Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/arm/Assembler-arm.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "mozilla/Sprintf.h"
#include <type_traits>
#include "gc/Marking.h"
#include "jit/arm/disasm/Disasm-arm.h"
#include "jit/arm/MacroAssembler-arm.h"
#include "jit/AutoWritableJitCode.h"
#include "jit/ExecutableAllocator.h"
#include "jit/MacroAssembler.h"
#include "vm/Realm.h"
using namespace js;
using namespace js::jit;
using mozilla::CountLeadingZeroes32;
using mozilla::DebugOnly;
using LabelDoc = DisassemblerSpew::LabelDoc;
using LiteralDoc = DisassemblerSpew::LiteralDoc;
void dbg_break() {}
// The ABIArgGenerator is used for making system ABI calls and for inter-wasm
// calls. The system ABI can either be SoftFp or HardFp, and inter-wasm calls
// are always HardFp calls. The initialization defaults to HardFp, and the ABI
// choice is made before any system ABI calls with the method "setUseHardFp".
ABIArgGenerator::ABIArgGenerator()
: intRegIndex_(0),
floatRegIndex_(0),
stackOffset_(0),
current_(),
useHardFp_(true) {}
// See the "Parameter Passing" section of the "Procedure Call Standard for the
// ARM Architecture" documentation.
ABIArg ABIArgGenerator::softNext(MIRType type) {
switch (type) {
case MIRType::Int32:
case MIRType::Pointer:
case MIRType::WasmAnyRef:
case MIRType::StackResults:
if (intRegIndex_ == NumIntArgRegs) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint32_t);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_));
intRegIndex_++;
break;
case MIRType::Int64:
// Make sure to use an even register index. Increase to next even number
// when odd.
intRegIndex_ = (intRegIndex_ + 1) & ~1;
if (intRegIndex_ == NumIntArgRegs) {
// Align the stack on 8 bytes.
static const uint32_t align = sizeof(uint64_t) - 1;
stackOffset_ = (stackOffset_ + align) & ~align;
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint64_t);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_),
Register::FromCode(intRegIndex_ + 1));
intRegIndex_ += 2;
break;
case MIRType::Float32:
if (intRegIndex_ == NumIntArgRegs) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint32_t);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_));
intRegIndex_++;
break;
case MIRType::Double:
// Make sure to use an even register index. Increase to next even number
// when odd.
intRegIndex_ = (intRegIndex_ + 1) & ~1;
if (intRegIndex_ == NumIntArgRegs) {
// Align the stack on 8 bytes.
static const uint32_t align = sizeof(double) - 1;
stackOffset_ = (stackOffset_ + align) & ~align;
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(double);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_),
Register::FromCode(intRegIndex_ + 1));
intRegIndex_ += 2;
break;
default:
MOZ_CRASH("Unexpected argument type");
}
return current_;
}
ABIArg ABIArgGenerator::hardNext(MIRType type) {
switch (type) {
case MIRType::Int32:
case MIRType::Pointer:
case MIRType::WasmAnyRef:
case MIRType::StackResults:
if (intRegIndex_ == NumIntArgRegs) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint32_t);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_));
intRegIndex_++;
break;
case MIRType::Int64:
// Make sure to use an even register index. Increase to next even number
// when odd.
intRegIndex_ = (intRegIndex_ + 1) & ~1;
if (intRegIndex_ == NumIntArgRegs) {
// Align the stack on 8 bytes.
static const uint32_t align = sizeof(uint64_t) - 1;
stackOffset_ = (stackOffset_ + align) & ~align;
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint64_t);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_),
Register::FromCode(intRegIndex_ + 1));
intRegIndex_ += 2;
break;
case MIRType::Float32:
if (floatRegIndex_ == NumFloatArgRegs) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint32_t);
break;
}
current_ = ABIArg(VFPRegister(floatRegIndex_, VFPRegister::Single));
floatRegIndex_++;
break;
case MIRType::Double:
// Double register are composed of 2 float registers, thus we have to
// skip any float register which cannot be used in a pair of float
// registers in which a double value can be stored.
floatRegIndex_ = (floatRegIndex_ + 1) & ~1;
if (floatRegIndex_ == NumFloatArgRegs) {
static const uint32_t align = sizeof(double) - 1;
stackOffset_ = (stackOffset_ + align) & ~align;
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint64_t);
break;
}
current_ = ABIArg(VFPRegister(floatRegIndex_ >> 1, VFPRegister::Double));
floatRegIndex_ += 2;
break;
default:
MOZ_CRASH("Unexpected argument type");
}
return current_;
}
ABIArg ABIArgGenerator::next(MIRType type) {
if (useHardFp_) {
return hardNext(type);
}
return softNext(type);
}
bool js::jit::IsUnaligned(const wasm::MemoryAccessDesc& access) {
if (!access.align()) {
return false;
}
if (access.type() == Scalar::Float64 && access.align() >= 4) {
return false;
}
return access.align() < access.byteSize();
}
// Encode a standard register when it is being used as src1, the dest, and an
// extra register. These should never be called with an InvalidReg.
uint32_t js::jit::RT(Register r) {
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 12;
}
uint32_t js::jit::RN(Register r) {
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 16;
}
uint32_t js::jit::RD(Register r) {
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 12;
}
uint32_t js::jit::RM(Register r) {
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 8;
}
// Encode a standard register when it is being used as src1, the dest, and an
// extra register. For these, an InvalidReg is used to indicate a optional
// register that has been omitted.
uint32_t js::jit::maybeRT(Register r) {
if (r == InvalidReg) {
return 0;
}
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 12;
}
uint32_t js::jit::maybeRN(Register r) {
if (r == InvalidReg) {
return 0;
}
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 16;
}
uint32_t js::jit::maybeRD(Register r) {
if (r == InvalidReg) {
return 0;
}
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 12;
}
Register js::jit::toRD(Instruction i) {
return Register::FromCode((i.encode() >> 12) & 0xf);
}
Register js::jit::toR(Instruction i) {
return Register::FromCode(i.encode() & 0xf);
}
Register js::jit::toRM(Instruction i) {
return Register::FromCode((i.encode() >> 8) & 0xf);
}
Register js::jit::toRN(Instruction i) {
return Register::FromCode((i.encode() >> 16) & 0xf);
}
uint32_t js::jit::VD(VFPRegister vr) {
if (vr.isMissing()) {
return 0;
}
// Bits 15,14,13,12, 22.
VFPRegister::VFPRegIndexSplit s = vr.encode();
return s.bit << 22 | s.block << 12;
}
uint32_t js::jit::VN(VFPRegister vr) {
if (vr.isMissing()) {
return 0;
}
// Bits 19,18,17,16, 7.
VFPRegister::VFPRegIndexSplit s = vr.encode();
return s.bit << 7 | s.block << 16;
}
uint32_t js::jit::VM(VFPRegister vr) {
if (vr.isMissing()) {
return 0;
}
// Bits 5, 3,2,1,0.
VFPRegister::VFPRegIndexSplit s = vr.encode();
return s.bit << 5 | s.block;
}
VFPRegister::VFPRegIndexSplit jit::VFPRegister::encode() {
MOZ_ASSERT(!_isInvalid);
switch (kind) {
case Double:
return VFPRegIndexSplit(code_ & 0xf, code_ >> 4);
case Single:
return VFPRegIndexSplit(code_ >> 1, code_ & 1);
default:
// VFP register treated as an integer, NOT a gpr.
return VFPRegIndexSplit(code_ >> 1, code_ & 1);
}
}
bool InstDTR::IsTHIS(const Instruction& i) {
return (i.encode() & IsDTRMask) == (uint32_t)IsDTR;
}
InstDTR* InstDTR::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstDTR*)&i;
}
return nullptr;
}
bool InstLDR::IsTHIS(const Instruction& i) {
return (i.encode() & IsDTRMask) == (uint32_t)IsDTR;
}
InstLDR* InstLDR::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstLDR*)&i;
}
return nullptr;
}
InstNOP* InstNOP::AsTHIS(Instruction& i) {
if (IsTHIS(i)) {
return (InstNOP*)&i;
}
return nullptr;
}
bool InstNOP::IsTHIS(const Instruction& i) {
return (i.encode() & 0x0fffffff) == NopInst;
}
bool InstBranchReg::IsTHIS(const Instruction& i) {
return InstBXReg::IsTHIS(i) || InstBLXReg::IsTHIS(i);
}
InstBranchReg* InstBranchReg::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstBranchReg*)&i;
}
return nullptr;
}
void InstBranchReg::extractDest(Register* dest) { *dest = toR(*this); }
bool InstBranchReg::checkDest(Register dest) { return dest == toR(*this); }
bool InstBranchImm::IsTHIS(const Instruction& i) {
return InstBImm::IsTHIS(i) || InstBLImm::IsTHIS(i);
}
InstBranchImm* InstBranchImm::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstBranchImm*)&i;
}
return nullptr;
}
void InstBranchImm::extractImm(BOffImm* dest) { *dest = BOffImm(*this); }
bool InstBXReg::IsTHIS(const Instruction& i) {
return (i.encode() & IsBRegMask) == IsBX;
}
InstBXReg* InstBXReg::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstBXReg*)&i;
}
return nullptr;
}
bool InstBLXReg::IsTHIS(const Instruction& i) {
return (i.encode() & IsBRegMask) == IsBLX;
}
InstBLXReg* InstBLXReg::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstBLXReg*)&i;
}
return nullptr;
}
bool InstBImm::IsTHIS(const Instruction& i) {
return (i.encode() & IsBImmMask) == IsB;
}
InstBImm* InstBImm::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstBImm*)&i;
}
return nullptr;
}
bool InstBLImm::IsTHIS(const Instruction& i) {
return (i.encode() & IsBImmMask) == IsBL;
}
InstBLImm* InstBLImm::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstBLImm*)&i;
}
return nullptr;
}
bool InstMovWT::IsTHIS(Instruction& i) {
return InstMovW::IsTHIS(i) || InstMovT::IsTHIS(i);
}
InstMovWT* InstMovWT::AsTHIS(Instruction& i) {
if (IsTHIS(i)) {
return (InstMovWT*)&i;
}
return nullptr;
}
void InstMovWT::extractImm(Imm16* imm) { *imm = Imm16(*this); }
bool InstMovWT::checkImm(Imm16 imm) {
return imm.decode() == Imm16(*this).decode();
}
void InstMovWT::extractDest(Register* dest) { *dest = toRD(*this); }
bool InstMovWT::checkDest(Register dest) { return dest == toRD(*this); }
bool InstMovW::IsTHIS(const Instruction& i) {
return (i.encode() & IsWTMask) == IsW;
}
InstMovW* InstMovW::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstMovW*)&i;
}
return nullptr;
}
InstMovT* InstMovT::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstMovT*)&i;
}
return nullptr;
}
bool InstMovT::IsTHIS(const Instruction& i) {
return (i.encode() & IsWTMask) == IsT;
}
InstALU* InstALU::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstALU*)&i;
}
return nullptr;
}
bool InstALU::IsTHIS(const Instruction& i) {
return (i.encode() & ALUMask) == 0;
}
void InstALU::extractOp(ALUOp* ret) { *ret = ALUOp(encode() & (0xf << 21)); }
bool InstALU::checkOp(ALUOp op) {
ALUOp mine;
extractOp(&mine);
return mine == op;
}
void InstALU::extractDest(Register* ret) { *ret = toRD(*this); }
bool InstALU::checkDest(Register rd) { return rd == toRD(*this); }
void InstALU::extractOp1(Register* ret) { *ret = toRN(*this); }
bool InstALU::checkOp1(Register rn) { return rn == toRN(*this); }
Operand2 InstALU::extractOp2() { return Operand2(encode()); }
InstCMP* InstCMP::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstCMP*)&i;
}
return nullptr;
}
bool InstCMP::IsTHIS(const Instruction& i) {
return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkDest(r0) &&
InstALU::AsTHIS(i)->checkOp(OpCmp);
}
InstMOV* InstMOV::AsTHIS(const Instruction& i) {
if (IsTHIS(i)) {
return (InstMOV*)&i;
}
return nullptr;
}
bool InstMOV::IsTHIS(const Instruction& i) {
return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkOp1(r0) &&
InstALU::AsTHIS(i)->checkOp(OpMov);
}
Op2Reg Operand2::toOp2Reg() const { return *(Op2Reg*)this; }
Imm16::Imm16(Instruction& inst)
: lower_(inst.encode() & 0xfff),
upper_(inst.encode() >> 16),
invalid_(0xfff) {}
Imm16::Imm16(uint32_t imm)
: lower_(imm & 0xfff), pad_(0), upper_((imm >> 12) & 0xf), invalid_(0) {
MOZ_ASSERT(decode() == imm);
}
Imm16::Imm16() : invalid_(0xfff) {}
void Assembler::finish() {
flush();
MOZ_ASSERT(!isFinished);
isFinished = true;
}
bool Assembler::appendRawCode(const uint8_t* code, size_t numBytes) {
flush();
return m_buffer.appendRawCode(code, numBytes);
}
bool Assembler::reserve(size_t size) {
// This buffer uses fixed-size chunks so there's no point in reserving
// now vs. on-demand.
return !oom();
}
bool Assembler::swapBuffer(wasm::Bytes& bytes) {
// For now, specialize to the one use case. As long as wasm::Bytes is a
// Vector, not a linked-list of chunks, there's not much we can do other
// than copy.
