_hi, uint32_t x_lo) {
uint64_t x = (uint64_t(x_hi) << 32) + uint64_t(x_lo);
return double(x);
}
static float Uint64ToFloat32(int32_t x_hi, uint32_t x_lo) {
uint64_t x = (uint64_t(x_hi) << 32) + uint64_t(x_lo);
return float(x);
}
template <class F>
static inline void* FuncCast(F* funcPtr, ABIFunctionType abiType) {
void* pf = JS_FUNC_TO_DATA_PTR(void*, funcPtr);
#ifdef JS_SIMULATOR
pf = Simulator::RedirectNativeFunction(pf, abiType);
#endif
return pf;
}
#ifdef WASM_CODEGEN_DEBUG
void wasm::PrintI32(int32_t val) { fprintf(stderr, "i32(%d) ", val); }
void wasm::PrintPtr(uint8_t* val) { fprintf(stderr, "ptr(%p) ", val); }
void wasm::PrintF32(float val) { fprintf(stderr, "f32(%f) ", val); }
void wasm::PrintF64(double val) { fprintf(stderr, "f64(%lf) ", val); }
void wasm::PrintText(const char* out) { fprintf(stderr, "%s", out); }
#endif
void* wasm::AddressOf(SymbolicAddress imm, ABIFunctionType* abiType) {
// See NeedsBuiltinThunk for a classification of the different names here.
switch (imm) {
case SymbolicAddress::HandleDebugTrap:
*abiType = Args_General0;
return FuncCast(WasmHandleDebugTrap, *abiType);
case SymbolicAddress::HandleThrow:
*abiType = Args_General1;
return FuncCast(WasmHandleThrow, *abiType);
case SymbolicAddress::HandleTrap:
*abiType = Args_General0;
return FuncCast(WasmHandleTrap, *abiType);
case SymbolicAddress::ReportV128JSCall:
*abiType = Args_General0;
return FuncCast(WasmReportV128JSCall, *abiType);
case SymbolicAddress::CallImport_General:
*abiType = Args_Int32_GeneralInt32Int32General;
return FuncCast(Instance::callImport_general, *abiType);
case SymbolicAddress::CoerceInPlace_ToInt32:
*abiType = Args_General1;
return FuncCast(CoerceInPlace_ToInt32, *abiType);
case SymbolicAddress::CoerceInPlace_ToBigInt:
*abiType = Args_General1;
return FuncCast(CoerceInPlace_ToBigInt, *abiType);
case SymbolicAddress::CoerceInPlace_ToNumber:
*abiType = Args_General1;
return FuncCast(CoerceInPlace_ToNumber, *abiType);
case SymbolicAddress::CoerceInPlace_JitEntry:
*abiType = Args_General3;
return FuncCast(CoerceInPlace_JitEntry, *abiType);
case SymbolicAddress::ToInt32:
*abiType = Args_Int_Double;
return FuncCast<int32_t(double)>(JS::ToInt32, *abiType);
case SymbolicAddress::BoxValue_Anyref:
*abiType = Args_General1;
return FuncCast(BoxValue_Anyref, *abiType);
case SymbolicAddress::AllocateBigInt:
*abiType = Args_General0;
return FuncCast(AllocateBigIntTenuredNoGC, *abiType);
case SymbolicAddress::DivI64:
*abiType = Args_General4;
return FuncCast(DivI64, *abiType);
case SymbolicAddress::UDivI64:
*abiType = Args_General4;
return FuncCast(UDivI64, *abiType);
case SymbolicAddress::ModI64:
*abiType = Args_General4;
return FuncCast(ModI64, *abiType);
case SymbolicAddress::UModI64:
*abiType = Args_General4;
return FuncCast(UModI64, *abiType);
case SymbolicAddress::TruncateDoubleToUint64:
*abiType = Args_Int64_Double;
return FuncCast(TruncateDoubleToUint64, *abiType);
case SymbolicAddress::TruncateDoubleToInt64:
*abiType = Args_Int64_Double;
return FuncCast(TruncateDoubleToInt64, *abiType);
case SymbolicAddress::SaturatingTruncateDoubleToUint64:
*abiType = Args_Int64_Double;
return FuncCast(SaturatingTruncateDoubleToUint64, *abiType);
case SymbolicAddress::SaturatingTruncateDoubleToInt64:
*abiType = Args_Int64_Double;
return FuncCast(SaturatingTruncateDoubleToInt64, *abiType);
