Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DCLayerTree.h"
// -
#include <d3d11.h>
#include <dcomp.h>
#include <d3d11_1.h>
#include <dxgi1_2.h>
// -
#include "gfxWindowsPlatform.h"
#include "GLContext.h"
#include "GLContextEGL.h"
#include "mozilla/gfx/DeviceManagerDx.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/gfx/gfxVars.h"
#include "mozilla/gfx/GPUParent.h"
#include "mozilla/gfx/Matrix.h"
#include "mozilla/layers/HelpersD3D11.h"
#include "mozilla/StaticPrefs_gfx.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/webrender/RenderD3D11TextureHost.h"
#include "mozilla/webrender/RenderDcompSurfaceTextureHost.h"
#include "mozilla/webrender/RenderTextureHost.h"
#include "mozilla/webrender/RenderThread.h"
#include "mozilla/WindowsVersion.h"
#include "mozilla/Telemetry.h"
#include "nsPrintfCString.h"
#include "WinUtils.h"
// -
#if defined(__MINGW32__) // 64 defines both 32 and 64
// We need to fake some things, while we wait on updates to mingw's dcomp.h
// header. Just enough that we can successfully fail to work there.
# define MOZ_MINGW_DCOMP_H_INCOMPLETE
struct IDCompositionColorMatrixEffect : public IDCompositionFilterEffect {};
struct IDCompositionTableTransferEffect : public IDCompositionFilterEffect {};
#endif // defined(__MINGW32__)
namespace mozilla {
namespace wr {
extern LazyLogModule gRenderThreadLog;
#define LOG(...) MOZ_LOG(gRenderThreadLog, LogLevel::Debug, (__VA_ARGS__))
#define LOG_H(msg, ...) \
MOZ_LOG(gDcompSurface, LogLevel::Debug, \
("DCSurfaceHandle=%p, " msg, this, ##__VA_ARGS__))
StaticAutoPtr<GpuOverlayInfo> DCLayerTree::sGpuOverlayInfo;
/* static */
UniquePtr<DCLayerTree> DCLayerTree::Create(gl::GLContext* aGL,
EGLConfig aEGLConfig,
ID3D11Device* aDevice,
ID3D11DeviceContext* aCtx,
HWND aHwnd, nsACString& aError) {
RefPtr<IDCompositionDevice2> dCompDevice =
gfx::DeviceManagerDx::Get()->GetDirectCompositionDevice();
if (!dCompDevice) {
aError.Assign("DCLayerTree(no device)"_ns);
return nullptr;
}
auto layerTree = MakeUnique<DCLayerTree>(aGL, aEGLConfig, aDevice, aCtx,
aHwnd, dCompDevice);
if (!layerTree->Initialize(aHwnd, aError)) {
return nullptr;
}
return layerTree;
}
void DCLayerTree::Shutdown() { DCLayerTree::sGpuOverlayInfo = nullptr; }
DCLayerTree::DCLayerTree(gl::GLContext* aGL, EGLConfig aEGLConfig,
ID3D11Device* aDevice, ID3D11DeviceContext* aCtx,
HWND aHwnd, IDCompositionDevice2* aCompositionDevice)
: mGL(aGL),
mEGLConfig(aEGLConfig),
mDevice(aDevice),
mCtx(aCtx),
mHwnd(aHwnd),
mCompositionDevice(aCompositionDevice),
mDebugCounter(false),
mDebugVisualRedrawRegions(false),
mEGLImage(EGL_NO_IMAGE),
mColorRBO(0),
mPendingCommit(false) {
LOG("DCLayerTree::DCLayerTree()");
}
DCLayerTree::~DCLayerTree() {
LOG("DCLayerTree::~DCLayerTree()");
ReleaseNativeCompositorResources();
}
void DCLayerTree::ReleaseNativeCompositorResources() {
const auto gl = GetGLContext();
DestroyEGLSurface();
// Delete any cached FBO objects
for (auto it = mFrameBuffers.begin(); it != mFrameBuffers.end(); ++it) {
gl->fDeleteRenderbuffers(1, &it->depthRboId);
gl->fDeleteFramebuffers(1, &it->fboId);
}
}
bool DCLayerTree::Initialize(HWND aHwnd, nsACString& aError) {
HRESULT hr;
RefPtr<IDCompositionDesktopDevice> desktopDevice;
hr = mCompositionDevice->QueryInterface(
(IDCompositionDesktopDevice**)getter_AddRefs(desktopDevice));
if (FAILED(hr)) {
aError.Assign(nsPrintfCString(
"DCLayerTree(get IDCompositionDesktopDevice failed %lx)", hr));
return false;
}
hr = desktopDevice->CreateTargetForHwnd(aHwnd, TRUE,
getter_AddRefs(mCompositionTarget));
if (FAILED(hr)) {
aError.Assign(nsPrintfCString(
"DCLayerTree(create DCompositionTarget failed %lx)", hr));
return false;
}
hr = mCompositionDevice->CreateVisual(getter_AddRefs(mRootVisual));
if (FAILED(hr)) {
aError.Assign(nsPrintfCString(
"DCLayerTree(create root DCompositionVisual failed %lx)", hr));
return false;
}
hr =
mCompositionDevice->CreateVisual(getter_AddRefs(mDefaultSwapChainVisual));
if (FAILED(hr)) {
aError.Assign(nsPrintfCString(
"DCLayerTree(create swap chain DCompositionVisual failed %lx)", hr));
return false;
}
if (gfx::gfxVars::UseWebRenderDCompVideoHwOverlayWin() ||
gfx::gfxVars::UseWebRenderDCompVideoSwOverlayWin()) {
if (!InitializeVideoOverlaySupport()) {
RenderThread::Get()->HandleWebRenderError(WebRenderError::VIDEO_OVERLAY);
}
}
if (!sGpuOverlayInfo) {
// Set default if sGpuOverlayInfo was not set.
sGpuOverlayInfo = new GpuOverlayInfo();
}
// Initialize SwapChainInfo
SupportsSwapChainTearing();
mCompositionTarget->SetRoot(mRootVisual);
// Set interporation mode to nearest, to ensure 1:1 sampling.
// By default, a visual inherits the interpolation mode of the parent visual.
// If no visuals set the interpolation mode, the default for the entire visual
// tree is nearest neighbor interpolation.
mRootVisual->SetBitmapInterpolationMode(
DCOMPOSITION_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR);
return true;
}
bool FlagsSupportsOverlays(UINT flags) {
return (flags & (DXGI_OVERLAY_SUPPORT_FLAG_DIRECT |
DXGI_OVERLAY_SUPPORT_FLAG_SCALING));
}
// A warpper of IDXGIOutput4::CheckOverlayColorSpaceSupport()
bool CheckOverlayColorSpaceSupport(DXGI_FORMAT aDxgiFormat,
DXGI_COLOR_SPACE_TYPE aDxgiColorSpace,
RefPtr<IDXGIOutput> aOutput,
RefPtr<ID3D11Device> aD3d11Device) {
UINT colorSpaceSupportFlags = 0;
RefPtr<IDXGIOutput4> output4;
if (FAILED(aOutput->QueryInterface(__uuidof(IDXGIOutput4),
getter_AddRefs(output4)))) {
return false;
}
if (FAILED(output4->CheckOverlayColorSpaceSupport(
aDxgiFormat, aDxgiColorSpace, aD3d11Device,
&colorSpaceSupportFlags))) {
return false;
}
return (colorSpaceSupportFlags &
DXGI_OVERLAY_COLOR_SPACE_SUPPORT_FLAG_PRESENT);
}
bool DCLayerTree::InitializeVideoOverlaySupport() {
MOZ_ASSERT(IsWin10AnniversaryUpdateOrLater());
HRESULT hr;
hr = mDevice->QueryInterface(
(ID3D11VideoDevice**)getter_AddRefs(mVideoDevice));
if (FAILED(hr)) {
gfxCriticalNote << "Failed to get D3D11VideoDevice: " << gfx::hexa(hr);
return false;
}
hr =
mCtx->QueryInterface((ID3D11VideoContext**)getter_AddRefs(mVideoContext));
if (FAILED(hr)) {
gfxCriticalNote << "Failed to get D3D11VideoContext: " << gfx::hexa(hr);
return false;
}
if (sGpuOverlayInfo) {
return true;
}
UniquePtr<GpuOverlayInfo> info = MakeUnique<GpuOverlayInfo>();
RefPtr<IDXGIDevice> dxgiDevice;
RefPtr<IDXGIAdapter> adapter;
mDevice->QueryInterface((IDXGIDevice**)getter_AddRefs(dxgiDevice));
dxgiDevice->GetAdapter(getter_AddRefs(adapter));
unsigned int i = 0;
while (true) {
RefPtr<IDXGIOutput> output;
if (FAILED(adapter->EnumOutputs(i++, getter_AddRefs(output)))) {
break;
}
RefPtr<IDXGIOutput3> output3;
if (FAILED(output->QueryInterface(__uuidof(IDXGIOutput3),
getter_AddRefs(output3)))) {
break;
}
output3->CheckOverlaySupport(DXGI_FORMAT_NV12, mDevice,
&info->mNv12OverlaySupportFlags);
output3->CheckOverlaySupport(DXGI_FORMAT_YUY2, mDevice,
&info->mYuy2OverlaySupportFlags);
output3->CheckOverlaySupport(DXGI_FORMAT_B8G8R8A8_UNORM, mDevice,
&info->mBgra8OverlaySupportFlags);
output3->CheckOverlaySupport(DXGI_FORMAT_R10G10B10A2_UNORM, mDevice,
&info->mRgb10a2OverlaySupportFlags);
if (FlagsSupportsOverlays(info->mNv12OverlaySupportFlags)) {
// NV12 format is preferred if it's supported.