MOZ_ASSERT(bytes.empty());
if (!bytes.resize(bytesNeeded())) {
return false;
}
m_buffer.executableCopy(bytes.begin());
return true;
}
void Assembler::executableCopy(uint8_t* buffer) {
MOZ_ASSERT(isFinished);
m_buffer.executableCopy(buffer);
}
class RelocationIterator {
CompactBufferReader reader_;
// Offset in bytes.
uint32_t offset_;
public:
explicit RelocationIterator(CompactBufferReader& reader) : reader_(reader) {}
bool read() {
if (!reader_.more()) {
return false;
}
offset_ = reader_.readUnsigned();
return true;
}
uint32_t offset() const { return offset_; }
};
template <class Iter>
const uint32_t* Assembler::GetCF32Target(Iter* iter) {
Instruction* inst1 = iter->cur();
if (inst1->is<InstBranchImm>()) {
// See if we have a simple case, b #offset.
BOffImm imm;
InstBranchImm* jumpB = inst1->as<InstBranchImm>();
jumpB->extractImm(&imm);
return imm.getDest(inst1)->raw();
}
if (inst1->is<InstMovW>()) {
// See if we have the complex case:
// movw r_temp, #imm1
// movt r_temp, #imm2
// bx r_temp
// OR
// movw r_temp, #imm1
// movt r_temp, #imm2
// str pc, [sp]
// bx r_temp
Imm16 targ_bot;
Imm16 targ_top;
Register temp;
// Extract both the temp register and the bottom immediate.
InstMovW* bottom = inst1->as<InstMovW>();
bottom->extractImm(&targ_bot);
bottom->extractDest(&temp);
// Extract the top part of the immediate.
Instruction* inst2 = iter->next();
MOZ_ASSERT(inst2->is<InstMovT>());
InstMovT* top = inst2->as<InstMovT>();
top->extractImm(&targ_top);
// Make sure they are being loaded into the same register.
MOZ_ASSERT(top->checkDest(temp));
// Make sure we're branching to the same register.
#ifdef DEBUG
// A toggled call sometimes has a NOP instead of a branch for the third
// instruction. No way to assert that it's valid in that situation.
Instruction* inst3 = iter->next();
if (!inst3->is<InstNOP>()) {
InstBranchReg* realBranch = nullptr;
if (inst3->is<InstBranchReg>()) {
realBranch = inst3->as<InstBranchReg>();
} else {
Instruction* inst4 = iter->next();
realBranch = inst4->as<InstBranchReg>();
}
MOZ_ASSERT(realBranch->checkDest(temp));
}
#endif
uint32_t* dest = (uint32_t*)(targ_bot.decode() | (targ_top.decode() << 16));
return dest;
}
if (inst1->is<InstLDR>()) {
return *(uint32_t**)inst1->as<InstLDR>()->dest();
}
MOZ_CRASH("unsupported branch relocation");
}
uintptr_t Assembler::GetPointer(uint8_t* instPtr) {
InstructionIterator iter((Instruction*)instPtr);
uintptr_t ret = (uintptr_t)GetPtr32Target(iter, nullptr, nullptr);
return ret;
}
const uint32_t* Assembler::GetPtr32Target(InstructionIterator start,
Register* dest, RelocStyle* style) {
Instruction* load1 = start.cur();
Instruction* load2 = start.next();
if (load1->is<InstMovW>() && load2->is<InstMovT>()) {
if (style) {
*style = L_MOVWT;
}
// See if we have the complex case:
// movw r_temp, #imm1
// movt r_temp, #imm2
Imm16 targ_bot;
Imm16 targ_top;
Register temp;
// Extract both the temp register and the bottom immediate.
InstMovW* bottom = load1->as<InstMovW>();
bottom->extractImm(&targ_bot);
bottom->extractDest(&temp);
// Extract the top part of the immediate.
InstMovT* top = load2->as<InstMovT>();
top->extractImm(&targ_top);
// Make sure they are being loaded into the same register.
MOZ_ASSERT(top->checkDest(temp));
if (dest) {
*dest = temp;
}
uint32_t* value =
(uint32_t*)(targ_bot.decode() | (targ_top.decode() << 16));
return value;
}
if (load1->is<InstLDR>()) {
if (style) {
*style = L_LDR;
}
if (dest) {
*dest = toRD(*load1);
}
return *(uint32_t**)load1->as<InstLDR>()->dest();
}
MOZ_CRASH("unsupported relocation");
}
static JitCode* CodeFromJump(InstructionIterator* jump) {
uint8_t* target = (uint8_t*)Assembler::GetCF32Target(jump);
return JitCode::FromExecutable(target);
}
void Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader) {
RelocationIterator iter(reader);
while (iter.read()) {
InstructionIterator institer((Instruction*)(code->raw() + iter.offset()));
JitCode* child = CodeFromJump(&institer);
TraceManuallyBarrieredEdge(trc, &child, "rel32");
}
}
static void TraceOneDataRelocation(JSTracer* trc,
mozilla::Maybe<AutoWritableJitCode>& awjc,
JitCode* code, InstructionIterator iter) {
Register dest;
Assembler::RelocStyle rs;
const void* prior = Assembler::GetPtr32Target(iter, &dest, &rs);
void* ptr = const_cast<void*>(prior);
// No barrier needed since these are constants.
TraceManuallyBarrieredGenericPointerEdge(
trc, reinterpret_cast<gc::Cell**>(&ptr), "jit-masm-ptr");
if (ptr != prior) {
if (awjc.isNothing()) {
awjc.emplace(code);
}
MacroAssemblerARM::ma_mov_patch(Imm32(int32_t(ptr)), dest,
Assembler::Always, rs, iter);
}
}
/* static */
void Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader) {
mozilla::Maybe<AutoWritableJitCode> awjc;
while (reader.more()) {
size_t offset = reader.readUnsigned();
InstructionIterator iter((Instruction*)(code->raw() + offset));
TraceOneDataRelocation(trc, awjc, code, iter);
}
}
void Assembler::copyJumpRelocationTable(uint8_t* dest) {
if (jumpRelocations_.length()) {
memcpy(dest, jumpRelocations_.buffer(), jumpRelocations_.length());
}
}
void Assembler::copyDataRelocationTable(uint8_t* dest) {
if (dataRelocations_.length()) {
memcpy(dest, dataRelocations_.buffer(), dataRelocations_.length());
}
}
void Assembler::processCodeLabels(uint8_t* rawCode) {
for (const CodeLabel& label : codeLabels_) {
Bind(rawCode, label);
}
}
void Assembler::writeCodePointer(CodeLabel* label) {
m_buffer.assertNoPoolAndNoNops();
BufferOffset off = writeInst(-1);
label->patchAt()->bind(off.getOffset());
}
void Assembler::Bind(uint8_t* rawCode, const CodeLabel& label) {
size_t offset = label.patchAt().offset();
size_t target = label.target().offset();
*reinterpret_cast<const void**>(rawCode + offset) = rawCode + target;
}
Assembler::Condition Assembler::InvertCondition(Condition cond) {
const uint32_t ConditionInversionBit = 0x10000000;
return Condition(ConditionInversionBit ^ cond);
}
Assembler::Condition Assembler::UnsignedCondition(Condition cond) {
switch (cond) {
case Zero:
case NonZero:
return cond;
case LessThan:
case Below:
return Below;
case LessThanOrEqual:
case BelowOrEqual:
return BelowOrEqual;
case GreaterThan:
case Above:
return Above;
case AboveOrEqual:
case GreaterThanOrEqual:
return AboveOrEqual;
default:
MOZ_CRASH("unexpected condition");
}
}
Assembler::Condition Assembler::ConditionWithoutEqual(Condition cond) {
switch (cond) {
case LessThan:
case LessThanOrEqual:
return LessThan;
case Below:
case BelowOrEqual:
return Below;
case GreaterThan:
case GreaterThanOrEqual:
return GreaterThan;
case Above:
case AboveOrEqual:
return Above;
default:
MOZ_CRASH("unexpected condition");
}
}
Assembler::DoubleCondition Assembler::InvertCondition(DoubleCondition cond) {
const uint32_t ConditionInversionBit = 0x10000000;
return DoubleCondition(ConditionInversionBit ^ cond);
}
Imm8::TwoImm8mData Imm8::EncodeTwoImms(uint32_t imm) {
// In the ideal case, we are looking for a number that (in binary) looks
// like:
// 0b((00)*)n_1((00)*)n_2((00)*)
// left n1 mid n2
// where both n_1 and n_2 fit into 8 bits.
// Since this is being done with rotates, we also need to handle the case
// that one of these numbers is in fact split between the left and right
// sides, in which case the constant will look like:
// 0bn_1a((00)*)n_2((00)*)n_1b
// n1a mid n2 rgh n1b
// Also remember, values are rotated by multiples of two, and left, mid or
// right can have length zero.
uint32_t imm1, imm2;
int left = CountLeadingZeroes32(imm) & 0x1E;
uint32_t no_n1 = imm & ~(0xff << (24 - left));
// Not technically needed: this case only happens if we can encode as a
// single imm8m. There is a perfectly reasonable encoding in this case, but
// we shouldn't encourage people to do things like this.
if (no_n1 == 0) {
return TwoImm8mData();
}
int mid = CountLeadingZeroes32(no_n1) & 0x1E;
uint32_t no_n2 =
no_n1 & ~((0xff << ((24 - mid) & 0x1f)) | 0xff >> ((8 + mid) & 0x1f));
if (no_n2 == 0) {
// We hit the easy case, no wraparound.
// Note: a single constant *may* look like this.
int imm1shift = left + 8;
int imm2shift = mid + 8;
imm1 = (imm >> (32 - imm1shift)) & 0xff;
if (imm2shift >= 32) {
imm2shift = 0;
// This assert does not always hold, in fact, this would lead to
// some incredibly subtle bugs.
// assert((imm & 0xff) == no_n1);
imm2 = no_n1;
} else {
imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff;
MOZ_ASSERT(((no_n1 >> (32 - imm2shift)) | (no_n1 << imm2shift)) == imm2);
}
MOZ_ASSERT((imm1shift & 0x1) == 0);
MOZ_ASSERT((imm2shift & 0x1) == 0);
return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1),
datastore::Imm8mData(imm2, imm2shift >> 1));
}
// Either it wraps, or it does not fit. If we initially chopped off more
// than 8 bits, then it won't fit.
if (left >= 8) {
return TwoImm8mData();
}
int right = 32 - (CountLeadingZeroes32(no_n2) & 30);
// All remaining set bits *must* fit into the lower 8 bits.