case SymbolicAddress::Uint64ToDouble:
*abiType = Args_Double_IntInt;
return FuncCast(Uint64ToDouble, *abiType);
case SymbolicAddress::Uint64ToFloat32:
*abiType = Args_Float32_IntInt;
return FuncCast(Uint64ToFloat32, *abiType);
case SymbolicAddress::Int64ToDouble:
*abiType = Args_Double_IntInt;
return FuncCast(Int64ToDouble, *abiType);
case SymbolicAddress::Int64ToFloat32:
*abiType = Args_Float32_IntInt;
return FuncCast(Int64ToFloat32, *abiType);
#if defined(JS_CODEGEN_ARM)
case SymbolicAddress::aeabi_idivmod:
*abiType = Args_General2;
return FuncCast(__aeabi_idivmod, *abiType);
case SymbolicAddress::aeabi_uidivmod:
*abiType = Args_General2;
return FuncCast(__aeabi_uidivmod, *abiType);
#endif
case SymbolicAddress::ModD:
*abiType = Args_Double_DoubleDouble;
return FuncCast(NumberMod, *abiType);
case SymbolicAddress::SinD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(sin, *abiType);
case SymbolicAddress::CosD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(cos, *abiType);
case SymbolicAddress::TanD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(tan, *abiType);
case SymbolicAddress::ASinD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(fdlibm::asin, *abiType);
case SymbolicAddress::ACosD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(fdlibm::acos, *abiType);
case SymbolicAddress::ATanD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(fdlibm::atan, *abiType);
case SymbolicAddress::CeilD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(fdlibm::ceil, *abiType);
case SymbolicAddress::CeilF:
*abiType = Args_Float32_Float32;
return FuncCast<float(float)>(fdlibm::ceilf, *abiType);
case SymbolicAddress::FloorD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(fdlibm::floor, *abiType);
case SymbolicAddress::FloorF:
*abiType = Args_Float32_Float32;
return FuncCast<float(float)>(fdlibm::floorf, *abiType);
case SymbolicAddress::TruncD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(fdlibm::trunc, *abiType);
case SymbolicAddress::TruncF:
*abiType = Args_Float32_Float32;
return FuncCast<float(float)>(fdlibm::truncf, *abiType);
case SymbolicAddress::NearbyIntD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(fdlibm::nearbyint, *abiType);
case SymbolicAddress::NearbyIntF:
*abiType = Args_Float32_Float32;
return FuncCast<float(float)>(fdlibm::nearbyintf, *abiType);
case SymbolicAddress::ExpD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(fdlibm::exp, *abiType);
case SymbolicAddress::LogD:
*abiType = Args_Double_Double;
return FuncCast<double(double)>(fdlibm::log, *abiType);
case SymbolicAddress::PowD:
*abiType = Args_Double_DoubleDouble;
return FuncCast(ecmaPow, *abiType);
case SymbolicAddress::ATan2D:
*abiType = Args_Double_DoubleDouble;
return FuncCast(ecmaAtan2, *abiType);
case SymbolicAddress::MemoryGrowM32:
*abiType = Args_Int32_GeneralInt32;
MOZ_ASSERT(*abiType == ToABIType(SASigMemoryGrowM32));
return FuncCast(Instance::memoryGrow_m32, *abiType);
case SymbolicAddress::MemoryGrowM64:
*abiType = Args_Int64_GeneralInt64;
MOZ_ASSERT(*abiType == ToABIType(SASigMemoryGrowM64));
return FuncCast(Instance::memoryGrow_m64, *abiType);
case SymbolicAddress::MemorySizeM32:
*abiType = Args_Int32_General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemorySizeM32));
return FuncCast(Instance::memorySize_m32, *abiType);