info->mOverlayFormatUsed = DXGI_FORMAT_NV12;
info->mSupportsHardwareOverlays = true;
}
if (!info->mSupportsHardwareOverlays &&
FlagsSupportsOverlays(info->mYuy2OverlaySupportFlags)) {
// If NV12 isn't supported, fallback to YUY2 if it's supported.
info->mOverlayFormatUsed = DXGI_FORMAT_YUY2;
info->mSupportsHardwareOverlays = true;
}
// RGB10A2 overlay is used for displaying HDR content. In Intel's
// platform, RGB10A2 overlay is enabled only when
// DXGI_COLOR_SPACE_RGB_FULL_G2084_NONE_P2020 is supported.
if (FlagsSupportsOverlays(info->mRgb10a2OverlaySupportFlags)) {
if (!CheckOverlayColorSpaceSupport(
DXGI_FORMAT_R10G10B10A2_UNORM,
DXGI_COLOR_SPACE_RGB_FULL_G2084_NONE_P2020, output, mDevice))
info->mRgb10a2OverlaySupportFlags = 0;
}
// Early out after the first output that reports overlay support. All
// outputs are expected to report the same overlay support according to
// Microsoft's WDDM documentation:
if (info->mSupportsHardwareOverlays) {
break;
}
}
if (!StaticPrefs::gfx_webrender_dcomp_video_yuv_overlay_win_AtStartup()) {
info->mOverlayFormatUsed = DXGI_FORMAT_B8G8R8A8_UNORM;
info->mSupportsHardwareOverlays = false;
}
info->mSupportsOverlays = info->mSupportsHardwareOverlays;
// Note: "UniquePtr::release" here is saying "release your ownership stake
// on your pointer, so that our StaticAutoPtr can take over ownership".
// (StaticAutoPtr doesn't have a move constructor that could directly steal
// the contents of a UniquePtr via std::move().)
sGpuOverlayInfo = info.release();
if (auto* gpuParent = gfx::GPUParent::GetSingleton()) {
gpuParent->NotifyOverlayInfo(GetOverlayInfo());
}
return true;
}
DCSurface* DCLayerTree::GetSurface(wr::NativeSurfaceId aId) const {
auto surface_it = mDCSurfaces.find(aId);
MOZ_RELEASE_ASSERT(surface_it != mDCSurfaces.end());
return surface_it->second.get();
}
void DCLayerTree::SetDefaultSwapChain(IDXGISwapChain1* aSwapChain) {
LOG("DCLayerTree::SetDefaultSwapChain()");
mRootVisual->AddVisual(mDefaultSwapChainVisual, TRUE, nullptr);
mDefaultSwapChainVisual->SetContent(aSwapChain);
// Default SwapChain's visual does not need linear interporation.
mDefaultSwapChainVisual->SetBitmapInterpolationMode(
DCOMPOSITION_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR);
mPendingCommit = true;
}
void DCLayerTree::MaybeUpdateDebug() {
bool updated = false;
updated |= MaybeUpdateDebugCounter();
updated |= MaybeUpdateDebugVisualRedrawRegions();
if (updated) {
mPendingCommit = true;
}
}
void DCLayerTree::MaybeCommit() {
if (!mPendingCommit) {
return;
}
mCompositionDevice->Commit();
}
void DCLayerTree::WaitForCommitCompletion() {
mCompositionDevice->WaitForCommitCompletion();
}
void DCLayerTree::DisableNativeCompositor() {
MOZ_ASSERT(mCurrentSurface.isNothing());
MOZ_ASSERT(mCurrentLayers.empty());
ReleaseNativeCompositorResources();
mPrevLayers.clear();
mRootVisual->RemoveAllVisuals();
}
bool DCLayerTree::MaybeUpdateDebugCounter() {
bool debugCounter = StaticPrefs::gfx_webrender_debug_dcomp_counter();
if (mDebugCounter == debugCounter) {
return false;
}
RefPtr<IDCompositionDeviceDebug> debugDevice;
HRESULT hr = mCompositionDevice->QueryInterface(
(IDCompositionDeviceDebug**)getter_AddRefs(debugDevice));
if (FAILED(hr)) {
return false;
}
if (debugCounter) {
debugDevice->EnableDebugCounters();
} else {
debugDevice->DisableDebugCounters();
}
mDebugCounter = debugCounter;
return true;
}
bool DCLayerTree::MaybeUpdateDebugVisualRedrawRegions() {
bool debugVisualRedrawRegions =
StaticPrefs::gfx_webrender_debug_dcomp_redraw_regions();
if (mDebugVisualRedrawRegions == debugVisualRedrawRegions) {
return false;
}
RefPtr<IDCompositionVisualDebug> visualDebug;
HRESULT hr = mRootVisual->QueryInterface(
(IDCompositionVisualDebug**)getter_AddRefs(visualDebug));
if (FAILED(hr)) {
return false;
}
if (debugVisualRedrawRegions) {
visualDebug->EnableRedrawRegions();
} else {
visualDebug->DisableRedrawRegions();
}
mDebugVisualRedrawRegions = debugVisualRedrawRegions;
return true;
}
void DCLayerTree::CompositorBeginFrame() {
mCurrentFrame++;
mUsedOverlayTypesInFrame = DCompOverlayTypes::NO_OVERLAY;
}
void DCLayerTree::CompositorEndFrame() {
auto start = TimeStamp::Now();
// Check if the visual tree of surfaces is the same as last frame.
bool same = mPrevLayers == mCurrentLayers;
if (!same) {
// If not, we need to rebuild the visual tree. Note that addition or
// removal of tiles no longer needs to rebuild the main visual tree
// here, since they are added as children of the surface visual.
mRootVisual->RemoveAllVisuals();
}
for (auto it = mCurrentLayers.begin(); it != mCurrentLayers.end(); ++it) {
auto surface_it = mDCSurfaces.find(*it);
MOZ_RELEASE_ASSERT(surface_it != mDCSurfaces.end());
const auto surface = surface_it->second.get();
// Ensure surface is trimmed to updated tile valid rects
surface->UpdateAllocatedRect();
if (!same) {
// Add surfaces in z-order they were added to the scene.
const auto visual = surface->GetVisual();
mRootVisual->AddVisual(visual, false, nullptr);
}
}
mPrevLayers.swap(mCurrentLayers);
mCurrentLayers.clear();
mCompositionDevice->Commit();
auto end = TimeStamp::Now();
mozilla::Telemetry::Accumulate(mozilla::Telemetry::COMPOSITE_SWAP_TIME,
(end - start).ToMilliseconds() * 10.);
// Remove any framebuffers that haven't been
// used in the last 60 frames.
//
// This should use nsTArray::RemoveElementsBy once
// CachedFrameBuffer is able to properly destroy
// itself in the destructor.
const auto gl = GetGLContext();
for (uint32_t i = 0, len = mFrameBuffers.Length(); i < len; ++i) {
auto& fb = mFrameBuffers[i];
if ((mCurrentFrame - fb.lastFrameUsed) > 60) {
gl->fDeleteRenderbuffers(1, &fb.depthRboId);
gl->fDeleteFramebuffers(1, &fb.fboId);
mFrameBuffers.UnorderedRemoveElementAt(i);
--i; // Examine the element again, if necessary.