// The right == 8 case should be handled by the previous case.
if (right > 8) {
return TwoImm8mData();
}
// Make sure the initial bits that we removed for no_n1 fit into the
// 8-(32-right) leftmost bits.
if (((imm & (0xff << (24 - left))) << (8 - right)) != 0) {
// BUT we may have removed more bits than we needed to for no_n1
// 0x04104001 e.g. we can encode 0x104 with a single op, then 0x04000001
// with a second, but we try to encode 0x0410000 and find that we need a
// second op for 0x4000, and 0x1 cannot be included in the encoding of
// 0x04100000.
no_n1 = imm & ~((0xff >> (8 - right)) | (0xff << (24 + right)));
mid = CountLeadingZeroes32(no_n1) & 30;
no_n2 = no_n1 & ~((0xff << ((24 - mid) & 31)) | 0xff >> ((8 + mid) & 31));
if (no_n2 != 0) {
return TwoImm8mData();
}
}
// Now assemble all of this information into a two coherent constants it is
// a rotate right from the lower 8 bits.
int imm1shift = 8 - right;
imm1 = 0xff & ((imm << imm1shift) | (imm >> (32 - imm1shift)));
MOZ_ASSERT((imm1shift & ~0x1e) == 0);
// left + 8 + mid is the position of the leftmost bit of n_2.
// We needed to rotate 0x000000ab right by 8 in order to get 0xab000000,
// then shift again by the leftmost bit in order to get the constant that we
// care about.
int imm2shift = mid + 8;
imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff;
MOZ_ASSERT((imm1shift & 0x1) == 0);
MOZ_ASSERT((imm2shift & 0x1) == 0);
return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1),
datastore::Imm8mData(imm2, imm2shift >> 1));
}
ALUOp jit::ALUNeg(ALUOp op, Register dest, Register scratch, Imm32* imm,
Register* negDest) {
// Find an alternate ALUOp to get the job done, and use a different imm.
*negDest = dest;
switch (op) {
case OpMov:
*imm = Imm32(~imm->value);
return OpMvn;
case OpMvn:
*imm = Imm32(~imm->value);
return OpMov;
case OpAnd:
*imm = Imm32(~imm->value);
return OpBic;
case OpBic:
*imm = Imm32(~imm->value);
return OpAnd;
case OpAdd:
*imm = Imm32(-imm->value);
return OpSub;
case OpSub:
*imm = Imm32(-imm->value);
return OpAdd;
case OpCmp:
*imm = Imm32(-imm->value);
return OpCmn;
case OpCmn:
*imm = Imm32(-imm->value);
return OpCmp;
case OpTst:
MOZ_ASSERT(dest == InvalidReg);
*imm = Imm32(~imm->value);
*negDest = scratch;
return OpBic;
// orr has orn on thumb2 only.
default:
return OpInvalid;
}
}
bool jit::can_dbl(ALUOp op) {
// Some instructions can't be processed as two separate instructions such as
// and, and possibly add (when we're setting ccodes). There is also some
// hilarity with *reading* condition codes. For example, adc dest, src1,
// 0xfff; (add with carry) can be split up into adc dest, src1, 0xf00; add
// dest, dest, 0xff, since "reading" the condition code increments the
// result by one conditionally, that only needs to be done on one of the two
// instructions.
switch (op) {
case OpBic:
case OpAdd:
case OpSub:
case OpEor:
case OpOrr:
return true;
default:
return false;
}
}
bool jit::condsAreSafe(ALUOp op) {
// Even when we are setting condition codes, sometimes we can get away with
// splitting an operation into two. For example, if our immediate is
// 0x00ff00ff, and the operation is eors we can split this in half, since x
// ^ 0x00ff0000 ^ 0x000000ff should set all of its condition codes exactly
// the same as x ^ 0x00ff00ff. However, if the operation were adds, we
// cannot split this in half. If the source on the add is 0xfff00ff0, the
// result sholud be 0xef10ef, but do we set the overflow bit or not?
// Depending on which half is performed first (0x00ff0000 or 0x000000ff) the
// V bit will be set differently, and *not* updating the V bit would be
// wrong. Theoretically, the following should work:
// adds r0, r1, 0x00ff0000;
// addsvs r0, r1, 0x000000ff;
// addvc r0, r1, 0x000000ff;
// But this is 3 instructions, and at that point, we might as well use
// something else.
switch (op) {
case OpBic:
case OpOrr:
case OpEor:
return true;
default:
return false;
}
}
ALUOp jit::getDestVariant(ALUOp op) {
// All of the compare operations are dest-less variants of a standard
// operation. Given the dest-less variant, return the dest-ful variant.
switch (op) {
case OpCmp:
return OpSub;
case OpCmn:
return OpAdd;
case OpTst:
return OpAnd;
case OpTeq:
return OpEor;
default:
return op;
}
}
O2RegImmShift jit::O2Reg(Register r) { return O2RegImmShift(r, LSL, 0); }
O2RegImmShift jit::lsl(Register r, int amt) {
MOZ_ASSERT(0 <= amt && amt <= 31);
return O2RegImmShift(r, LSL, amt);
}
O2RegImmShift jit::lsr(Register r, int amt) {
MOZ_ASSERT(1 <= amt && amt <= 32);
return O2RegImmShift(r, LSR, amt);
}
O2RegImmShift jit::ror(Register r, int amt) {
MOZ_ASSERT(1 <= amt && amt <= 31);
return O2RegImmShift(r, ROR, amt);
}
O2RegImmShift jit::rol(Register r, int amt) {
MOZ_ASSERT(1 <= amt && amt <= 31);
return O2RegImmShift(r, ROR, 32 - amt);
}
O2RegImmShift jit::asr(Register r, int amt) {
MOZ_ASSERT(1 <= amt && amt <= 32);
return O2RegImmShift(r, ASR, amt);
}
O2RegRegShift jit::lsl(Register r, Register amt) {
return O2RegRegShift(r, LSL, amt);
}
O2RegRegShift jit::lsr(Register r, Register amt) {
return O2RegRegShift(r, LSR, amt);
}
O2RegRegShift jit::ror(Register r, Register amt) {
return O2RegRegShift(r, ROR, amt);
}
O2RegRegShift jit::asr(Register r, Register amt) {
return O2RegRegShift(r, ASR, amt);
}
static js::jit::DoubleEncoder doubleEncoder;
/* static */
const js::jit::VFPImm js::jit::VFPImm::One(0x3FF00000);
js::jit::VFPImm::VFPImm(uint32_t top) {
data_ = -1;
datastore::Imm8VFPImmData tmp;
if (doubleEncoder.lookup(top, &tmp)) {
data_ = tmp.encode();
}
}
BOffImm::BOffImm(const Instruction& inst) : data_(inst.encode() & 0x00ffffff) {}
Instruction* BOffImm::getDest(Instruction* src) const {
// TODO: It is probably worthwhile to verify that src is actually a branch.
// NOTE: This does not explicitly shift the offset of the destination left by
// 2, since it is indexing into an array of instruction sized objects.
return &src[((int32_t(data_) << 8) >> 8) + 2];
}
const js::jit::DoubleEncoder::DoubleEntry js::jit::DoubleEncoder::table[256] = {
#include "jit/arm/DoubleEntryTable.tbl"
};
// VFPRegister implementation
VFPRegister VFPRegister::doubleOverlay(unsigned int which) const {
MOZ_ASSERT(!_isInvalid);
MOZ_ASSERT(which == 0);
if (kind != Double) {
return VFPRegister(code_ >> 1, Double);
}
return *this;
}
VFPRegister VFPRegister::singleOverlay(unsigned int which) const {
MOZ_ASSERT(!_isInvalid);
if (kind == Double) {
// There are no corresponding float registers for d16-d31.
MOZ_ASSERT(code_ < 16);
MOZ_ASSERT(which < 2);
return VFPRegister((code_ << 1) + which, Single);
}
MOZ_ASSERT(which == 0);
return VFPRegister(code_, Single);
}
static_assert(
FloatRegisters::TotalDouble <= 16,
"We assume that every Double register also has an Integer personality");
VFPRegister VFPRegister::sintOverlay(unsigned int which) const {
MOZ_ASSERT(!_isInvalid);
if (kind == Double) {
// There are no corresponding float registers for d16-d31.
MOZ_ASSERT(code_ < 16);
MOZ_ASSERT(which < 2);
return VFPRegister((code_ << 1) + which, Int);
}
MOZ_ASSERT(which == 0);
return VFPRegister(code_, Int);
}
VFPRegister VFPRegister::uintOverlay(unsigned int which) const {
MOZ_ASSERT(!_isInvalid);
if (kind == Double) {
// There are no corresponding float registers for d16-d31.
MOZ_ASSERT(code_ < 16);
MOZ_ASSERT(which < 2);
return VFPRegister((code_ << 1) + which, UInt);
}
MOZ_ASSERT(which == 0);
return VFPRegister(code_, UInt);
}
bool Assembler::oom() const {
return AssemblerShared::oom() || m_buffer.oom() || jumpRelocations_.oom() ||
dataRelocations_.oom();
}
// Size of the instruction stream, in bytes. Including pools. This function
// expects all pools that need to be placed have been placed. If they haven't
// then we need to go an flush the pools :(
size_t Assembler::size() const { return m_buffer.size(); }
// Size of the relocation table, in bytes.
size_t Assembler::jumpRelocationTableBytes() const {
return jumpRelocations_.length();
}
size_t Assembler::dataRelocationTableBytes() const {
return dataRelocations_.length();
}
// Size of the data table, in bytes.
size_t Assembler::bytesNeeded() const {
return size() + jumpRelocationTableBytes() + dataRelocationTableBytes();
}
// Allocate memory for a branch instruction, it will be overwritten
// subsequently and should not be disassembled.
BufferOffset Assembler::allocBranchInst() {
return m_buffer.putInt(Always | InstNOP::NopInst);
}
void Assembler::WriteInstStatic(uint32_t x, uint32_t* dest) {
MOZ_ASSERT(dest != nullptr);
*dest = x;
}
void Assembler::haltingAlign(int alignment) {
// HLT with payload 0xBAAD
m_buffer.align(alignment, 0xE1000070 | (0xBAA << 8) | 0xD);
}
void Assembler::nopAlign(int alignment) { m_buffer.align(alignment); }
BufferOffset Assembler::as_nop() { return writeInst(0xe320f000); }
static uint32_t EncodeAlu(Register dest, Register src1, Operand2 op2, ALUOp op,
SBit s, Assembler::Condition c) {
return (int)op | (int)s | (int)c | op2.encode() |
((dest == InvalidReg) ? 0 : RD(dest)) |
((src1 == InvalidReg) ? 0 : RN(src1));
}
BufferOffset Assembler::as_alu(Register dest, Register src1, Operand2 op2,
ALUOp op, SBit s, Condition c) {
return writeInst(EncodeAlu(dest, src1, op2, op, s, c));
}
BufferOffset Assembler::as_mov(Register dest, Operand2 op2, SBit s,
Condition c) {
return as_alu(dest, InvalidReg, op2, OpMov, s, c);
}
/* static */
void Assembler::as_alu_patch(Register dest, Register src1, Operand2 op2,
ALUOp op, SBit s, Condition c, uint32_t* pos) {
WriteInstStatic(EncodeAlu(dest, src1, op2, op, s, c), pos);
}
/* static */
void Assembler::as_mov_patch(Register dest, Operand2 op2, SBit s, Condition c,
uint32_t* pos) {
as_alu_patch(dest, InvalidReg, op2, OpMov, s, c, pos);
}
BufferOffset Assembler::as_mvn(Register dest, Operand2 op2, SBit s,
Condition c) {
return as_alu(dest, InvalidReg, op2, OpMvn, s, c);
}
// Logical operations.