case SymbolicAddress::MemorySizeM64:
*abiType = Args_Int64_General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemorySizeM64));
return FuncCast(Instance::memorySize_m64, *abiType);
case SymbolicAddress::WaitI32M32:
*abiType = Args_Int32_GeneralInt32Int32Int64;
MOZ_ASSERT(*abiType == ToABIType(SASigWaitI32M32));
return FuncCast(Instance::wait_i32_m32, *abiType);
case SymbolicAddress::WaitI32M64:
*abiType = Args_Int32_GeneralInt64Int32Int64;
MOZ_ASSERT(*abiType == ToABIType(SASigWaitI32M64));
return FuncCast(Instance::wait_i32_m64, *abiType);
case SymbolicAddress::WaitI64M32:
*abiType = Args_Int32_GeneralInt32Int64Int64;
MOZ_ASSERT(*abiType == ToABIType(SASigWaitI64M32));
return FuncCast(Instance::wait_i64_m32, *abiType);
case SymbolicAddress::WaitI64M64:
*abiType = Args_Int32_GeneralInt64Int64Int64;
MOZ_ASSERT(*abiType == ToABIType(SASigWaitI64M64));
return FuncCast(Instance::wait_i64_m64, *abiType);
case SymbolicAddress::WakeM32:
*abiType = Args_Int32_GeneralInt32Int32;
MOZ_ASSERT(*abiType == ToABIType(SASigWakeM32));
return FuncCast(Instance::wake_m32, *abiType);
case SymbolicAddress::WakeM64:
*abiType = Args_Int32_GeneralInt64Int32;
MOZ_ASSERT(*abiType == ToABIType(SASigWakeM64));
return FuncCast(Instance::wake_m64, *abiType);
case SymbolicAddress::MemCopyM32:
*abiType = Args_Int32_GeneralInt32Int32Int32General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemCopyM32));
return FuncCast(Instance::memCopy_m32, *abiType);
case SymbolicAddress::MemCopySharedM32:
*abiType = Args_Int32_GeneralInt32Int32Int32General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemCopySharedM32));
return FuncCast(Instance::memCopyShared_m32, *abiType);
case SymbolicAddress::MemCopyM64:
*abiType = Args_Int32_GeneralInt64Int64Int64General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemCopyM64));
return FuncCast(Instance::memCopy_m64, *abiType);
case SymbolicAddress::MemCopySharedM64:
*abiType = Args_Int32_GeneralInt64Int64Int64General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemCopySharedM64));
return FuncCast(Instance::memCopyShared_m64, *abiType);
case SymbolicAddress::DataDrop:
*abiType = Args_Int32_GeneralInt32;
MOZ_ASSERT(*abiType == ToABIType(SASigDataDrop));
return FuncCast(Instance::dataDrop, *abiType);
case SymbolicAddress::MemFillM32:
*abiType = Args_Int32_GeneralInt32Int32Int32General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemFillM32));
return FuncCast(Instance::memFill_m32, *abiType);
case SymbolicAddress::MemFillSharedM32:
*abiType = Args_Int32_GeneralInt32Int32Int32General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemFillSharedM32));
return FuncCast(Instance::memFillShared_m32, *abiType);
case SymbolicAddress::MemFillM64:
*abiType = Args_Int32_GeneralInt64Int32Int64General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemFillM64));
return FuncCast(Instance::memFill_m64, *abiType);
case SymbolicAddress::MemFillSharedM64:
*abiType = Args_Int32_GeneralInt64Int32Int64General;
MOZ_ASSERT(*abiType == ToABIType(SASigMemFillSharedM64));
return FuncCast(Instance::memFillShared_m64, *abiType);
case SymbolicAddress::MemInitM32:
*abiType = Args_Int32_GeneralInt32Int32Int32Int32;
MOZ_ASSERT(*abiType == ToABIType(SASigMemInitM32));
return FuncCast(Instance::memInit_m32, *abiType);