--len;
}
}
if (!StaticPrefs::gfx_webrender_dcomp_video_check_slow_present()) {
return;
}
// Disable video overlay if mCompositionDevice->Commit() with video overlay is
// too slow. It drops fps.
const auto maxCommitWaitDurationMs = 20;
const auto maxSlowCommitCount = 5;
const auto commitDurationMs =
static_cast<uint32_t>((end - start).ToMilliseconds());
nsPrintfCString marker("CommitWait overlay %u %ums ",
(uint8_t)mUsedOverlayTypesInFrame, commitDurationMs);
PROFILER_MARKER_TEXT("CommitWait", GRAPHICS, {}, marker);
if (mUsedOverlayTypesInFrame != DCompOverlayTypes::NO_OVERLAY &&
commitDurationMs > maxCommitWaitDurationMs) {
mSlowCommitCount++;
} else {
mSlowCommitCount = 0;
}
if (mSlowCommitCount <= maxSlowCommitCount) {
return;
}
if (mUsedOverlayTypesInFrame & DCompOverlayTypes::SOFTWARE_DECODED_VIDEO) {
gfxCriticalNoteOnce << "Sw video swapchain present is slow";
RenderThread::Get()->NotifyWebRenderError(
wr::WebRenderError::VIDEO_SW_OVERLAY);
}
if (mUsedOverlayTypesInFrame & DCompOverlayTypes::HARDWARE_DECODED_VIDEO) {
gfxCriticalNoteOnce << "Hw video swapchain present is slow";
RenderThread::Get()->NotifyWebRenderError(
wr::WebRenderError::VIDEO_HW_OVERLAY);
}
}
void DCLayerTree::Bind(wr::NativeTileId aId, wr::DeviceIntPoint* aOffset,
uint32_t* aFboId, wr::DeviceIntRect aDirtyRect,
wr::DeviceIntRect aValidRect) {
auto surface = GetSurface(aId.surface_id);
auto tile = surface->GetTile(aId.x, aId.y);
wr::DeviceIntPoint targetOffset{0, 0};
// If tile owns an IDCompositionSurface we use it, otherwise we're using an
// IDCompositionVirtualSurface owned by the DCSurface.
RefPtr<IDCompositionSurface> compositionSurface;
if (surface->mIsVirtualSurface) {
gfx::IntRect validRect(aValidRect.min.x, aValidRect.min.y,
aValidRect.width(), aValidRect.height());
if (!tile->mValidRect.IsEqualEdges(validRect)) {
tile->mValidRect = validRect;
surface->DirtyAllocatedRect();
}
wr::DeviceIntSize tileSize = surface->GetTileSize();
compositionSurface = surface->GetCompositionSurface();
wr::DeviceIntPoint virtualOffset = surface->GetVirtualOffset();
targetOffset.x = virtualOffset.x + tileSize.width * aId.x;
targetOffset.y = virtualOffset.y + tileSize.height * aId.y;
} else {
compositionSurface = tile->Bind(aValidRect);
}
if (tile->mNeedsFullDraw) {
// dcomp requires that the first BeginDraw on a non-virtual surface is the
// full size of the pixel buffer.
auto tileSize = surface->GetTileSize();
aDirtyRect.min.x = 0;
aDirtyRect.min.y = 0;
aDirtyRect.max.x = tileSize.width;
aDirtyRect.max.y = tileSize.height;
tile->mNeedsFullDraw = false;
}
*aFboId = CreateEGLSurfaceForCompositionSurface(
aDirtyRect, aOffset, compositionSurface, targetOffset);
mCurrentSurface = Some(compositionSurface);
}
void DCLayerTree::Unbind() {
if (mCurrentSurface.isNothing()) {
return;
}
RefPtr<IDCompositionSurface> surface = mCurrentSurface.ref();
surface->EndDraw();
DestroyEGLSurface();
mCurrentSurface = Nothing();
}
void DCLayerTree::CreateSurface(wr::NativeSurfaceId aId,
wr::DeviceIntPoint aVirtualOffset,
wr::DeviceIntSize aTileSize, bool aIsOpaque) {
auto it = mDCSurfaces.find(aId);
MOZ_RELEASE_ASSERT(it == mDCSurfaces.end());
if (it != mDCSurfaces.end()) {
// DCSurface already exists.
return;
}
// Tile size needs to be positive.
if (aTileSize.width <= 0 || aTileSize.height <= 0) {
gfxCriticalNote << "TileSize is not positive aId: " << wr::AsUint64(aId)
<< " aTileSize(" << aTileSize.width << ","
<< aTileSize.height << ")";
}
bool isVirtualSurface =
StaticPrefs::gfx_webrender_dcomp_use_virtual_surfaces_AtStartup();
auto surface = MakeUnique<DCSurface>(aTileSize, aVirtualOffset,
isVirtualSurface, aIsOpaque, this);
if (!surface->Initialize()) {
gfxCriticalNote << "Failed to initialize DCSurface: " << wr::AsUint64(aId);
return;
}
mDCSurfaces[aId] = std::move(surface);
}
void DCLayerTree::CreateExternalSurface(wr::NativeSurfaceId aId,
bool aIsOpaque) {
auto it = mDCSurfaces.find(aId);
MOZ_RELEASE_ASSERT(it == mDCSurfaces.end());
auto surface = MakeUnique<DCExternalSurfaceWrapper>(aIsOpaque, this);
if (!surface->Initialize()) {
gfxCriticalNote << "Failed to initialize DCExternalSurfaceWrapper: "
<< wr::AsUint64(aId);
return;
}
mDCSurfaces[aId] = std::move(surface);
}
void DCLayerTree::DestroySurface(NativeSurfaceId aId) {
auto surface_it = mDCSurfaces.find(aId);
MOZ_RELEASE_ASSERT(surface_it != mDCSurfaces.end());
auto surface = surface_it->second.get();
mRootVisual->RemoveVisual(surface->GetVisual());
mDCSurfaces.erase(surface_it);
}
void DCLayerTree::CreateTile(wr::NativeSurfaceId aId, int32_t aX, int32_t aY) {
auto surface = GetSurface(aId);
surface->CreateTile(aX, aY);
}
void DCLayerTree::DestroyTile(wr::NativeSurfaceId aId, int32_t aX, int32_t aY) {
auto surface = GetSurface(aId);
surface->DestroyTile(aX, aY);
}
void DCLayerTree::AttachExternalImage(wr::NativeSurfaceId aId,
wr::ExternalImageId aExternalImage) {
auto surface_it = mDCSurfaces.find(aId);
MOZ_RELEASE_ASSERT(surface_it != mDCSurfaces.end());
surface_it->second->AttachExternalImage(aExternalImage);
}
void DCExternalSurfaceWrapper::AttachExternalImage(
wr::ExternalImageId aExternalImage) {
if (auto* surface = EnsureSurfaceForExternalImage(aExternalImage)) {
surface->AttachExternalImage(aExternalImage);
}
}
template <class ToT>
struct QI {
template <class FromT>
[[nodiscard]] static inline RefPtr<ToT> From(FromT* const from) {
RefPtr<ToT> to;
(void)from->QueryInterface(static_cast<ToT**>(getter_AddRefs(to)));
return to;
}
};
DCSurface* DCExternalSurfaceWrapper::EnsureSurfaceForExternalImage(
wr::ExternalImageId aExternalImage) {
if (mSurface) {
return mSurface.get();
}
// Create a new surface based on the texture type.
RenderTextureHost* texture =
RenderThread::Get()->GetRenderTexture(aExternalImage);
if (texture && texture->AsRenderDXGITextureHost()) {
mSurface.reset(new DCSurfaceVideo(mIsOpaque, mDCLayerTree));
if (!mSurface->Initialize()) {
gfxCriticalNote << "Failed to initialize DCSurfaceVideo: "
<< wr::AsUint64(aExternalImage);
mSurface = nullptr;
}
} else if (texture && texture->AsRenderDcompSurfaceTextureHost()) {
mSurface.reset(new DCSurfaceHandle(mIsOpaque, mDCLayerTree));
if (!mSurface->Initialize()) {
gfxCriticalNote << "Failed to initialize DCSurfaceHandle: "
<< wr::AsUint64(aExternalImage);
mSurface = nullptr;
}
}
if (!mSurface) {
gfxCriticalNote << "Failed to create a surface for external image: "
<< gfx::hexa(texture);
return nullptr;
}
// Add surface's visual which will contain video data to our root visual.
const auto surfaceVisual = mSurface->GetVisual();
mVisual->AddVisual(surfaceVisual, true, nullptr);
// -
// Apply color management.