BufferOffset Assembler::as_and(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpAnd, s, c);
}
BufferOffset Assembler::as_bic(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpBic, s, c);
}
BufferOffset Assembler::as_eor(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpEor, s, c);
}
BufferOffset Assembler::as_orr(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpOrr, s, c);
}
// Reverse byte operations.
BufferOffset Assembler::as_rev(Register dest, Register src, Condition c) {
return writeInst((int)c | 0b0000'0110'1011'1111'0000'1111'0011'0000 |
RD(dest) | src.code());
}
BufferOffset Assembler::as_rev16(Register dest, Register src, Condition c) {
return writeInst((int)c | 0b0000'0110'1011'1111'0000'1111'1011'0000 |
RD(dest) | src.code());
}
BufferOffset Assembler::as_revsh(Register dest, Register src, Condition c) {
return writeInst((int)c | 0b0000'0110'1111'1111'0000'1111'1011'0000 |
RD(dest) | src.code());
}
// Mathematical operations.
BufferOffset Assembler::as_adc(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpAdc, s, c);
}
BufferOffset Assembler::as_add(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpAdd, s, c);
}
BufferOffset Assembler::as_sbc(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpSbc, s, c);
}
BufferOffset Assembler::as_sub(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpSub, s, c);
}
BufferOffset Assembler::as_rsb(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpRsb, s, c);
}
BufferOffset Assembler::as_rsc(Register dest, Register src1, Operand2 op2,
SBit s, Condition c) {
return as_alu(dest, src1, op2, OpRsc, s, c);
}
// Test operations.
BufferOffset Assembler::as_cmn(Register src1, Operand2 op2, Condition c) {
return as_alu(InvalidReg, src1, op2, OpCmn, SetCC, c);
}
BufferOffset Assembler::as_cmp(Register src1, Operand2 op2, Condition c) {
return as_alu(InvalidReg, src1, op2, OpCmp, SetCC, c);
}
BufferOffset Assembler::as_teq(Register src1, Operand2 op2, Condition c) {
return as_alu(InvalidReg, src1, op2, OpTeq, SetCC, c);
}
BufferOffset Assembler::as_tst(Register src1, Operand2 op2, Condition c) {
return as_alu(InvalidReg, src1, op2, OpTst, SetCC, c);
}
static constexpr Register NoAddend{Registers::pc};
static const int SignExtend = 0x06000070;
enum SignExtend {
SxSxtb = 10 << 20,
SxSxth = 11 << 20,
SxUxtb = 14 << 20,
SxUxth = 15 << 20
};
// Sign extension operations.
BufferOffset Assembler::as_sxtb(Register dest, Register src, int rotate,
Condition c) {
return writeInst((int)c | SignExtend | SxSxtb | RN(NoAddend) | RD(dest) |
((rotate & 3) << 10) | src.code());
}
BufferOffset Assembler::as_sxth(Register dest, Register src, int rotate,
Condition c) {
return writeInst((int)c | SignExtend | SxSxth | RN(NoAddend) | RD(dest) |
((rotate & 3) << 10) | src.code());
}
BufferOffset Assembler::as_uxtb(Register dest, Register src, int rotate,
Condition c) {
return writeInst((int)c | SignExtend | SxUxtb | RN(NoAddend) | RD(dest) |
((rotate & 3) << 10) | src.code());
}
BufferOffset Assembler::as_uxth(Register dest, Register src, int rotate,
Condition c) {
return writeInst((int)c | SignExtend | SxUxth | RN(NoAddend) | RD(dest) |
((rotate & 3) << 10) | src.code());
}
static uint32_t EncodeMovW(Register dest, Imm16 imm, Assembler::Condition c) {
MOZ_ASSERT(HasMOVWT());
return 0x03000000 | c | imm.encode() | RD(dest);
}
static uint32_t EncodeMovT(Register dest, Imm16 imm, Assembler::Condition c) {
MOZ_ASSERT(HasMOVWT());
return 0x03400000 | c | imm.encode() | RD(dest);
}
// Not quite ALU worthy, but these are useful none the less. These also have
// the isue of these being formatted completly differently from the standard ALU
// operations.
BufferOffset Assembler::as_movw(Register dest, Imm16 imm, Condition c) {
return writeInst(EncodeMovW(dest, imm, c));
}
/* static */
void Assembler::as_movw_patch(Register dest, Imm16 imm, Condition c,
Instruction* pos) {
WriteInstStatic(EncodeMovW(dest, imm, c), (uint32_t*)pos);
}
BufferOffset Assembler::as_movt(Register dest, Imm16 imm, Condition c) {
return writeInst(EncodeMovT(dest, imm, c));
}
/* static */
void Assembler::as_movt_patch(Register dest, Imm16 imm, Condition c,
Instruction* pos) {
WriteInstStatic(EncodeMovT(dest, imm, c), (uint32_t*)pos);
}
static const int mull_tag = 0x90;
BufferOffset Assembler::as_genmul(Register dhi, Register dlo, Register rm,
Register rn, MULOp op, SBit s, Condition c) {
return writeInst(RN(dhi) | maybeRD(dlo) | RM(rm) | rn.code() | op | s | c |
mull_tag);
}
BufferOffset Assembler::as_mul(Register dest, Register src1, Register src2,
SBit s, Condition c) {
return as_genmul(dest, InvalidReg, src1, src2, OpmMul, s, c);
}
BufferOffset Assembler::as_mla(Register dest, Register acc, Register src1,
Register src2, SBit s, Condition c) {
return as_genmul(dest, acc, src1, src2, OpmMla, s, c);
}
BufferOffset Assembler::as_umaal(Register destHI, Register destLO,
Register src1, Register src2, Condition c) {
return as_genmul(destHI, destLO, src1, src2, OpmUmaal, LeaveCC, c);
}
BufferOffset Assembler::as_mls(Register dest, Register acc, Register src1,
Register src2, Condition c) {
return as_genmul(dest, acc, src1, src2, OpmMls, LeaveCC, c);
}
BufferOffset Assembler::as_umull(Register destHI, Register destLO,
Register src1, Register src2, SBit s,
Condition c) {
return as_genmul(destHI, destLO, src1, src2, OpmUmull, s, c);
}
BufferOffset Assembler::as_umlal(Register destHI, Register destLO,
Register src1, Register src2, SBit s,
Condition c) {
return as_genmul(destHI, destLO, src1, src2, OpmUmlal, s, c);
}
BufferOffset Assembler::as_smull(Register destHI, Register destLO,
Register src1, Register src2, SBit s,
Condition c) {
return as_genmul(destHI, destLO, src1, src2, OpmSmull, s, c);
}
BufferOffset Assembler::as_smlal(Register destHI, Register destLO,
Register src1, Register src2, SBit s,
Condition c) {
return as_genmul(destHI, destLO, src1, src2, OpmSmlal, s, c);
}
BufferOffset Assembler::as_sdiv(Register rd, Register rn, Register rm,
Condition c) {
return writeInst(0x0710f010 | c | RN(rd) | RM(rm) | rn.code());
}
BufferOffset Assembler::as_udiv(Register rd, Register rn, Register rm,
Condition c) {
return writeInst(0x0730f010 | c | RN(rd) | RM(rm) | rn.code());
}
BufferOffset Assembler::as_clz(Register dest, Register src, Condition c) {
MOZ_ASSERT(src != pc && dest != pc);
return writeInst(RD(dest) | src.code() | c | 0x016f0f10);
}
// Data transfer instructions: ldr, str, ldrb, strb. Using an int to
// differentiate between 8 bits and 32 bits is overkill, but meh.
static uint32_t EncodeDtr(LoadStore ls, int size, Index mode, Register rt,
DTRAddr addr, Assembler::Condition c) {
MOZ_ASSERT(mode == Offset || (rt != addr.getBase() && pc != addr.getBase()));
MOZ_ASSERT(size == 32 || size == 8);
return 0x04000000 | ls | (size == 8 ? 0x00400000 : 0) | mode | c | RT(rt) |
addr.encode();
}
BufferOffset Assembler::as_dtr(LoadStore ls, int size, Index mode, Register rt,
DTRAddr addr, Condition c) {
return writeInst(EncodeDtr(ls, size, mode, rt, addr, c));
}
/* static */
void Assembler::as_dtr_patch(LoadStore ls, int size, Index mode, Register rt,
DTRAddr addr, Condition c, uint32_t* dest) {
WriteInstStatic(EncodeDtr(ls, size, mode, rt, addr, c), dest);
}
class PoolHintData {
public:
enum LoadType {
// Set 0 to bogus, since that is the value most likely to be
// accidentally left somewhere.
PoolBOGUS = 0,
PoolDTR = 1,
PoolBranch = 2,
PoolVDTR = 3
};
private:
uint32_t index_ : 16;
uint32_t cond_ : 4;
uint32_t loadType_ : 2;
uint32_t destReg_ : 5;
uint32_t destType_ : 1;
uint32_t ONES : 4;
static const uint32_t ExpectedOnes = 0xfu;
public:
void init(uint32_t index, Assembler::Condition cond, LoadType lt,
Register destReg) {
index_ = index;
MOZ_ASSERT(index_ == index);
cond_ = cond >> 28;
MOZ_ASSERT(cond_ == cond >> 28);
loadType_ = lt;
ONES = ExpectedOnes;
destReg_ = destReg.code();
destType_ = 0;
}
void init(uint32_t index, Assembler::Condition cond, LoadType lt,
const VFPRegister& destReg) {
MOZ_ASSERT(destReg.isFloat());
index_ = index;
MOZ_ASSERT(index_ == index);
cond_ = cond >> 28;
MOZ_ASSERT(cond_ == cond >> 28);
loadType_ = lt;
ONES = ExpectedOnes;
destReg_ = destReg.id();
destType_ = destReg.isDouble();
}
Assembler::Condition getCond() const {
return Assembler::Condition(cond_ << 28);
}
Register getReg() const { return Register::FromCode(destReg_); }
VFPRegister getVFPReg() const {
VFPRegister r = VFPRegister(
destReg_, destType_ ? VFPRegister::Double : VFPRegister::Single);
return r;
}
int32_t getIndex() const { return index_; }
void setIndex(uint32_t index) {
MOZ_ASSERT(ONES == ExpectedOnes && loadType_ != PoolBOGUS);
index_ = index;
MOZ_ASSERT(index_ == index);
}
LoadType getLoadType() const {
// If this *was* a PoolBranch, but the branch has already been bound
// then this isn't going to look like a real poolhintdata, but we still
// want to lie about it so everyone knows it *used* to be a branch.
if (ONES != ExpectedOnes) {
return PoolHintData::PoolBranch;
}
return static_cast<LoadType>(loadType_);
}
bool isValidPoolHint() const {
// Most instructions cannot have a condition that is 0xf. Notable
// exceptions are blx and the entire NEON instruction set. For the
// purposes of pool loads, and possibly patched branches, the possible
// instructions are ldr and b, neither of which can have a condition
// code of 0xf.
return ONES == ExpectedOnes;
}
};
union PoolHintPun {
PoolHintData phd;
uint32_t raw;
};
// Handles all of the other integral data transferring functions: ldrsb, ldrsh,
// ldrd, etc. The size is given in bits.