case SymbolicAddress::MemInitM64:
*abiType = Args_Int32_GeneralInt64Int32Int32Int32;
MOZ_ASSERT(*abiType == ToABIType(SASigMemInitM64));
return FuncCast(Instance::memInit_m64, *abiType);
case SymbolicAddress::TableCopy:
*abiType = Args_Int32_GeneralInt32Int32Int32Int32Int32;
MOZ_ASSERT(*abiType == ToABIType(SASigTableCopy));
return FuncCast(Instance::tableCopy, *abiType);
case SymbolicAddress::ElemDrop:
*abiType = Args_Int32_GeneralInt32;
MOZ_ASSERT(*abiType == ToABIType(SASigElemDrop));
return FuncCast(Instance::elemDrop, *abiType);
case SymbolicAddress::TableFill:
*abiType = Args_Int32_GeneralInt32GeneralInt32Int32;
MOZ_ASSERT(*abiType == ToABIType(SASigTableFill));
return FuncCast(Instance::tableFill, *abiType);
case SymbolicAddress::TableInit:
*abiType = Args_Int32_GeneralInt32Int32Int32Int32Int32;
MOZ_ASSERT(*abiType == ToABIType(SASigTableInit));
return FuncCast(Instance::tableInit, *abiType);
case SymbolicAddress::TableGet:
*abiType = Args_General_GeneralInt32Int32;
MOZ_ASSERT(*abiType == ToABIType(SASigTableGet));
return FuncCast(Instance::tableGet, *abiType);
case SymbolicAddress::TableGrow:
*abiType = Args_Int32_GeneralGeneralInt32Int32;
MOZ_ASSERT(*abiType == ToABIType(SASigTableGrow));
return FuncCast(Instance::tableGrow, *abiType);
case SymbolicAddress::TableSet:
*abiType = Args_Int32_GeneralInt32GeneralInt32;
MOZ_ASSERT(*abiType == ToABIType(SASigTableSet));
return FuncCast(Instance::tableSet, *abiType);
case SymbolicAddress::TableSize:
*abiType = Args_Int32_GeneralInt32;
MOZ_ASSERT(*abiType == ToABIType(SASigTableSize));
return FuncCast(Instance::tableSize, *abiType);
case SymbolicAddress::RefFunc:
*abiType = Args_General_GeneralInt32;
MOZ_ASSERT(*abiType == ToABIType(SASigRefFunc));
return FuncCast(Instance::refFunc, *abiType);
case SymbolicAddress::PostBarrier:
*abiType = Args_Int32_GeneralGeneral;
MOZ_ASSERT(*abiType == ToABIType(SASigPostBarrier));
return FuncCast(Instance::postBarrier, *abiType);
case SymbolicAddress::PostBarrierPrecise:
*abiType = Args_Int32_GeneralGeneralGeneral;
MOZ_ASSERT(*abiType == ToABIType(SASigPostBarrierPrecise));
return FuncCast(Instance::postBarrierPrecise, *abiType);
case SymbolicAddress::PreBarrierFiltering:
*abiType = Args_Int32_GeneralGeneral;
MOZ_ASSERT(*abiType == ToABIType(SASigPreBarrierFiltering));
return FuncCast(Instance::preBarrierFiltering, *abiType);
case SymbolicAddress::PostBarrierFiltering:
*abiType = Args_Int32_GeneralGeneral;
MOZ_ASSERT(*abiType == ToABIType(SASigPostBarrierFiltering));
return FuncCast(Instance::postBarrierFiltering, *abiType);
case SymbolicAddress::StructNew:
*abiType = Args_General2;
MOZ_ASSERT(*abiType == ToABIType(SASigStructNew));
return FuncCast(Instance::structNew, *abiType);
case SymbolicAddress::ArrayNew:
*abiType = Args_General_GeneralInt32General;
MOZ_ASSERT(*abiType == ToABIType(SASigArrayNew));
return FuncCast(Instance::arrayNew, *abiType);
case SymbolicAddress::RefTest:
*abiType = Args_Int32_GeneralGeneralGeneral;
MOZ_ASSERT(*abiType == ToABIType(SASigRefTest));
return FuncCast(Instance::refTest, *abiType);
case SymbolicAddress::RttSub:
*abiType = Args_General3;
MOZ_ASSERT(*abiType == ToABIType(SASigRttSub));
return FuncCast(Instance::rttSub, *abiType);
case SymbolicAddress::InlineTypedObjectClass:
// The ABI type is not used here, but assigning one to avoid garbage.