[&]() {
const auto cmsMode = GfxColorManagementMode();
if (cmsMode == CMSMode::Off) return;
const auto dcomp = mDCLayerTree->GetCompositionDevice();
const auto dcomp3 = QI<IDCompositionDevice3>::From(dcomp);
if (!dcomp3) {
NS_WARNING(
"No IDCompositionDevice3, cannot use dcomp for color management.");
return;
}
// -
const auto cspace = [&]() {
const auto rangedCspace = texture->GetYUVColorSpace();
const auto info = FromYUVRangedColorSpace(rangedCspace);
auto ret = ToColorSpace2(info.space);
if (ret == gfx::ColorSpace2::Display && cmsMode == CMSMode::All) {
ret = gfx::ColorSpace2::SRGB;
}
return ret;
}();
const bool rec709GammaAsSrgb =
StaticPrefs::gfx_color_management_rec709_gamma_as_srgb();
const bool rec2020GammaAsRec709 =
StaticPrefs::gfx_color_management_rec2020_gamma_as_rec709();
auto cspaceDesc = color::ColorspaceDesc{};
switch (cspace) {
case gfx::ColorSpace2::Display:
return; // No color management needed!
case gfx::ColorSpace2::SRGB:
cspaceDesc.chrom = color::Chromaticities::Srgb();
cspaceDesc.tf = color::PiecewiseGammaDesc::Srgb();
break;
case gfx::ColorSpace2::DISPLAY_P3:
cspaceDesc.chrom = color::Chromaticities::DisplayP3();
cspaceDesc.tf = color::PiecewiseGammaDesc::DisplayP3();
break;
case gfx::ColorSpace2::BT601_525:
cspaceDesc.chrom = color::Chromaticities::Rec601_525_Ntsc();
if (rec709GammaAsSrgb) {
cspaceDesc.tf = color::PiecewiseGammaDesc::Srgb();
} else {
cspaceDesc.tf = color::PiecewiseGammaDesc::Rec709();
}
break;
case gfx::ColorSpace2::BT709:
cspaceDesc.chrom = color::Chromaticities::Rec709();
if (rec709GammaAsSrgb) {
cspaceDesc.tf = color::PiecewiseGammaDesc::Srgb();
} else {
cspaceDesc.tf = color::PiecewiseGammaDesc::Rec709();
}
break;
case gfx::ColorSpace2::BT2020:
cspaceDesc.chrom = color::Chromaticities::Rec2020();
if (rec2020GammaAsRec709 && rec709GammaAsSrgb) {
cspaceDesc.tf = color::PiecewiseGammaDesc::Srgb();
} else if (rec2020GammaAsRec709) {
cspaceDesc.tf = color::PiecewiseGammaDesc::Rec709();
} else {
// Just Rec709 with slightly more precision.
cspaceDesc.tf = color::PiecewiseGammaDesc::Rec2020_12bit();
}
break;
}
const auto cprofileIn = color::ColorProfileDesc::From(cspaceDesc);
auto cprofileOut = mDCLayerTree->OutputColorProfile();
bool pretendSrgb = true;
if (pretendSrgb) {
cprofileOut = color::ColorProfileDesc::From({
color::Chromaticities::Srgb(),
color::PiecewiseGammaDesc::Srgb(),
});
}
const auto conversion = color::ColorProfileConversionDesc::From({
.src = cprofileIn,
.dst = cprofileOut,
});
// -
auto chain = ColorManagementChain::From(*dcomp3, conversion);
mCManageChain = Some(chain);
surfaceVisual->SetEffect(mCManageChain->last.get());
}();
return mSurface.get();
}
void DCExternalSurfaceWrapper::PresentExternalSurface(gfx::Matrix& aTransform) {
MOZ_ASSERT(mSurface);
if (auto* surface = mSurface->AsDCSurfaceVideo()) {
if (surface->CalculateSwapChainSize(aTransform)) {
surface->PresentVideo();
}
} else if (auto* surface = mSurface->AsDCSurfaceHandle()) {
surface->PresentSurfaceHandle();
}
}
template <typename T>
static inline D2D1_RECT_F D2DRect(const T& aRect) {
return D2D1::RectF(aRect.X(), aRect.Y(), aRect.XMost(), aRect.YMost());
}
static inline D2D1_MATRIX_3X2_F D2DMatrix(const gfx::Matrix& aTransform) {
return D2D1::Matrix3x2F(aTransform._11, aTransform._12, aTransform._21,
aTransform._22, aTransform._31, aTransform._32);
}
void DCLayerTree::AddSurface(wr::NativeSurfaceId aId,
const wr::CompositorSurfaceTransform& aTransform,
wr::DeviceIntRect aClipRect,
wr::ImageRendering aImageRendering) {
auto it = mDCSurfaces.find(aId);
MOZ_RELEASE_ASSERT(it != mDCSurfaces.end());
const auto surface = it->second.get();
const auto visual = surface->GetVisual();
wr::DeviceIntPoint virtualOffset = surface->GetVirtualOffset();
float sx = aTransform.scale.x;
float sy = aTransform.scale.y;
float tx = aTransform.offset.x;
float ty = aTransform.offset.y;
gfx::Matrix transform(sx, 0.0, 0.0, sy, tx, ty);
surface->PresentExternalSurface(transform);
transform.PreTranslate(-virtualOffset.x, -virtualOffset.y);
// The DirectComposition API applies clipping *before* any
// transforms/offset, whereas we want the clip applied after. Right now, we
// only support rectilinear transforms, and then we transform our clip into
// pre-transform coordinate space for it to be applied there.
// DirectComposition does have an option for pre-transform clipping, if you
// create an explicit IDCompositionEffectGroup object and set a 3D transform
// on that. I suspect that will perform worse though, so we should only do
// that for complex transforms (which are never provided right now).
MOZ_ASSERT(transform.IsRectilinear());
gfx::Rect clip = transform.Inverse().TransformBounds(gfx::Rect(
aClipRect.min.x, aClipRect.min.y, aClipRect.width(), aClipRect.height()));
// Set the clip rect - converting from world space to the pre-offset space
// that DC requires for rectangle clips.
visual->SetClip(D2DRect(clip));
// TODO: The input matrix is a 4x4, but we only support a 3x2 at
// the D3D API level (unless we QI to IDCompositionVisual3, which might
// not be available?).
// Should we assert here, or restrict at the WR API level.
visual->SetTransform(D2DMatrix(transform));
if (aImageRendering == wr::ImageRendering::Auto) {
visual->SetBitmapInterpolationMode(
DCOMPOSITION_BITMAP_INTERPOLATION_MODE_LINEAR);
} else {
visual->SetBitmapInterpolationMode(
DCOMPOSITION_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR);
}
mCurrentLayers.push_back(aId);
}
GLuint DCLayerTree::GetOrCreateFbo(int aWidth, int aHeight) {
const auto gl = GetGLContext();
GLuint fboId = 0;
// Check if we have a cached FBO with matching dimensions
for (auto it = mFrameBuffers.begin(); it != mFrameBuffers.end(); ++it) {
if (it->width == aWidth && it->height == aHeight) {
fboId = it->fboId;
it->lastFrameUsed = mCurrentFrame;
break;
}
}
// If not, create a new FBO with attached depth buffer
if (fboId == 0) {
// Create the depth buffer
GLuint depthRboId;
gl->fGenRenderbuffers(1, &depthRboId);
gl->fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, depthRboId);
gl->fRenderbufferStorage(LOCAL_GL_RENDERBUFFER, LOCAL_GL_DEPTH_COMPONENT24,
aWidth, aHeight);
// Create the framebuffer and attach the depth buffer to it
gl->fGenFramebuffers(1, &fboId);
gl->fBindFramebuffer(LOCAL_GL_DRAW_FRAMEBUFFER, fboId);
gl->fFramebufferRenderbuffer(LOCAL_GL_DRAW_FRAMEBUFFER,
LOCAL_GL_DEPTH_ATTACHMENT,
LOCAL_GL_RENDERBUFFER, depthRboId);
// Store this in the cache for future calls.
// TODO(gw): Maybe we should periodically scan this list and remove old
// entries that
// haven't been used for some time?