BufferOffset Assembler::as_extdtr(LoadStore ls, int size, bool IsSigned,
Index mode, Register rt, EDtrAddr addr,
Condition c) {
int extra_bits2 = 0;
int extra_bits1 = 0;
switch (size) {
case 8:
MOZ_ASSERT(IsSigned);
MOZ_ASSERT(ls != IsStore);
extra_bits1 = 0x1;
extra_bits2 = 0x2;
break;
case 16:
// 'case 32' doesn't need to be handled, it is handled by the default
// ldr/str.
extra_bits2 = 0x01;
extra_bits1 = (ls == IsStore) ? 0 : 1;
if (IsSigned) {
MOZ_ASSERT(ls != IsStore);
extra_bits2 |= 0x2;
}
break;
case 64:
extra_bits2 = (ls == IsStore) ? 0x3 : 0x2;
extra_bits1 = 0;
break;
default:
MOZ_CRASH("unexpected size in as_extdtr");
}
return writeInst(extra_bits2 << 5 | extra_bits1 << 20 | 0x90 | addr.encode() |
RT(rt) | mode | c);
}
BufferOffset Assembler::as_dtm(LoadStore ls, Register rn, uint32_t mask,
DTMMode mode, DTMWriteBack wb, Condition c) {
return writeInst(0x08000000 | RN(rn) | ls | mode | mask | c | wb);
}
BufferOffset Assembler::allocLiteralLoadEntry(
size_t numInst, unsigned numPoolEntries, PoolHintPun& php, uint8_t* data,
const LiteralDoc& doc, ARMBuffer::PoolEntry* pe, bool loadToPC) {
uint8_t* inst = (uint8_t*)&php.raw;
MOZ_ASSERT(inst);
MOZ_ASSERT(numInst == 1); // Or fix the disassembly
BufferOffset offs =
m_buffer.allocEntry(numInst, numPoolEntries, inst, data, pe);
propagateOOM(offs.assigned());
#ifdef JS_DISASM_ARM
Instruction* instruction = m_buffer.getInstOrNull(offs);
if (instruction) {
spewLiteralLoad(php, loadToPC, instruction, doc);
}
#endif
return offs;
}
// This is also used for instructions that might be resolved into branches,
// or might not. If dest==pc then it is effectively a branch.
BufferOffset Assembler::as_Imm32Pool(Register dest, uint32_t value,
Condition c) {
PoolHintPun php;
php.phd.init(0, c, PoolHintData::PoolDTR, dest);
BufferOffset offs = allocLiteralLoadEntry(
1, 1, php, (uint8_t*)&value, LiteralDoc(value), nullptr, dest == pc);
return offs;
}
/* static */
void Assembler::WritePoolEntry(Instruction* addr, Condition c, uint32_t data) {
MOZ_ASSERT(addr->is<InstLDR>());
*addr->as<InstLDR>()->dest() = data;
MOZ_ASSERT(addr->extractCond() == c);
}
BufferOffset Assembler::as_FImm64Pool(VFPRegister dest, double d, Condition c) {
MOZ_ASSERT(dest.isDouble());
PoolHintPun php;
php.phd.init(0, c, PoolHintData::PoolVDTR, dest);
return allocLiteralLoadEntry(1, 2, php, (uint8_t*)&d, LiteralDoc(d));
}
BufferOffset Assembler::as_FImm32Pool(VFPRegister dest, float f, Condition c) {
// Insert floats into the double pool as they have the same limitations on
// immediate offset. This wastes 4 bytes padding per float. An alternative
// would be to have a separate pool for floats.
MOZ_ASSERT(dest.isSingle());
PoolHintPun php;
php.phd.init(0, c, PoolHintData::PoolVDTR, dest);
return allocLiteralLoadEntry(1, 1, php, (uint8_t*)&f, LiteralDoc(f));
}
// Pool callbacks stuff:
void Assembler::InsertIndexIntoTag(uint8_t* load_, uint32_t index) {
uint32_t* load = (uint32_t*)load_;
PoolHintPun php;
php.raw = *load;
php.phd.setIndex(index);
*load = php.raw;
}
// patchConstantPoolLoad takes the address of the instruction that wants to be
// patched, and the address of the start of the constant pool, and figures
// things out from there.
void Assembler::PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr) {
PoolHintData data = *(PoolHintData*)loadAddr;
uint32_t* instAddr = (uint32_t*)loadAddr;
int offset = (char*)constPoolAddr - (char*)loadAddr;
switch (data.getLoadType()) {
case PoolHintData::PoolBOGUS:
MOZ_CRASH("bogus load type!");
case PoolHintData::PoolDTR:
Assembler::as_dtr_patch(
IsLoad, 32, Offset, data.getReg(),
DTRAddr(pc, DtrOffImm(offset + 4 * data.getIndex() - 8)),
data.getCond(), instAddr);
break;
case PoolHintData::PoolBranch:
// Either this used to be a poolBranch, and the label was already bound,
// so it was replaced with a real branch, or this may happen in the
// future. If this is going to happen in the future, then the actual
// bits that are written here don't matter (except the condition code,
// since that is always preserved across patchings) but if it does not
// get bound later, then we want to make sure this is a load from the
// pool entry (and the pool entry should be nullptr so it will crash).
if (data.isValidPoolHint()) {
Assembler::as_dtr_patch(
IsLoad, 32, Offset, pc,
DTRAddr(pc, DtrOffImm(offset + 4 * data.getIndex() - 8)),
data.getCond(), instAddr);
}
break;
case PoolHintData::PoolVDTR: {
VFPRegister dest = data.getVFPReg();
int32_t imm = offset + (data.getIndex() * 4) - 8;
MOZ_ASSERT(-1024 < imm && imm < 1024);
Assembler::as_vdtr_patch(IsLoad, dest, VFPAddr(pc, VFPOffImm(imm)),
data.getCond(), instAddr);
break;
}
}
}
// Atomic instruction stuff:
BufferOffset Assembler::as_ldrexd(Register rt, Register rt2, Register rn,
Condition c) {
MOZ_ASSERT(!(rt.code() & 1) && rt2.code() == rt.code() + 1);
MOZ_ASSERT(rt.code() != 14 && rn.code() != 15);
return writeInst(0x01b00f9f | (int)c | RT(rt) | RN(rn));
}
BufferOffset Assembler::as_ldrex(Register rt, Register rn, Condition c) {
MOZ_ASSERT(rt.code() != 15 && rn.code() != 15);
return writeInst(0x01900f9f | (int)c | RT(rt) | RN(rn));
}
BufferOffset Assembler::as_ldrexh(Register rt, Register rn, Condition c) {
MOZ_ASSERT(rt.code() != 15 && rn.code() != 15);
return writeInst(0x01f00f9f | (int)c | RT(rt) | RN(rn));
}
BufferOffset Assembler::as_ldrexb(Register rt, Register rn, Condition c) {
MOZ_ASSERT(rt.code() != 15 && rn.code() != 15);
return writeInst(0x01d00f9f | (int)c | RT(rt) | RN(rn));
}
BufferOffset Assembler::as_strexd(Register rd, Register rt, Register rt2,
Register rn, Condition c) {
MOZ_ASSERT(!(rt.code() & 1) && rt2.code() == rt.code() + 1);
MOZ_ASSERT(rt.code() != 14 && rn.code() != 15 && rd.code() != 15);
MOZ_ASSERT(rd != rn && rd != rt && rd != rt2);
return writeInst(0x01a00f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}
BufferOffset Assembler::as_strex(Register rd, Register rt, Register rn,
Condition c) {
MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2)
return writeInst(0x01800f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}
BufferOffset Assembler::as_strexh(Register rd, Register rt, Register rn,
Condition c) {
MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2)
return writeInst(0x01e00f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}
BufferOffset Assembler::as_strexb(Register rd, Register rt, Register rn,
Condition c) {
MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2)
return writeInst(0x01c00f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}
BufferOffset Assembler::as_clrex() { return writeInst(0xf57ff01f); }
// Memory barrier stuff:
BufferOffset Assembler::as_dmb(BarrierOption option) {
return writeInst(0xf57ff050U | (int)option);
}
BufferOffset Assembler::as_dsb(BarrierOption option) {
return writeInst(0xf57ff040U | (int)option);
}
BufferOffset Assembler::as_isb() {
return writeInst(0xf57ff06fU); // option == SY
}
BufferOffset Assembler::as_dsb_trap() {
// DSB is "mcr 15, 0, r0, c7, c10, 4".
// ARMv7 manual, "VMSA CP15 c7 register summary".
// Flagged as "legacy" starting with ARMv8, may be disabled on chip, see
// ARMv8 manual E2.7.3 and G3.18.16.
return writeInst(0xee070f9a);
}
BufferOffset Assembler::as_dmb_trap() {
// DMB is "mcr 15, 0, r0, c7, c10, 5".
// ARMv7 manual, "VMSA CP15 c7 register summary".
// Flagged as "legacy" starting with ARMv8, may be disabled on chip, see
// ARMv8 manual E2.7.3 and G3.18.16.
return writeInst(0xee070fba);
}
BufferOffset Assembler::as_isb_trap() {
// ISB is "mcr 15, 0, r0, c7, c5, 4".
// ARMv7 manual, "VMSA CP15 c7 register summary".
// Flagged as "legacy" starting with ARMv8, may be disabled on chip, see
// ARMv8 manual E2.7.3 and G3.18.16.
return writeInst(0xee070f94);
}
BufferOffset Assembler::as_csdb() {
// NOP (see as_nop) on architectures where this instruction is not defined.
//
// CSDB A32: 1110_0011_0010_0000_1111_0000_0001_0100
return writeInst(0xe320f000 | 0x14);
}
// Control flow stuff:
// bx can *only* branch to a register, never to an immediate.
BufferOffset Assembler::as_bx(Register r, Condition c) {
BufferOffset ret = writeInst(((int)c) | OpBx | r.code());
return ret;
}
void Assembler::WritePoolGuard(BufferOffset branch, Instruction* dest,
BufferOffset afterPool) {
BOffImm off = afterPool.diffB<BOffImm>(branch);
if (off.isInvalid()) {
MOZ_CRASH("BOffImm invalid");
}
*dest = InstBImm(off, Always);
}
// Branch can branch to an immediate *or* to a register.
// Branches to immediates are pc relative, branches to registers are absolute.
BufferOffset Assembler::as_b(BOffImm off, Condition c, Label* documentation) {
return writeBranchInst(((int)c) | OpB | off.encode(),
refLabel(documentation));
}
BufferOffset Assembler::as_b(Label* l, Condition c) {
if (l->bound()) {
// Note only one instruction is emitted here, the NOP is overwritten.
BufferOffset ret = allocBranchInst();
if (oom()) {
return BufferOffset();
}
BOffImm offset = BufferOffset(l).diffB<BOffImm>(ret);
MOZ_RELEASE_ASSERT(!offset.isInvalid(),
"Buffer size limit should prevent this");
as_b(offset, c, ret);
#ifdef JS_DISASM_ARM
spewBranch(m_buffer.getInstOrNull(ret), refLabel(l));
#endif
return ret;
}
if (oom()) {
return BufferOffset();
}
BufferOffset ret;
if (l->used()) {
int32_t old = l->offset();
MOZ_RELEASE_ASSERT(BOffImm::IsInRange(old),
"Buffer size limit should prevent this");
ret = as_b(BOffImm(old), c, l);
} else {
BOffImm inv;
ret = as_b(inv, c, l);
}
if (oom()) {
return BufferOffset();
}
l->use(ret.getOffset());
return ret;
}
BufferOffset Assembler::as_b(BOffImm off, Condition c, BufferOffset inst) {
// JS_DISASM_ARM NOTE: Can't disassemble here, because numerous callers use
// this to patchup old code. Must disassemble in caller where it makes sense.
// Not many callers.
*editSrc(inst) = InstBImm(off, c);
return inst;
}
// blx can go to either an immediate or a register.
// When blx'ing to a register, we change processor state depending on the low
// bit of the register when blx'ing to an immediate, we *always* change
// processor state.
BufferOffset Assembler::as_blx(Register r, Condition c) {
return writeInst(((int)c) | OpBlx | r.code());
}
// bl can only branch to an pc-relative immediate offset
// It cannot change the processor state.