*abiType = Args_General1;
return (void*)&js::InlineTypedObject::class_;
case SymbolicAddress::ExceptionNew:
*abiType = Args_General2;
MOZ_ASSERT(*abiType == ToABIType(SASigExceptionNew));
return FuncCast(Instance::exceptionNew, *abiType);
case SymbolicAddress::ThrowException:
*abiType = Args_Int32_GeneralGeneral;
MOZ_ASSERT(*abiType == ToABIType(SASigThrowException));
return FuncCast(Instance::throwException, *abiType);
#ifdef WASM_CODEGEN_DEBUG
case SymbolicAddress::PrintI32:
*abiType = Args_General1;
return FuncCast(PrintI32, *abiType);
case SymbolicAddress::PrintPtr:
*abiType = Args_General1;
return FuncCast(PrintPtr, *abiType);
case SymbolicAddress::PrintF32:
*abiType = Args_Int_Float32;
return FuncCast(PrintF32, *abiType);
case SymbolicAddress::PrintF64:
*abiType = Args_Int_Double;
return FuncCast(PrintF64, *abiType);
case SymbolicAddress::PrintText:
*abiType = Args_General1;
return FuncCast(PrintText, *abiType);
#endif
#define DECL_SAS_TYPE_AND_FN(op, export, sa_name, abitype, entry, idx) \
case SymbolicAddress::sa_name: \
*abiType = abitype; \
return FuncCast(entry, *abiType);
FOR_EACH_INTRINSIC(DECL_SAS_TYPE_AND_FN)
#undef DECL_SAS_TYPE_AND_FN
case SymbolicAddress::Limit:
break;
}
MOZ_CRASH("Bad SymbolicAddress");
}
bool wasm::IsRoundingFunction(SymbolicAddress callee, jit::RoundingMode* mode) {
switch (callee) {
case SymbolicAddress::FloorD:
case SymbolicAddress::FloorF:
*mode = jit::RoundingMode::Down;
return true;
case SymbolicAddress::CeilD:
case SymbolicAddress::CeilF:
*mode = jit::RoundingMode::Up;
return true;
case SymbolicAddress::TruncD:
case SymbolicAddress::TruncF:
*mode = jit::RoundingMode::TowardsZero;
return true;
case SymbolicAddress::NearbyIntD:
case SymbolicAddress::NearbyIntF:
*mode = jit::RoundingMode::NearestTiesToEven;
return true;
default:
return false;
}
}
bool wasm::NeedsBuiltinThunk(SymbolicAddress sym) {
// Also see "The Wasm Builtin ABIs" in WasmFrame.h.
switch (sym) {
// No thunk, because these are data addresses
case SymbolicAddress::InlineTypedObjectClass:
return false;
// No thunk, because they do their work within the activation
case SymbolicAddress::HandleThrow: // GenerateThrowStub
case SymbolicAddress::HandleTrap: // GenerateTrapExit
return false;
// No thunk, because some work has to be done within the activation before
// the activation exit: when called, arbitrary wasm registers are live and
// must be saved, and the stack pointer may not be aligned for any ABI.
case SymbolicAddress::HandleDebugTrap: // GenerateDebugTrapStub
// No thunk, because their caller manages the activation exit explicitly
case SymbolicAddress::CallImport_General: // GenerateImportInterpExit
case SymbolicAddress::CoerceInPlace_ToInt32: // GenerateImportJitExit
case SymbolicAddress::CoerceInPlace_ToNumber: // GenerateImportJitExit
case SymbolicAddress::CoerceInPlace_ToBigInt: // GenerateImportJitExit
case SymbolicAddress::BoxValue_Anyref: // GenerateImportJitExit
return false;
#ifdef WASM_CODEGEN_DEBUG
// No thunk, because they call directly into C++ code that does not interact
// with the rest of the VM at all.