DCLayerTree::CachedFrameBuffer frame_buffer_info;
frame_buffer_info.width = aWidth;
frame_buffer_info.height = aHeight;
frame_buffer_info.fboId = fboId;
frame_buffer_info.depthRboId = depthRboId;
frame_buffer_info.lastFrameUsed = mCurrentFrame;
mFrameBuffers.AppendElement(frame_buffer_info);
}
return fboId;
}
bool DCLayerTree::EnsureVideoProcessor(const gfx::IntSize& aInputSize,
const gfx::IntSize& aOutputSize) {
HRESULT hr;
if (!mVideoDevice || !mVideoContext) {
return false;
}
if (mVideoProcessor && (aInputSize <= mVideoInputSize) &&
(aOutputSize <= mVideoOutputSize)) {
return true;
}
mVideoProcessor = nullptr;
mVideoProcessorEnumerator = nullptr;
D3D11_VIDEO_PROCESSOR_CONTENT_DESC desc = {};
desc.InputFrameFormat = D3D11_VIDEO_FRAME_FORMAT_PROGRESSIVE;
desc.InputFrameRate.Numerator = 60;
desc.InputFrameRate.Denominator = 1;
desc.InputWidth = aInputSize.width;
desc.InputHeight = aInputSize.height;
desc.OutputFrameRate.Numerator = 60;
desc.OutputFrameRate.Denominator = 1;
desc.OutputWidth = aOutputSize.width;
desc.OutputHeight = aOutputSize.height;
desc.Usage = D3D11_VIDEO_USAGE_PLAYBACK_NORMAL;
hr = mVideoDevice->CreateVideoProcessorEnumerator(
&desc, getter_AddRefs(mVideoProcessorEnumerator));
if (FAILED(hr)) {
gfxCriticalNote << "Failed to create VideoProcessorEnumerator: "
<< gfx::hexa(hr);
return false;
}
hr = mVideoDevice->CreateVideoProcessor(mVideoProcessorEnumerator, 0,
getter_AddRefs(mVideoProcessor));
if (FAILED(hr)) {
mVideoProcessor = nullptr;
mVideoProcessorEnumerator = nullptr;
gfxCriticalNote << "Failed to create VideoProcessor: " << gfx::hexa(hr);
return false;
}
// Reduce power cosumption
// By default, the driver might perform certain processing tasks
// automatically
mVideoContext->VideoProcessorSetStreamAutoProcessingMode(mVideoProcessor, 0,
FALSE);
mVideoInputSize = aInputSize;
mVideoOutputSize = aOutputSize;
return true;
}
bool DCLayerTree::SupportsHardwareOverlays() {
return sGpuOverlayInfo->mSupportsHardwareOverlays;
}
bool DCLayerTree::SupportsSwapChainTearing() {
RefPtr<ID3D11Device> device = mDevice;
static const bool supported = [device] {
RefPtr<IDXGIDevice> dxgiDevice;
RefPtr<IDXGIAdapter> adapter;
device->QueryInterface((IDXGIDevice**)getter_AddRefs(dxgiDevice));
dxgiDevice->GetAdapter(getter_AddRefs(adapter));
RefPtr<IDXGIFactory5> dxgiFactory;
HRESULT hr = adapter->GetParent(
IID_PPV_ARGS((IDXGIFactory5**)getter_AddRefs(dxgiFactory)));
if (FAILED(hr)) {
return false;
}
BOOL presentAllowTearing = FALSE;
hr = dxgiFactory->CheckFeatureSupport(DXGI_FEATURE_PRESENT_ALLOW_TEARING,
&presentAllowTearing,
sizeof(presentAllowTearing));
if (FAILED(hr)) {
return false;
}
if (auto* gpuParent = gfx::GPUParent::GetSingleton()) {
gpuParent->NotifySwapChainInfo(
layers::SwapChainInfo(!!presentAllowTearing));
} else if (XRE_IsParentProcess()) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
}
return !!presentAllowTearing;
}();
return supported;
}
DXGI_FORMAT DCLayerTree::GetOverlayFormatForSDR() {
return sGpuOverlayInfo->mOverlayFormatUsed;
}
static layers::OverlaySupportType FlagsToOverlaySupportType(
UINT aFlags, bool aSoftwareOverlaySupported) {
if (aFlags & DXGI_OVERLAY_SUPPORT_FLAG_SCALING) {
return layers::OverlaySupportType::Scaling;
}
if (aFlags & DXGI_OVERLAY_SUPPORT_FLAG_DIRECT) {
return layers::OverlaySupportType::Direct;
}
if (aSoftwareOverlaySupported) {
return layers::OverlaySupportType::Software;
}
return layers::OverlaySupportType::None;
}
layers::OverlayInfo DCLayerTree::GetOverlayInfo() {
layers::OverlayInfo info;
info.mSupportsOverlays = sGpuOverlayInfo->mSupportsHardwareOverlays;
info.mNv12Overlay =
FlagsToOverlaySupportType(sGpuOverlayInfo->mNv12OverlaySupportFlags,
/* aSoftwareOverlaySupported */ false);
info.mYuy2Overlay =
FlagsToOverlaySupportType(sGpuOverlayInfo->mYuy2OverlaySupportFlags,
/* aSoftwareOverlaySupported */ false);
info.mBgra8Overlay =
FlagsToOverlaySupportType(sGpuOverlayInfo->mBgra8OverlaySupportFlags,
/* aSoftwareOverlaySupported */ true);
info.mRgb10a2Overlay =
FlagsToOverlaySupportType(sGpuOverlayInfo->mRgb10a2OverlaySupportFlags,
/* aSoftwareOverlaySupported */ false);
return info;
}
void DCLayerTree::SetUsedOverlayTypeInFrame(DCompOverlayTypes aTypes) {
mUsedOverlayTypesInFrame |= aTypes;
}
DCSurface::DCSurface(wr::DeviceIntSize aTileSize,
wr::DeviceIntPoint aVirtualOffset, bool aIsVirtualSurface,
bool aIsOpaque, DCLayerTree* aDCLayerTree)
: mIsVirtualSurface(aIsVirtualSurface),
mDCLayerTree(aDCLayerTree),
mTileSize(aTileSize),
mIsOpaque(aIsOpaque),
mAllocatedRectDirty(true),
mVirtualOffset(aVirtualOffset) {}
DCSurface::~DCSurface() {}
bool DCSurface::Initialize() {
// Create a visual for tiles to attach to, whether virtual or not.
HRESULT hr;
const auto dCompDevice = mDCLayerTree->GetCompositionDevice();
hr = dCompDevice->CreateVisual(getter_AddRefs(mVisual));
if (FAILED(hr)) {
gfxCriticalNote << "Failed to create DCompositionVisual: " << gfx::hexa(hr);
return false;
}
// If virtual surface is enabled, create and attach to visual, in this case
// the tiles won't own visuals or surfaces.
if (mIsVirtualSurface) {
DXGI_ALPHA_MODE alpha_mode =
mIsOpaque ? DXGI_ALPHA_MODE_IGNORE : DXGI_ALPHA_MODE_PREMULTIPLIED;
hr = dCompDevice->CreateVirtualSurface(
VIRTUAL_SURFACE_SIZE, VIRTUAL_SURFACE_SIZE, DXGI_FORMAT_R8G8B8A8_UNORM,
alpha_mode, getter_AddRefs(mVirtualSurface));
MOZ_ASSERT(SUCCEEDED(hr));
// Bind the surface memory to this visual
hr = mVisual->SetContent(mVirtualSurface);
MOZ_ASSERT(SUCCEEDED(hr));
}
return true;
}
void DCSurface::CreateTile(int32_t aX, int32_t aY) {
TileKey key(aX, aY);
MOZ_RELEASE_ASSERT(mDCTiles.find(key) == mDCTiles.end());
auto tile = MakeUnique<DCTile>(mDCLayerTree);
if (!tile->Initialize(aX, aY, mTileSize, mIsVirtualSurface, mIsOpaque,
mVisual)) {
gfxCriticalNote << "Failed to initialize DCTile: " << aX << aY;
return;
}
if (mIsVirtualSurface) {
mAllocatedRectDirty = true;
} else {
mVisual->AddVisual(tile->GetVisual(), false, nullptr);
}
mDCTiles[key] = std::move(tile);
}
void DCSurface::DestroyTile(int32_t aX, int32_t aY) {
TileKey key(aX, aY);
if (mIsVirtualSurface) {
mAllocatedRectDirty = true;
} else {
auto tile = GetTile(aX, aY);
mVisual->RemoveVisual(tile->GetVisual());
}
mDCTiles.erase(key);
}
void DCSurface::DirtyAllocatedRect() { mAllocatedRectDirty = true; }
void DCSurface::UpdateAllocatedRect() {
if (mAllocatedRectDirty) {
if (mVirtualSurface) {
// The virtual surface may have holes in it (for example, an empty tile
// that has no primitives). Instead of trimming to a single bounding
// rect, supply the rect of each valid tile to handle this case.