BufferOffset Assembler::as_bl(BOffImm off, Condition c, Label* documentation) {
return writeBranchInst(((int)c) | OpBl | off.encode(),
refLabel(documentation));
}
BufferOffset Assembler::as_bl(Label* l, Condition c) {
if (l->bound()) {
// Note only one instruction is emitted here, the NOP is overwritten.
BufferOffset ret = allocBranchInst();
if (oom()) {
return BufferOffset();
}
BOffImm offset = BufferOffset(l).diffB<BOffImm>(ret);
MOZ_RELEASE_ASSERT(!offset.isInvalid(),
"Buffer size limit should prevent this");
as_bl(offset, c, ret);
#ifdef JS_DISASM_ARM
spewBranch(m_buffer.getInstOrNull(ret), refLabel(l));
#endif
return ret;
}
if (oom()) {
return BufferOffset();
}
BufferOffset ret;
// See if the list was empty.
if (l->used()) {
int32_t old = l->offset();
MOZ_RELEASE_ASSERT(BOffImm::IsInRange(old),
"Buffer size limit should prevent this");
ret = as_bl(BOffImm(old), c, l);
} else {
BOffImm inv;
ret = as_bl(inv, c, l);
}
if (oom()) {
return BufferOffset();
}
l->use(ret.getOffset());
return ret;
}
BufferOffset Assembler::as_bl(BOffImm off, Condition c, BufferOffset inst) {
*editSrc(inst) = InstBLImm(off, c);
return inst;
}
BufferOffset Assembler::as_mrs(Register r, Condition c) {
return writeInst(0x010f0000 | int(c) | RD(r));
}
BufferOffset Assembler::as_msr(Register r, Condition c) {
// Hardcode the 'mask' field to 0b11 for now. It is bits 18 and 19, which
// are the two high bits of the 'c' in this constant.
MOZ_ASSERT((r.code() & ~0xf) == 0);
return writeInst(0x012cf000 | int(c) | r.code());
}
// VFP instructions!
enum vfp_tags { VfpTag = 0x0C000A00, VfpArith = 0x02000000 };
BufferOffset Assembler::writeVFPInst(vfp_size sz, uint32_t blob) {
MOZ_ASSERT((sz & blob) == 0);
MOZ_ASSERT((VfpTag & blob) == 0);
return writeInst(VfpTag | std::underlying_type_t<vfp_size>(sz) | blob);
}
/* static */
void Assembler::WriteVFPInstStatic(vfp_size sz, uint32_t blob, uint32_t* dest) {
MOZ_ASSERT((sz & blob) == 0);
MOZ_ASSERT((VfpTag & blob) == 0);
WriteInstStatic(VfpTag | std::underlying_type_t<vfp_size>(sz) | blob, dest);
}
// Unityped variants: all registers hold the same (ieee754 single/double)
// notably not included are vcvt; vmov vd, #imm; vmov rt, vn.
BufferOffset Assembler::as_vfp_float(VFPRegister vd, VFPRegister vn,
VFPRegister vm, VFPOp op, Condition c) {
// Make sure we believe that all of our operands are the same kind.
MOZ_ASSERT_IF(!vn.isMissing(), vd.equiv(vn));
MOZ_ASSERT_IF(!vm.isMissing(), vd.equiv(vm));
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
return writeVFPInst(sz, VD(vd) | VN(vn) | VM(vm) | op | VfpArith | c);
}
BufferOffset Assembler::as_vadd(VFPRegister vd, VFPRegister vn, VFPRegister vm,
Condition c) {
return as_vfp_float(vd, vn, vm, OpvAdd, c);
}
BufferOffset Assembler::as_vdiv(VFPRegister vd, VFPRegister vn, VFPRegister vm,
Condition c) {
return as_vfp_float(vd, vn, vm, OpvDiv, c);
}
BufferOffset Assembler::as_vmul(VFPRegister vd, VFPRegister vn, VFPRegister vm,
Condition c) {
return as_vfp_float(vd, vn, vm, OpvMul, c);
}
BufferOffset Assembler::as_vnmul(VFPRegister vd, VFPRegister vn, VFPRegister vm,
Condition c) {
return as_vfp_float(vd, vn, vm, OpvMul, c);
}
BufferOffset Assembler::as_vnmla(VFPRegister vd, VFPRegister vn, VFPRegister vm,
Condition c) {
MOZ_CRASH("Feature NYI");
}
BufferOffset Assembler::as_vnmls(VFPRegister vd, VFPRegister vn, VFPRegister vm,
Condition c) {
MOZ_CRASH("Feature NYI");
}
BufferOffset Assembler::as_vneg(VFPRegister vd, VFPRegister vm, Condition c) {
return as_vfp_float(vd, NoVFPRegister, vm, OpvNeg, c);
}
BufferOffset Assembler::as_vsqrt(VFPRegister vd, VFPRegister vm, Condition c) {
return as_vfp_float(vd, NoVFPRegister, vm, OpvSqrt, c);
}
BufferOffset Assembler::as_vabs(VFPRegister vd, VFPRegister vm, Condition c) {
return as_vfp_float(vd, NoVFPRegister, vm, OpvAbs, c);
}
BufferOffset Assembler::as_vsub(VFPRegister vd, VFPRegister vn, VFPRegister vm,
Condition c) {
return as_vfp_float(vd, vn, vm, OpvSub, c);
}
BufferOffset Assembler::as_vcmp(VFPRegister vd, VFPRegister vm, Condition c) {
return as_vfp_float(vd, NoVFPRegister, vm, OpvCmp, c);
}
BufferOffset Assembler::as_vcmpz(VFPRegister vd, Condition c) {
return as_vfp_float(vd, NoVFPRegister, NoVFPRegister, OpvCmpz, c);
}
// Specifically, a move between two same sized-registers.
BufferOffset Assembler::as_vmov(VFPRegister vd, VFPRegister vsrc, Condition c) {
return as_vfp_float(vd, NoVFPRegister, vsrc, OpvMov, c);
}
// Transfer between Core and VFP.
// Unlike the next function, moving between the core registers and vfp registers
// can't be *that* properly typed. Namely, since I don't want to munge the type
// VFPRegister to also include core registers. Thus, the core and vfp registers
// are passed in based on their type, and src/dest is determined by the
// float2core.
BufferOffset Assembler::as_vxfer(Register vt1, Register vt2, VFPRegister vm,
FloatToCore_ f2c, Condition c, int idx) {
vfp_size sz = IsSingle;
if (vm.isDouble()) {
// Technically, this can be done with a vmov à la ARM ARM under vmov
// however, that requires at least an extra bit saying if the operation
// should be performed on the lower or upper half of the double. Moving
// a single to/from 2N/2N+1 isn't equivalent, since there are 32 single
// registers, and 32 double registers so there is no way to encode the
// last 16 double registers.
sz = IsDouble;
MOZ_ASSERT(idx == 0 || idx == 1);
// If we are transferring a single half of the double then it must be
// moving a VFP reg to a core reg.
MOZ_ASSERT_IF(vt2 == InvalidReg, f2c == FloatToCore);
idx = idx << 21;
} else {
MOZ_ASSERT(idx == 0);
}
if (vt2 == InvalidReg) {
return writeVFPInst(sz, WordTransfer |
std::underlying_type_t<FloatToCore_>(f2c) |
std::underlying_type_t<Condition>(c) | RT(vt1) |
maybeRN(vt2) | VN(vm) | idx);
}
// We are doing a 64 bit transfer.
return writeVFPInst(sz, DoubleTransfer |
std::underlying_type_t<FloatToCore_>(f2c) |
std::underlying_type_t<Condition>(c) | RT(vt1) |
maybeRN(vt2) | VM(vm) | idx);
}
enum vcvt_destFloatness { VcvtToInteger = 1 << 18, VcvtToFloat = 0 << 18 };
enum vcvt_toZero {
VcvtToZero =
1 << 7, // Use the default rounding mode, which rounds truncates.
VcvtToFPSCR = 0 << 7 // Use whatever rounding mode the fpscr specifies.
};
enum vcvt_Signedness {
VcvtToSigned = 1 << 16,
VcvtToUnsigned = 0 << 16,
VcvtFromSigned = 1 << 7,
VcvtFromUnsigned = 0 << 7
};
// Our encoding actually allows just the src and the dest (and their types) to
// uniquely specify the encoding that we are going to use.
BufferOffset Assembler::as_vcvt(VFPRegister vd, VFPRegister vm, bool useFPSCR,
Condition c) {
// Unlike other cases, the source and dest types cannot be the same.
MOZ_ASSERT(!vd.equiv(vm));
vfp_size sz = IsDouble;
if (vd.isFloat() && vm.isFloat()) {
// Doing a float -> float conversion.
if (vm.isSingle()) {
sz = IsSingle;
}
return writeVFPInst(sz, c | 0x02B700C0 | VM(vm) | VD(vd));
}
// At least one of the registers should be a float.
vcvt_destFloatness destFloat;
vcvt_Signedness opSign;
vcvt_toZero doToZero = VcvtToFPSCR;
MOZ_ASSERT(vd.isFloat() || vm.isFloat());
if (vd.isSingle() || vm.isSingle()) {
sz = IsSingle;
}
if (vd.isFloat()) {
destFloat = VcvtToFloat;
opSign = (vm.isSInt()) ? VcvtFromSigned : VcvtFromUnsigned;
} else {
destFloat = VcvtToInteger;
opSign = (vd.isSInt()) ? VcvtToSigned : VcvtToUnsigned;
doToZero = useFPSCR ? VcvtToFPSCR : VcvtToZero;
}
return writeVFPInst(
sz, c | 0x02B80040 | VD(vd) | VM(vm) | destFloat | opSign | doToZero);
}
BufferOffset Assembler::as_vcvtFixed(VFPRegister vd, bool isSigned,
uint32_t fixedPoint, bool toFixed,
Condition c) {
MOZ_ASSERT(vd.isFloat());
uint32_t sx = 0x1;
vfp_size sf = vd.isDouble() ? IsDouble : IsSingle;
int32_t imm5 = fixedPoint;
imm5 = (sx ? 32 : 16) - imm5;
MOZ_ASSERT(imm5 >= 0);
imm5 = imm5 >> 1 | (imm5 & 1) << 5;
return writeVFPInst(sf, 0x02BA0040 | VD(vd) | toFixed << 18 | sx << 7 |
(!isSigned) << 16 | imm5 | c);
}
// Transfer between VFP and memory.
static uint32_t EncodeVdtr(LoadStore ls, VFPRegister vd, VFPAddr addr,
Assembler::Condition c) {
return ls | 0x01000000 | addr.encode() | VD(vd) | c;
}
BufferOffset Assembler::as_vdtr(
LoadStore ls, VFPRegister vd, VFPAddr addr,
Condition c /* vfp doesn't have a wb option */) {
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
return writeVFPInst(sz, EncodeVdtr(ls, vd, addr, c));
}
/* static */
void Assembler::as_vdtr_patch(LoadStore ls, VFPRegister vd, VFPAddr addr,
Condition c, uint32_t* dest) {
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
WriteVFPInstStatic(sz, EncodeVdtr(ls, vd, addr, c), dest);
}
// VFP's ldm/stm work differently from the standard arm ones. You can only
// transfer a range.