case SymbolicAddress::PrintI32: // Debug stub printers
case SymbolicAddress::PrintPtr:
case SymbolicAddress::PrintF32:
case SymbolicAddress::PrintF64:
case SymbolicAddress::PrintText:
return false;
#endif
// Everyone else gets a thunk to handle the exit from the activation
case SymbolicAddress::ToInt32:
case SymbolicAddress::DivI64:
case SymbolicAddress::UDivI64:
case SymbolicAddress::ModI64:
case SymbolicAddress::UModI64:
case SymbolicAddress::TruncateDoubleToUint64:
case SymbolicAddress::TruncateDoubleToInt64:
case SymbolicAddress::SaturatingTruncateDoubleToUint64:
case SymbolicAddress::SaturatingTruncateDoubleToInt64:
case SymbolicAddress::Uint64ToDouble:
case SymbolicAddress::Uint64ToFloat32:
case SymbolicAddress::Int64ToDouble:
case SymbolicAddress::Int64ToFloat32:
#if defined(JS_CODEGEN_ARM)
case SymbolicAddress::aeabi_idivmod:
case SymbolicAddress::aeabi_uidivmod:
#endif
case SymbolicAddress::AllocateBigInt:
case SymbolicAddress::ModD:
case SymbolicAddress::SinD:
case SymbolicAddress::CosD:
case SymbolicAddress::TanD:
case SymbolicAddress::ASinD:
case SymbolicAddress::ACosD:
case SymbolicAddress::ATanD:
case SymbolicAddress::CeilD:
case SymbolicAddress::CeilF:
case SymbolicAddress::FloorD:
case SymbolicAddress::FloorF:
case SymbolicAddress::TruncD:
case SymbolicAddress::TruncF:
case SymbolicAddress::NearbyIntD:
case SymbolicAddress::NearbyIntF:
case SymbolicAddress::ExpD:
case SymbolicAddress::LogD:
case SymbolicAddress::PowD:
case SymbolicAddress::ATan2D:
case SymbolicAddress::MemoryGrowM32:
case SymbolicAddress::MemoryGrowM64:
case SymbolicAddress::MemorySizeM32:
case SymbolicAddress::MemorySizeM64:
case SymbolicAddress::WaitI32M32:
case SymbolicAddress::WaitI32M64:
case SymbolicAddress::WaitI64M32:
case SymbolicAddress::WaitI64M64:
case SymbolicAddress::WakeM32:
case SymbolicAddress::WakeM64:
case SymbolicAddress::CoerceInPlace_JitEntry:
case SymbolicAddress::ReportV128JSCall:
case SymbolicAddress::MemCopyM32:
case SymbolicAddress::MemCopySharedM32:
case SymbolicAddress::MemCopyM64:
case SymbolicAddress::MemCopySharedM64:
case SymbolicAddress::DataDrop:
case SymbolicAddress::MemFillM32:
case SymbolicAddress::MemFillSharedM32:
case SymbolicAddress::MemFillM64:
case SymbolicAddress::MemFillSharedM64:
case SymbolicAddress::MemInitM32:
case SymbolicAddress::MemInitM64:
case SymbolicAddress::TableCopy:
case SymbolicAddress::ElemDrop:
case SymbolicAddress::TableFill:
case SymbolicAddress::TableGet:
case SymbolicAddress::TableGrow:
case SymbolicAddress::TableInit:
case SymbolicAddress::TableSet:
case SymbolicAddress::TableSize:
case SymbolicAddress::RefFunc:
case SymbolicAddress::PreBarrierFiltering:
case SymbolicAddress::PostBarrier:
case SymbolicAddress::PostBarrierPrecise:
case SymbolicAddress::PostBarrierFiltering:
case SymbolicAddress::StructNew:
case SymbolicAddress::ExceptionNew:
case SymbolicAddress::ThrowException:
case SymbolicAddress::ArrayNew:
case SymbolicAddress::RefTest:
case SymbolicAddress::RttSub:
#define OP(op, export, sa_name, abitype, entry, idx) \
case SymbolicAddress::sa_name:
FOR_EACH_INTRINSIC(OP)
#undef OP
return true;
case SymbolicAddress::Limit:
break;
}
MOZ_CRASH("unexpected symbolic address");
}
// ============================================================================
// [SMDOC] JS Fast Wasm Imports
//
// JS builtins that can be imported by wasm modules and called efficiently
// through thunks. These thunks conform to the internal wasm ABI and thus can be
// patched in for import calls. Calling a JS builtin through a thunk is much