std::vector<RECT> validRects;
for (auto it = mDCTiles.begin(); it != mDCTiles.end(); ++it) {
auto tile = GetTile(it->first.mX, it->first.mY);
RECT rect;
rect.left = (LONG)(mVirtualOffset.x + it->first.mX * mTileSize.width +
tile->mValidRect.x);
rect.top = (LONG)(mVirtualOffset.y + it->first.mY * mTileSize.height +
tile->mValidRect.y);
rect.right = rect.left + tile->mValidRect.width;
rect.bottom = rect.top + tile->mValidRect.height;
validRects.push_back(rect);
}
mVirtualSurface->Trim(validRects.data(), validRects.size());
}
// When not using a virtual surface, we still want to reset this
mAllocatedRectDirty = false;
}
}
DCTile* DCSurface::GetTile(int32_t aX, int32_t aY) const {
TileKey key(aX, aY);
auto tile_it = mDCTiles.find(key);
MOZ_RELEASE_ASSERT(tile_it != mDCTiles.end());
return tile_it->second.get();
}
DCSurfaceVideo::DCSurfaceVideo(bool aIsOpaque, DCLayerTree* aDCLayerTree)
: DCSurface(wr::DeviceIntSize{}, wr::DeviceIntPoint{}, false, aIsOpaque,
aDCLayerTree),
mSwapChainBufferCount(
StaticPrefs::gfx_webrender_dcomp_video_force_triple_buffering() ? 3
: 2) {
}
DCSurfaceVideo::~DCSurfaceVideo() {
ReleaseDecodeSwapChainResources();
MOZ_ASSERT(!mSwapChainSurfaceHandle);
}
bool IsYUVSwapChainFormat(DXGI_FORMAT aFormat) {
if (aFormat == DXGI_FORMAT_NV12 || aFormat == DXGI_FORMAT_YUY2) {
return true;
}
return false;
}
void DCSurfaceVideo::AttachExternalImage(wr::ExternalImageId aExternalImage) {
RenderTextureHost* texture =
RenderThread::Get()->GetRenderTexture(aExternalImage);
MOZ_RELEASE_ASSERT(texture);
if (mPrevTexture == texture) {
return;
}
// XXX if software decoded video frame format is nv12, it could be used as
// video overlay.
if (!texture || !texture->AsRenderDXGITextureHost() ||
texture->GetFormat() != gfx::SurfaceFormat::NV12) {
gfxCriticalNote << "Unsupported RenderTexture for overlay: "
<< gfx::hexa(texture);
return;
}
mRenderTextureHost = texture;
}
static UINT GetVendorId(ID3D11VideoDevice* const aVideoDevice) {
RefPtr<IDXGIDevice> dxgiDevice;
RefPtr<IDXGIAdapter> adapter;
aVideoDevice->QueryInterface((IDXGIDevice**)getter_AddRefs(dxgiDevice));
dxgiDevice->GetAdapter(getter_AddRefs(adapter));
DXGI_ADAPTER_DESC adapterDesc;
adapter->GetDesc(&adapterDesc);
return adapterDesc.VendorId;
}
static HRESULT SetNvidiaVpSuperResolution(ID3D11VideoContext* aVideoContext,
ID3D11VideoProcessor* aVideoProcessor,
bool aEnable) {
LOG("SetNvidiaVpSuperResolution() aEnable=%d", aEnable);
// Undocumented NVIDIA driver constants
constexpr GUID nvGUID = {0xD43CE1B3,
0x1F4B,
0x48AC,
{0xBA, 0xEE, 0xC3, 0xC2, 0x53, 0x75, 0xE6, 0xF7}};
constexpr UINT nvExtensionVersion = 0x1;
constexpr UINT nvExtensionMethodSuperResolution = 0x2;
struct {
UINT version;
UINT method;
UINT enable;
} streamExtensionInfo = {nvExtensionVersion, nvExtensionMethodSuperResolution,
aEnable ? 1u : 0};
HRESULT hr;
hr = aVideoContext->VideoProcessorSetStreamExtension(
aVideoProcessor, 0, &nvGUID, sizeof(streamExtensionInfo),
&streamExtensionInfo);
return hr;
}
static HRESULT SetVpSuperResolution(UINT aGpuVendorId,
ID3D11VideoContext* aVideoContext,
ID3D11VideoProcessor* aVideoProcessor,
bool aEnable) {
MOZ_ASSERT(aVideoContext);
MOZ_ASSERT(aVideoProcessor);
if (aGpuVendorId == 0x10DE) {
return SetNvidiaVpSuperResolution(aVideoContext, aVideoProcessor, aEnable);
}
return E_NOTIMPL;
}
static bool GetNvidiaRTXVideoTrueHDRSupported(
ID3D11VideoContext* aVideoContext, ID3D11VideoProcessor* aVideoProcessor) {
const GUID kNvidiaTrueHDRInterfaceGUID = {
0xfdd62bb4,
0x620b,
0x4fd7,
{0x9a, 0xb3, 0x1e, 0x59, 0xd0, 0xd5, 0x44, 0xb3}};
UINT available = 0;
HRESULT hr = aVideoContext->VideoProcessorGetStreamExtension(
aVideoProcessor, 0, &kNvidiaTrueHDRInterfaceGUID, sizeof(available),
&available);
if (FAILED(hr)) {
return false;
}
bool driverSupportsTrueHdr = (available == 1);
return driverSupportsTrueHdr;
}
static HRESULT SetNvidiaRTXVideoTrueHDR(ID3D11VideoContext* aVideoContext,
ID3D11VideoProcessor* aVideoProcessor,
bool aEnable) {
constexpr GUID kNvidiaTrueHDRInterfaceGUID = {
0xfdd62bb4,
0x620b,
0x4fd7,
{0x9a, 0xb3, 0x1e, 0x59, 0xd0, 0xd5, 0x44, 0xb3}};
constexpr UINT kStreamExtensionMethodTrueHDR = 0x3;
const UINT TrueHDRVersion4 = 4;
struct {
UINT version;
UINT method;
UINT enable : 1;
UINT reserved : 31;
} streamExtensionInfo = {TrueHDRVersion4, kStreamExtensionMethodTrueHDR,
aEnable ? 1u : 0u, 0u};
HRESULT hr = aVideoContext->VideoProcessorSetStreamExtension(
aVideoProcessor, 0, &kNvidiaTrueHDRInterfaceGUID,
sizeof(streamExtensionInfo), &streamExtensionInfo);
return hr;
}
static bool GetVpAutoHDRSupported(UINT aGpuVendorId,
ID3D11VideoContext* aVideoContext,
ID3D11VideoProcessor* aVideoProcessor) {
MOZ_ASSERT(aVideoContext);
MOZ_ASSERT(aVideoProcessor);
if (aGpuVendorId == 0x10DE) {
return GetNvidiaRTXVideoTrueHDRSupported(aVideoContext, aVideoProcessor);
}
return false;
}
static HRESULT SetVpAutoHDR(UINT aGpuVendorId,
ID3D11VideoContext* aVideoContext,
ID3D11VideoProcessor* aVideoProcessor,
bool aEnable) {
MOZ_ASSERT(aVideoContext);
MOZ_ASSERT(aVideoProcessor);
if (aGpuVendorId == 0x10DE) {
return SetNvidiaRTXVideoTrueHDR(aVideoContext, aVideoProcessor, aEnable);
}
MOZ_ASSERT_UNREACHABLE("Unexpected to be called");
return E_NOTIMPL;
}
bool DCSurfaceVideo::CalculateSwapChainSize(gfx::Matrix& aTransform) {
if (!mRenderTextureHost) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return false;
}
const auto overlayType = mRenderTextureHost->IsSoftwareDecodedVideo()
? DCompOverlayTypes::SOFTWARE_DECODED_VIDEO
: DCompOverlayTypes::HARDWARE_DECODED_VIDEO;
mDCLayerTree->SetUsedOverlayTypeInFrame(overlayType);
mVideoSize = mRenderTextureHost->AsRenderDXGITextureHost()->GetSize(0);
// When RenderTextureHost, swapChainSize or VideoSwapChain are updated,
// DCSurfaceVideo::PresentVideo() needs to be called.
bool needsToPresent = mPrevTexture != mRenderTextureHost;
gfx::IntSize swapChainSize = mVideoSize;
gfx::Matrix transform = aTransform;
const bool isDRM = mRenderTextureHost->IsFromDRMSource();
// When video is rendered to axis aligned integer rectangle, video scaling
// could be done by VideoProcessor
bool scaleVideoAtVideoProcessor = false;
if (StaticPrefs::gfx_webrender_dcomp_video_vp_scaling_win_AtStartup() &&
aTransform.PreservesAxisAlignedRectangles()) {
gfx::Size scaledSize = gfx::Size(mVideoSize) * aTransform.ScaleFactors();
gfx::IntSize size(int32_t(std::round(scaledSize.width)),
int32_t(std::round(scaledSize.height)));
if (gfx::FuzzyEqual(scaledSize.width, size.width, 0.1f) &&
gfx::FuzzyEqual(scaledSize.height, size.height, 0.1f)) {
scaleVideoAtVideoProcessor = true;
swapChainSize = size;
}
}
if (scaleVideoAtVideoProcessor) {
// 4:2:2 subsampled formats like YUY2 must have an even width, and 4:2:0
// subsampled formats like NV12 must have an even width and height.