BufferOffset Assembler::as_vdtm(LoadStore st, Register rn, VFPRegister vd,
int length,
/* also has update conditions */ Condition c) {
MOZ_ASSERT(length <= 16 && length >= 0);
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
if (vd.isDouble()) {
length *= 2;
}
return writeVFPInst(sz, dtmLoadStore | RN(rn) | VD(vd) | length | dtmMode |
dtmUpdate | dtmCond);
}
BufferOffset Assembler::as_vldr_unaligned(VFPRegister vd, Register rn) {
MOZ_ASSERT(HasNEON());
if (vd.isDouble()) {
// vld1 (multiple single elements) with align=0, size=3, numregs=1
return writeInst(0xF42007CF | RN(rn) | VD(vd));
}
// vld1 (single element to single lane) with index=0, size=2
MOZ_ASSERT(vd.isFloat());
MOZ_ASSERT((vd.code() & 1) == 0);
return writeInst(0xF4A0080F | RN(rn) | VD(vd.asDouble()));
}
BufferOffset Assembler::as_vstr_unaligned(VFPRegister vd, Register rn) {
MOZ_ASSERT(HasNEON());
if (vd.isDouble()) {
// vst1 (multiple single elements) with align=0, size=3, numregs=1
return writeInst(0xF40007CF | RN(rn) | VD(vd));
}
// vst1 (single element from one lane) with index=0, size=2
MOZ_ASSERT(vd.isFloat());
MOZ_ASSERT((vd.code() & 1) == 0);
return writeInst(0xF480080F | RN(rn) | VD(vd.asDouble()));
}
BufferOffset Assembler::as_vimm(VFPRegister vd, VFPImm imm, Condition c) {
MOZ_ASSERT(imm.isValid());
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
return writeVFPInst(sz, c | imm.encode() | VD(vd) | 0x02B00000);
}
BufferOffset Assembler::as_vmrs(Register r, Condition c) {
return writeInst(c | 0x0ef10a10 | RT(r));
}
BufferOffset Assembler::as_vmsr(Register r, Condition c) {
return writeInst(c | 0x0ee10a10 | RT(r));
}
bool Assembler::nextLink(BufferOffset b, BufferOffset* next) {
Instruction branch = *editSrc(b);
MOZ_ASSERT(branch.is<InstBranchImm>());
BOffImm destOff;
branch.as<InstBranchImm>()->extractImm(&destOff);
if (destOff.isInvalid()) {
return false;
}
// Propagate the next link back to the caller, by constructing a new
// BufferOffset into the space they provided.
new (next) BufferOffset(destOff.decode());
return true;
}
void Assembler::bind(Label* label, BufferOffset boff) {
#ifdef JS_DISASM_ARM
spew_.spewBind(label);
#endif
if (oom()) {
// Ensure we always bind the label. This matches what we do on
// x86/x64 and silences the assert in ~Label.
label->bind(0);
return;
}
if (label->used()) {
bool more;
// If our caller didn't give us an explicit target to bind to then we
// want to bind to the location of the next instruction.
BufferOffset dest = boff.assigned() ? boff : nextOffset();
BufferOffset b(label);
do {
BufferOffset next;
more = nextLink(b, &next);
Instruction branch = *editSrc(b);
Condition c = branch.extractCond();
BOffImm offset = dest.diffB<BOffImm>(b);
MOZ_RELEASE_ASSERT(!offset.isInvalid(),
"Buffer size limit should prevent this");
if (branch.is<InstBImm>()) {
as_b(offset, c, b);
} else if (branch.is<InstBLImm>()) {
as_bl(offset, c, b);
} else {
MOZ_CRASH("crazy fixup!");
}
b = next;
} while (more);
}
label->bind(nextOffset().getOffset());
MOZ_ASSERT(!oom());
}
void Assembler::retarget(Label* label, Label* target) {
#ifdef JS_DISASM_ARM
spew_.spewRetarget(label, target);
#endif
if (label->used() && !oom()) {
if (target->bound()) {
bind(label, BufferOffset(target));
} else if (target->used()) {
// The target is not bound but used. Prepend label's branch list
// onto target's.
BufferOffset labelBranchOffset(label);
BufferOffset next;
// Find the head of the use chain for label.
while (nextLink(labelBranchOffset, &next)) {
labelBranchOffset = next;
}
// Then patch the head of label's use chain to the tail of target's
// use chain, prepending the entire use chain of target.
Instruction branch = *editSrc(labelBranchOffset);
Condition c = branch.extractCond();
int32_t prev = target->offset();
target->use(label->offset());
if (branch.is<InstBImm>()) {
as_b(BOffImm(prev), c, labelBranchOffset);
} else if (branch.is<InstBLImm>()) {
as_bl(BOffImm(prev), c, labelBranchOffset);
} else {
MOZ_CRASH("crazy fixup!");
}
} else {
// The target is unbound and unused. We can just take the head of
// the list hanging off of label, and dump that into target.
target->use(label->offset());
}
}
label->reset();
}
static int stopBKPT = -1;
void Assembler::as_bkpt() {
// This is a count of how many times a breakpoint instruction has been
// generated. It is embedded into the instruction for debugging
// purposes. Gdb will print "bkpt xxx" when you attempt to dissassemble a
// breakpoint with the number xxx embedded into it. If this breakpoint is
// being hit, then you can run (in gdb):
// >b dbg_break
// >b main
// >commands
// >set stopBKPT = xxx
// >c
// >end
// which will set a breakpoint on the function dbg_break above set a
// scripted breakpoint on main that will set the (otherwise unmodified)
// value to the number of the breakpoint, so dbg_break will actuall be
// called and finally, when you run the executable, execution will halt when
// that breakpoint is generated.
static int hit = 0;
if (stopBKPT == hit) {
dbg_break();
}
writeInst(0xe1200070 | (hit & 0xf) | ((hit & 0xfff0) << 4));
hit++;
}
BufferOffset Assembler::as_illegal_trap() {
// Encoding of the permanently-undefined 'udf' instruction, with the imm16
// set to 0.
return writeInst(0xe7f000f0);
}
void Assembler::flushBuffer() { m_buffer.flushPool(); }
void Assembler::enterNoPool(size_t maxInst) { m_buffer.enterNoPool(maxInst); }
void Assembler::leaveNoPool() { m_buffer.leaveNoPool(); }
void Assembler::enterNoNops() { m_buffer.enterNoNops(); }
void Assembler::leaveNoNops() { m_buffer.leaveNoNops(); }
struct PoolHeader : Instruction {
struct Header {
// The size should take into account the pool header.
// The size is in units of Instruction (4 bytes), not byte.
uint32_t size : 15;
uint32_t isNatural : 1;
uint32_t ONES : 16;
Header(int size_, bool isNatural_)
: size(size_), isNatural(isNatural_), ONES(0xffff) {}
explicit Header(const Instruction* i) {
static_assert(sizeof(Header) == sizeof(uint32_t));
memcpy(this, i, sizeof(Header));
MOZ_ASSERT(ONES == 0xffff);
}
uint32_t raw() const {
static_assert(sizeof(Header) == sizeof(uint32_t));
uint32_t dest;
memcpy(&dest, this, sizeof(Header));
return dest;
}
};
PoolHeader(int size_, bool isNatural_)
: Instruction(Header(size_, isNatural_).raw(), true) {}
uint32_t size() const {
Header tmp(this);
return tmp.size;
}
uint32_t isNatural() const {
Header tmp(this);
return tmp.isNatural;
}
static bool IsTHIS(const Instruction& i) {
return (*i.raw() & 0xffff0000) == 0xffff0000;
}
static const PoolHeader* AsTHIS(const Instruction& i) {
if (!IsTHIS(i)) {
return nullptr;
}
return static_cast<const PoolHeader*>(&i);
}
};
void Assembler::WritePoolHeader(uint8_t* start, Pool* p, bool isNatural) {
static_assert(sizeof(PoolHeader) == 4,
"PoolHandler must have the correct size.");
uint8_t* pool = start + 4;
// Go through the usual rigmarole to get the size of the pool.
pool += p->getPoolSize();
uint32_t size = pool - start;
MOZ_ASSERT((size & 3) == 0);
size = size >> 2;
MOZ_ASSERT(size < (1 << 15));
PoolHeader header(size, isNatural);
*(PoolHeader*)start = header;
}
// The size of an arbitrary 32-bit call in the instruction stream. On ARM this
// sequence is |pc = ldr pc - 4; imm32| given that we never reach the imm32.
uint32_t Assembler::PatchWrite_NearCallSize() { return sizeof(uint32_t); }
void Assembler::PatchWrite_NearCall(CodeLocationLabel start,
CodeLocationLabel toCall) {
Instruction* inst = (Instruction*)start.raw();
// Overwrite whatever instruction used to be here with a call. Since the
// destination is in the same function, it will be within range of the
// 24 << 2 byte bl instruction.
uint8_t* dest = toCall.raw();
new (inst) InstBLImm(BOffImm(dest - (uint8_t*)inst), Always);
}
void Assembler::PatchDataWithValueCheck(CodeLocationLabel label,
PatchedImmPtr newValue,
PatchedImmPtr expectedValue) {
Instruction* ptr = reinterpret_cast<Instruction*>(label.raw());
Register dest;
Assembler::RelocStyle rs;
{
InstructionIterator iter(ptr);
DebugOnly<const uint32_t*> val = GetPtr32Target(iter, &dest, &rs);
MOZ_ASSERT(uint32_t((const uint32_t*)val) == uint32_t(expectedValue.value));
}
// Patch over actual instructions.
{
InstructionIterator iter(ptr);
MacroAssembler::ma_mov_patch(Imm32(int32_t(newValue.value)), dest, Always,
rs, iter);
}
}
void Assembler::PatchDataWithValueCheck(CodeLocationLabel label,
ImmPtr newValue, ImmPtr expectedValue) {
PatchDataWithValueCheck(label, PatchedImmPtr(newValue.value),
PatchedImmPtr(expectedValue.value));
}
// This just stomps over memory with 32 bits of raw data. Its purpose is to
// overwrite the call of JITed code with 32 bits worth of an offset. This will
// is only meant to function on code that has been invalidated, so it should be
// totally safe. Since that instruction will never be executed again, a ICache
// flush should not be necessary
void Assembler::PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm) {
// Raw is going to be the return address.
uint32_t* raw = (uint32_t*)label.raw();
// Overwrite the 4 bytes before the return address, which will end up being
// the call instruction.
*(raw - 1) = imm.value;
}
uint8_t* Assembler::NextInstruction(uint8_t* inst_, uint32_t* count) {
if (count != nullptr) {
*count += sizeof(Instruction);
}
InstructionIterator iter(reinterpret_cast<Instruction*>(inst_));
return reinterpret_cast<uint8_t*>(iter.next());
}
static bool InstIsGuard(Instruction* inst, const PoolHeader** ph) {
Assembler::Condition c = inst->extractCond();
if (c != Assembler::Always) {
return false;
}
if (!(inst->is<InstBXReg>() || inst->is<InstBImm>())) {
return false;
}
// See if the next instruction is a pool header.
*ph = (inst + 1)->as<const PoolHeader>();
return *ph != nullptr;
}
static bool InstIsGuard(BufferInstructionIterator& iter,
const PoolHeader** ph) {
Instruction* inst = iter.cur();
Assembler::Condition c = inst->extractCond();
if (c != Assembler::Always) {
return false;
}
if (!(inst->is<InstBXReg>() || inst->is<InstBImm>())) {
return false;
}
// See if the next instruction is a pool header.
*ph = iter.peek()->as<const PoolHeader>();
return *ph != nullptr;
}
template <class T>
static bool InstIsBNop(const T& iter) {
// In some special situations, it is necessary to insert a NOP into the
// instruction stream that nobody knows about, since nobody should know
// about it, make sure it gets skipped when Instruction::next() is called.