if (swapChainSize.width % 2 == 1) {
swapChainSize.width += 1;
}
if (swapChainSize.height % 2 == 1) {
swapChainSize.height += 1;
}
transform = gfx::Matrix::Translation(aTransform.GetTranslation());
}
if (!mDCLayerTree->EnsureVideoProcessor(mVideoSize, swapChainSize)) {
gfxCriticalNote << "EnsureVideoProcessor Failed";
return false;
}
MOZ_ASSERT(mDCLayerTree->GetVideoContext());
MOZ_ASSERT(mDCLayerTree->GetVideoProcessor());
const UINT vendorId = GetVendorId(mDCLayerTree->GetVideoDevice());
const bool driverSupportsAutoHDR =
GetVpAutoHDRSupported(vendorId, mDCLayerTree->GetVideoContext(),
mDCLayerTree->GetVideoProcessor());
const bool contentIsHDR = false; // XXX for now, only non-HDR is supported.
const bool monitorIsHDR =
gfx::DeviceManagerDx::Get()->WindowHDREnabled(mDCLayerTree->GetHwnd());
const bool powerIsCharging = RenderThread::Get()->GetPowerIsCharging();
bool useVpAutoHDR = gfx::gfxVars::WebRenderOverlayVpAutoHDR() &&
!contentIsHDR && monitorIsHDR && driverSupportsAutoHDR &&
powerIsCharging && !mVpAutoHDRFailed;
if (profiler_thread_is_being_profiled_for_markers()) {
nsPrintfCString str(
"useVpAutoHDR %d gfxVars %d contentIsHDR %d monitor %d driver %d "
"charging %d failed %d",
useVpAutoHDR, gfx::gfxVars::WebRenderOverlayVpAutoHDR(), contentIsHDR,
monitorIsHDR, driverSupportsAutoHDR, powerIsCharging, mVpAutoHDRFailed);
PROFILER_MARKER_TEXT("DCSurfaceVideo", GRAPHICS, {}, str);
}
if (!mVideoSwapChain || mSwapChainSize != swapChainSize || mIsDRM != isDRM ||
mUseVpAutoHDR != useVpAutoHDR) {
needsToPresent = true;
ReleaseDecodeSwapChainResources();
// Update mSwapChainSize before creating SwapChain
mSwapChainSize = swapChainSize;
mIsDRM = isDRM;
auto swapChainFormat = GetSwapChainFormat(useVpAutoHDR);
bool useYUVSwapChain = IsYUVSwapChainFormat(swapChainFormat);
if (useYUVSwapChain) {
// Tries to create YUV SwapChain
CreateVideoSwapChain(swapChainFormat);
if (!mVideoSwapChain) {
mFailedYuvSwapChain = true;
ReleaseDecodeSwapChainResources();
gfxCriticalNote << "Fallback to RGB SwapChain";
}
}
// Tries to create RGB SwapChain
if (!mVideoSwapChain) {
CreateVideoSwapChain(swapChainFormat);
}
if (!mVideoSwapChain && useVpAutoHDR) {
mVpAutoHDRFailed = true;
gfxCriticalNoteOnce << "Failed to create video SwapChain for VpAutoHDR";
// Disable VpAutoHDR
useVpAutoHDR = false;
swapChainFormat = GetSwapChainFormat(useVpAutoHDR);
CreateVideoSwapChain(swapChainFormat);
}
}
aTransform = transform;
mUseVpAutoHDR = useVpAutoHDR;
return needsToPresent;
}
void DCSurfaceVideo::PresentVideo() {
if (!mRenderTextureHost) {
return;
}
if (!mVideoSwapChain) {
gfxCriticalNote << "Failed to create VideoSwapChain";
RenderThread::Get()->NotifyWebRenderError(
wr::WebRenderError::VIDEO_OVERLAY);
return;
}
mVisual->SetContent(mVideoSwapChain);
if (!CallVideoProcessorBlt()) {
bool useYUVSwapChain = IsYUVSwapChainFormat(mSwapChainFormat);
if (useYUVSwapChain) {
mFailedYuvSwapChain = true;
ReleaseDecodeSwapChainResources();
return;
}
RenderThread::Get()->NotifyWebRenderError(
wr::WebRenderError::VIDEO_OVERLAY);
return;
}
const auto device = mDCLayerTree->GetDevice();
HRESULT hr;
if (mFirstPresent) {
mFirstPresent = false;
UINT flags = DXGI_PRESENT_USE_DURATION;
// DirectComposition can display black for a swap chain between the first
// and second time it's presented to - maybe the first Present can get lost
// somehow and it shows the wrong buffer. In that case copy the buffers so
// all have the correct contents, which seems to help. The first Present()
// after this needs to have SyncInterval > 0, or else the workaround doesn't
// help.
for (size_t i = 0; i < mSwapChainBufferCount - 1; ++i) {
hr = mVideoSwapChain->Present(0, flags);
// Ignore DXGI_STATUS_OCCLUDED since that's not an error but only
// indicates that the window is occluded and we can stop rendering.
if (FAILED(hr) && hr != DXGI_STATUS_OCCLUDED) {
gfxCriticalNoteOnce << "video Present failed during first present: "
<< gfx::hexa(hr);
return;
}
RefPtr<ID3D11Texture2D> destTexture;
mVideoSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D),
(void**)getter_AddRefs(destTexture));
MOZ_ASSERT(destTexture);
RefPtr<ID3D11Texture2D> srcTexture;
hr = mVideoSwapChain->GetBuffer(1, __uuidof(ID3D11Texture2D),
(void**)getter_AddRefs(srcTexture));
MOZ_ASSERT(srcTexture);
RefPtr<ID3D11DeviceContext> context;
device->GetImmediateContext(getter_AddRefs(context));
MOZ_ASSERT(context);
context->CopyResource(destTexture, srcTexture);
}
// Additionally wait for the GPU to finish executing its commands, or
// there still may be a black flicker when presenting expensive content
// (e.g. 4k video).
RefPtr<IDXGIDevice2> dxgiDevice2;
device->QueryInterface((IDXGIDevice2**)getter_AddRefs(dxgiDevice2));
MOZ_ASSERT(dxgiDevice2);
HANDLE event = ::CreateEvent(nullptr, false, false, nullptr);
hr = dxgiDevice2->EnqueueSetEvent(event);
if (SUCCEEDED(hr)) {
DebugOnly<DWORD> result = ::WaitForSingleObject(event, INFINITE);
MOZ_ASSERT(result == WAIT_OBJECT_0);
} else {
gfxCriticalNoteOnce << "EnqueueSetEvent failed: " << gfx::hexa(hr);
}
::CloseHandle(event);
}
UINT flags = DXGI_PRESENT_USE_DURATION;
UINT interval = 1;
if (StaticPrefs::gfx_webrender_dcomp_video_swap_chain_present_interval_0()) {
interval = 0;
}
auto start = TimeStamp::Now();
hr = mVideoSwapChain->Present(interval, flags);
auto end = TimeStamp::Now();
if (FAILED(hr) && hr != DXGI_STATUS_OCCLUDED) {
gfxCriticalNoteOnce << "video Present failed: " << gfx::hexa(hr);
}
mPrevTexture = mRenderTextureHost;
// Disable video overlay if mVideoSwapChain->Present() is too slow. It drops
// fps.