// this generates a very specific nop, namely a branch to the next
// instruction.
const Instruction* cur = iter.cur();
Assembler::Condition c = cur->extractCond();
if (c != Assembler::Always) {
return false;
}
if (!cur->is<InstBImm>()) {
return false;
}
InstBImm* b = cur->as<InstBImm>();
BOffImm offset;
b->extractImm(&offset);
return offset.decode() == 4;
}
Instruction* InstructionIterator::maybeSkipAutomaticInstructions() {
// If the current instruction was automatically-inserted, skip past it.
const PoolHeader* ph;
// Loop until an intentionally-placed instruction is found.
while (true) {
if (InstIsGuard(cur(), &ph)) {
// Don't skip a natural guard.
if (ph->isNatural()) {
return cur();
}
advanceRaw(1 + ph->size());
} else if (InstIsBNop<InstructionIterator>(*this)) {
advanceRaw(1);
} else {
return cur();
}
}
}
Instruction* BufferInstructionIterator::maybeSkipAutomaticInstructions() {
const PoolHeader* ph;
// If this is a guard, and the next instruction is a header, always work
// around the pool. If it isn't a guard, then start looking ahead.
if (InstIsGuard(*this, &ph)) {
// Don't skip a natural guard.
if (ph->isNatural()) {
return cur();
}
advance(sizeof(Instruction) * ph->size());
return next();
}
if (InstIsBNop<BufferInstructionIterator>(*this)) {
return next();
}
return cur();
}
// Cases to be handled:
// 1) no pools or branches in sight => return this+1
// 2) branch to next instruction => return this+2, because a nop needed to be
// inserted into the stream.
// 3) this+1 is an artificial guard for a pool => return first instruction
// after the pool
// 4) this+1 is a natural guard => return the branch
// 5) this is a branch, right before a pool => return first instruction after
// the pool
// in assembly form:
// 1) add r0, r0, r0 <= this
// add r1, r1, r1 <= returned value
// add r2, r2, r2
//
// 2) add r0, r0, r0 <= this
// b foo
// foo:
// add r2, r2, r2 <= returned value
//
// 3) add r0, r0, r0 <= this
// b after_pool;
// .word 0xffff0002 # bit 15 being 0 indicates that the branch was not
// # requested by the assembler
// 0xdeadbeef # the 2 indicates that there is 1 pool entry, and the
// # pool header
// add r4, r4, r4 <= returned value
// 4) add r0, r0, r0 <= this
// b after_pool <= returned value
// .word 0xffff8002 # bit 15 being 1 indicates that the branch was
// # requested by the assembler
// 0xdeadbeef
// add r4, r4, r4
// 5) b after_pool <= this
// .word 0xffff8002 # bit 15 has no bearing on the returned value
// 0xdeadbeef
// add r4, r4, r4 <= returned value
Instruction* InstructionIterator::next() {
const PoolHeader* ph;
// If the current instruction is followed by a pool header,
// move past the current instruction and the pool.
if (InstIsGuard(cur(), &ph)) {
advanceRaw(1 + ph->size());
return maybeSkipAutomaticInstructions();
}
// The next instruction is then known to not be a PoolHeader.
advanceRaw(1);
return maybeSkipAutomaticInstructions();
}
void Assembler::ToggleToJmp(CodeLocationLabel inst_) {
uint32_t* ptr = (uint32_t*)inst_.raw();
DebugOnly<Instruction*> inst = (Instruction*)inst_.raw();
MOZ_ASSERT(inst->is<InstCMP>());
// Zero bits 20-27, then set 24-27 to be correct for a branch.
// 20-23 will be party of the B's immediate, and should be 0.
*ptr = (*ptr & ~(0xff << 20)) | (0xa0 << 20);
}
void Assembler::ToggleToCmp(CodeLocationLabel inst_) {
uint32_t* ptr = (uint32_t*)inst_.raw();
DebugOnly<Instruction*> inst = (Instruction*)inst_.raw();
MOZ_ASSERT(inst->is<InstBImm>());
// Ensure that this masking operation doesn't affect the offset of the
// branch instruction when it gets toggled back.
MOZ_ASSERT((*ptr & (0xf << 20)) == 0);
// Also make sure that the CMP is valid. Part of having a valid CMP is that
// all of the bits describing the destination in most ALU instructions are
// all unset (looks like it is encoding r0).
MOZ_ASSERT(toRD(*inst) == r0);
// Zero out bits 20-27, then set them to be correct for a compare.
*ptr = (*ptr & ~(0xff << 20)) | (0x35 << 20);
}
void Assembler::ToggleCall(CodeLocationLabel inst_, bool enabled) {
InstructionIterator iter(reinterpret_cast<Instruction*>(inst_.raw()));
MOZ_ASSERT(iter.cur()->is<InstMovW>() || iter.cur()->is<InstLDR>());
if (iter.cur()->is<InstMovW>()) {
// If it looks like the start of a movw/movt sequence, then make sure we
// have all of it (and advance the iterator past the full sequence).
iter.next();
MOZ_ASSERT(iter.cur()->is<InstMovT>());
}
iter.next();
MOZ_ASSERT(iter.cur()->is<InstNOP>() || iter.cur()->is<InstBLXReg>());
if (enabled == iter.cur()->is<InstBLXReg>()) {
// Nothing to do.
return;
}
Instruction* inst = iter.cur();
if (enabled) {
*inst = InstBLXReg(ScratchRegister, Always);
} else {
*inst = InstNOP();
}
}
size_t Assembler::ToggledCallSize(uint8_t* code) {
InstructionIterator iter(reinterpret_cast<Instruction*>(code));
MOZ_ASSERT(iter.cur()->is<InstMovW>() || iter.cur()->is<InstLDR>());
if (iter.cur()->is<InstMovW>()) {
// If it looks like the start of a movw/movt sequence, then make sure we
// have all of it (and advance the iterator past the full sequence).
iter.next();
MOZ_ASSERT(iter.cur()->is<InstMovT>());
}
iter.next();
MOZ_ASSERT(iter.cur()->is<InstNOP>() || iter.cur()->is<InstBLXReg>());
return uintptr_t(iter.cur()) + 4 - uintptr_t(code);
}
uint32_t Assembler::NopFill = 0;
uint32_t Assembler::GetNopFill() {
static bool isSet = false;
if (!isSet) {
char* fillStr = getenv("ARM_ASM_NOP_FILL");
uint32_t fill;
if (fillStr && sscanf(fillStr, "%u", &fill) == 1) {
NopFill = fill;
}
if (NopFill > 8) {
MOZ_CRASH("Nop fill > 8 is not supported");
}
isSet = true;
}
return NopFill;
}
uint32_t Assembler::AsmPoolMaxOffset = 1024;
uint32_t Assembler::GetPoolMaxOffset() {
static bool isSet = false;
if (!isSet) {
char* poolMaxOffsetStr = getenv("ASM_POOL_MAX_OFFSET");
uint32_t poolMaxOffset;
if (poolMaxOffsetStr &&
sscanf(poolMaxOffsetStr, "%u", &poolMaxOffset) == 1) {
AsmPoolMaxOffset = poolMaxOffset;
}
isSet = true;
}
return AsmPoolMaxOffset;
}
SecondScratchRegisterScope::SecondScratchRegisterScope(MacroAssembler& masm)
: AutoRegisterScope(masm, masm.getSecondScratchReg()) {}
AutoNonDefaultSecondScratchRegister::AutoNonDefaultSecondScratchRegister(
MacroAssembler& masm, Register reg)
: masm_(masm) {
prevSecondScratch_ = masm.getSecondScratchReg();
masm.setSecondScratchReg(reg);
}
AutoNonDefaultSecondScratchRegister::~AutoNonDefaultSecondScratchRegister() {
masm_.setSecondScratchReg(prevSecondScratch_);
}
#ifdef JS_DISASM_ARM
/* static */
void Assembler::disassembleInstruction(const Instruction* i,
DisasmBuffer& buffer) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
uint8_t* loc = reinterpret_cast<uint8_t*>(const_cast<uint32_t*>(i->raw()));
dasm.InstructionDecode(buffer, loc);
}
void Assembler::initDisassembler() {
// The line is normally laid out like this:
//
// xxxxxxxx ldr r, op ; comment
//
// where xx...x is the instruction bit pattern.
//
// Labels are laid out by themselves to line up with the instructions above
// and below:
//
// nnnn:
//
// Branch targets are normally on the same line as the branch instruction,
// but when they cannot be they will be on a line by themselves, indented
// significantly:
//
// -> label
spew_.setLabelIndent(" "); // 10
spew_.setTargetIndent(" "); // 20
}
void Assembler::finishDisassembler() { spew_.spewOrphans(); }
// Labels are named as they are encountered by adding names to a
// table, using the Label address as the key. This is made tricky by
// the (memory for) Label objects being reused, but reused label
// objects are recognizable from being marked as not used or not
// bound. See spew_.refLabel().
//
// In a number of cases there is no information about the target, and
// we just end up printing "patchable constant load to PC". This is
// true especially for jumps to bailout handlers (which have no
// names). See allocLiteralLoadEntry() and its callers. In some cases
// (loop back edges) some information about the intended target may be
// propagated from higher levels, and if so it's printed here.
void Assembler::spew(Instruction* i) {
if (spew_.isDisabled() || !i) {
return;
}
DisasmBuffer buffer;
disassembleInstruction(i, buffer);
spew_.spew("%s", buffer.start());
}
// If a target label is known, always print that and do not attempt to
// disassemble the branch operands, as they will often be encoding
// metainformation (pointers for a chain of jump instructions), and
// not actual branch targets.
void Assembler::spewBranch(Instruction* i, const LabelDoc& target) {
if (spew_.isDisabled() || !i) {
return;
}
DisasmBuffer buffer;
disassembleInstruction(i, buffer);
char labelBuf[128];
labelBuf[0] = 0;
bool haveTarget = target.valid;
if (!haveTarget) {
SprintfLiteral(labelBuf, " -> (link-time target)");
}
if (InstBranchImm::IsTHIS(*i)) {
InstBranchImm* bimm = InstBranchImm::AsTHIS(*i);
BOffImm destOff;
bimm->extractImm(&destOff);
if (destOff.isInvalid() || haveTarget) {
// The target information in the instruction is likely garbage, so remove
// it. The target label will in any case be printed if we have it.
//
// The format of the instruction disassembly is [0-9a-f]{8}\s+\S+\s+.*,
// where the \S+ string is the opcode. Strip everything after the opcode,
// and attach the label if we have it.
int i;
for (i = 8; i < buffer.length() && buffer[i] == ' '; i++) {
}
for (; i < buffer.length() && buffer[i] != ' '; i++) {
}
buffer[i] = 0;
if (haveTarget) {
SprintfLiteral(labelBuf, " -> %d%s", target.doc,
!target.bound ? "f" : "");
haveTarget = false;
}
}
}
spew_.spew("%s%s", buffer.start(), labelBuf);
if (haveTarget) {
spew_.spewRef(target);
}
}
void Assembler::spewLiteralLoad(PoolHintPun& php, bool loadToPC,
const Instruction* i, const LiteralDoc& doc) {
if (spew_.isDisabled()) {
return;
}
char litbuf[2048];
spew_.formatLiteral(doc, litbuf, sizeof(litbuf));
// See patchConstantPoolLoad, above. We assemble the instruction into a
// buffer with a zero offset, as documentation, but the offset will be
// patched later.
uint32_t inst;
PoolHintData& data = php.phd;
switch (php.phd.getLoadType()) {
case PoolHintData::PoolDTR:
Assembler::as_dtr_patch(IsLoad, 32, Offset, data.getReg(),
DTRAddr(pc, DtrOffImm(0)), data.getCond(), &inst);
break;
case PoolHintData::PoolBranch:
if (data.isValidPoolHint()) {
Assembler::as_dtr_patch(IsLoad, 32, Offset, pc,
DTRAddr(pc, DtrOffImm(0)), data.getCond(),
&inst);
}
break;
case PoolHintData::PoolVDTR:
Assembler::as_vdtr_patch(IsLoad, data.getVFPReg(),
VFPAddr(pc, VFPOffImm(0)), data.getCond(),
&inst);
break;
default:
MOZ_CRASH();
}
DisasmBuffer buffer;
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(&inst));
spew_.spew("%s ; .const %s", buffer.start(), litbuf);
}
#endif // JS_DISASM_ARM