if (!StaticPrefs::gfx_webrender_dcomp_video_check_slow_present()) {
return;
}
const auto maxPresentWaitDurationMs = 2;
const auto maxSlowPresentCount = 5;
const auto presentDurationMs =
static_cast<uint32_t>((end - start).ToMilliseconds());
const auto overlayType = mRenderTextureHost->IsSoftwareDecodedVideo()
? DCompOverlayTypes::SOFTWARE_DECODED_VIDEO
: DCompOverlayTypes::HARDWARE_DECODED_VIDEO;
nsPrintfCString marker("PresentWait overlay %u %ums ", (uint8_t)overlayType,
presentDurationMs);
PROFILER_MARKER_TEXT("PresentWait", GRAPHICS, {}, marker);
if (presentDurationMs > maxPresentWaitDurationMs) {
mSlowPresentCount++;
} else {
mSlowPresentCount = 0;
}
if (mSlowPresentCount <= maxSlowPresentCount) {
return;
}
if (overlayType == DCompOverlayTypes::SOFTWARE_DECODED_VIDEO) {
gfxCriticalNoteOnce << "Sw video swapchain present is slow";
RenderThread::Get()->NotifyWebRenderError(
wr::WebRenderError::VIDEO_SW_OVERLAY);
} else {
gfxCriticalNoteOnce << "Hw video swapchain present is slow";
RenderThread::Get()->NotifyWebRenderError(
wr::WebRenderError::VIDEO_HW_OVERLAY);
}
}
DXGI_FORMAT DCSurfaceVideo::GetSwapChainFormat(bool aUseVpAutoHDR) {
if (aUseVpAutoHDR) {
return DXGI_FORMAT_R16G16B16A16_FLOAT;
}
if (mFailedYuvSwapChain || !mDCLayerTree->SupportsHardwareOverlays()) {
return DXGI_FORMAT_B8G8R8A8_UNORM;
}
return mDCLayerTree->GetOverlayFormatForSDR();
}
bool DCSurfaceVideo::CreateVideoSwapChain(DXGI_FORMAT aSwapChainFormat) {
MOZ_ASSERT(mRenderTextureHost);
mFirstPresent = true;
const auto device = mDCLayerTree->GetDevice();
RefPtr<IDXGIDevice> dxgiDevice;
device->QueryInterface((IDXGIDevice**)getter_AddRefs(dxgiDevice));
RefPtr<IDXGIFactoryMedia> dxgiFactoryMedia;
{
RefPtr<IDXGIAdapter> adapter;
dxgiDevice->GetAdapter(getter_AddRefs(adapter));
adapter->GetParent(
IID_PPV_ARGS((IDXGIFactoryMedia**)getter_AddRefs(dxgiFactoryMedia)));
}
mSwapChainSurfaceHandle = gfx::DeviceManagerDx::CreateDCompSurfaceHandle();
if (!mSwapChainSurfaceHandle) {
gfxCriticalNote << "Failed to create DCompSurfaceHandle";
return false;
}
DXGI_SWAP_CHAIN_DESC1 desc = {};
desc.Width = mSwapChainSize.width;
desc.Height = mSwapChainSize.height;
desc.Format = aSwapChainFormat;
desc.Stereo = FALSE;
desc.SampleDesc.Count = 1;
desc.BufferCount = mSwapChainBufferCount;
desc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
desc.Scaling = DXGI_SCALING_STRETCH;
desc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL;
desc.Flags = DXGI_SWAP_CHAIN_FLAG_FULLSCREEN_VIDEO;
if (IsYUVSwapChainFormat(aSwapChainFormat)) {
desc.Flags |= DXGI_SWAP_CHAIN_FLAG_YUV_VIDEO;
}
if (mIsDRM) {
desc.Flags |= DXGI_SWAP_CHAIN_FLAG_DISPLAY_ONLY;
}
desc.AlphaMode = DXGI_ALPHA_MODE_IGNORE;
HRESULT hr;
hr = dxgiFactoryMedia->CreateSwapChainForCompositionSurfaceHandle(
device, mSwapChainSurfaceHandle, &desc, nullptr,
getter_AddRefs(mVideoSwapChain));
if (FAILED(hr)) {
gfxCriticalNote << "Failed to create video SwapChain: " << gfx::hexa(hr)
<< " " << mSwapChainSize;
return false;
}
mSwapChainFormat = aSwapChainFormat;
return true;
}
// TODO: Replace with YUVRangedColorSpace
static Maybe<DXGI_COLOR_SPACE_TYPE> GetSourceDXGIColorSpace(
const gfx::YUVColorSpace aYUVColorSpace,
const gfx::ColorRange aColorRange) {
if (aYUVColorSpace == gfx::YUVColorSpace::BT601) {
if (aColorRange == gfx::ColorRange::FULL) {
return Some(DXGI_COLOR_SPACE_YCBCR_FULL_G22_LEFT_P601);
} else {
return Some(DXGI_COLOR_SPACE_YCBCR_STUDIO_G22_LEFT_P601);
}
} else if (aYUVColorSpace == gfx::YUVColorSpace::BT709) {
if (aColorRange == gfx::ColorRange::FULL) {
return Some(DXGI_COLOR_SPACE_YCBCR_FULL_G22_LEFT_P709);
} else {
return Some(DXGI_COLOR_SPACE_YCBCR_STUDIO_G22_LEFT_P709);
}
} else if (aYUVColorSpace == gfx::YUVColorSpace::BT2020) {
if (aColorRange == gfx::ColorRange::FULL) {
// XXX Add SMPTEST2084 handling. HDR content is not handled yet by
// video overlay.
return Some(DXGI_COLOR_SPACE_YCBCR_FULL_G22_LEFT_P2020);
} else {
return Some(DXGI_COLOR_SPACE_YCBCR_STUDIO_G22_LEFT_P2020);
}
}
return Nothing();
}
static Maybe<DXGI_COLOR_SPACE_TYPE> GetSourceDXGIColorSpace(
const gfx::YUVRangedColorSpace aYUVColorSpace) {
const auto info = FromYUVRangedColorSpace(aYUVColorSpace);
return GetSourceDXGIColorSpace(info.space, info.range);
}
bool DCSurfaceVideo::CallVideoProcessorBlt() {
MOZ_ASSERT(mRenderTextureHost);
HRESULT hr;
const auto videoDevice = mDCLayerTree->GetVideoDevice();
const auto videoContext = mDCLayerTree->GetVideoContext();
const auto texture = mRenderTextureHost->AsRenderDXGITextureHost();
Maybe<DXGI_COLOR_SPACE_TYPE> sourceColorSpace =
GetSourceDXGIColorSpace(texture->GetYUVColorSpace());
if (sourceColorSpace.isNothing()) {
gfxCriticalNote << "Unsupported color space";
return false;
}
RefPtr<ID3D11Texture2D> texture2D = texture->GetD3D11Texture2DWithGL();
if (!texture2D) {
gfxCriticalNote << "Failed to get D3D11Texture2D";
return false;
}
if (!mVideoSwapChain) {
return false;
}
auto query = texture->GetQuery();
if (query) {
// Wait ID3D11Query of D3D11Texture2D copy complete just before blitting for
// video overlay with non Intel GPUs. See Bug 1817617.
BOOL result;
bool ret = layers::WaitForFrameGPUQuery(mDCLayerTree->GetDevice(),
mDCLayerTree->GetDeviceContext(),
query, &result);
if (!ret) {
gfxCriticalNoteOnce << "WaitForFrameGPUQuery() failed";
}
}
RefPtr<IDXGISwapChain3> swapChain3;
mVideoSwapChain->QueryInterface(
(IDXGISwapChain3**)getter_AddRefs(swapChain3));
if (!swapChain3) {
gfxCriticalNote << "Failed to get IDXGISwapChain3";
return false;
}
RefPtr<ID3D11VideoContext1> videoContext1;
videoContext->QueryInterface(
(ID3D11VideoContext1**)getter_AddRefs(videoContext1));
if (!videoContext1) {
gfxCriticalNote << "Failed to get ID3D11VideoContext1";
return false;
}
const auto videoProcessor = mDCLayerTree->GetVideoProcessor();
const auto videoProcessorEnumerator =
mDCLayerTree->GetVideoProcessorEnumerator();
DXGI_COLOR_SPACE_TYPE inputColorSpace = sourceColorSpace.ref();
videoContext1->VideoProcessorSetStreamColorSpace1(videoProcessor, 0,
inputColorSpace);
DXGI_COLOR_SPACE_TYPE outputColorSpace =
IsYUVSwapChainFormat(mSwapChainFormat)
? inputColorSpace
: DXGI_COLOR_SPACE_RGB_FULL_G22_NONE_P709;
if (mUseVpAutoHDR) {
outputColorSpace = mSwapChainFormat == DXGI_FORMAT_R16G16B16A16_FLOAT
? DXGI_COLOR_SPACE_RGB_FULL_G10_NONE_P709
: DXGI_COLOR_SPACE_RGB_FULL_G2084_NONE_P2020;
}
hr = swapChain3->SetColorSpace1(outputColorSpace);
if (FAILED(hr)) {
gfxCriticalNoteOnce << "SetColorSpace1 failed: " << gfx::hexa(hr);
RenderThread::Get()->NotifyWebRenderError(
wr::WebRenderError::VIDEO_OVERLAY);
return false;
}
videoContext1->VideoProcessorSetOutputColorSpace1(videoProcessor,
outputColorSpace);
D3D11_VIDEO_PROCESSOR_INPUT_VIEW_DESC inputDesc = {};
inputDesc.ViewDimension = D3D11_VPIV_DIMENSION_TEXTURE2D;
inputDesc.Texture2D.ArraySlice = texture->ArrayIndex();
RefPtr<ID3D11VideoProcessorInputView> inputView;
hr = videoDevice->CreateVideoProcessorInputView(
texture2D, videoProcessorEnumerator, &inputDesc,
getter_AddRefs(inputView));
if (FAILED(hr)) {
gfxCriticalNote << "ID3D11VideoProcessorInputView creation failed: "
<< gfx::hexa(hr);
return false;
}
D3D11_VIDEO_PROCESSOR_STREAM stream = {};
stream.Enable = true;
stream.OutputIndex = 0;
stream.InputFrameOrField = 0;
stream.PastFrames = 0;
stream.FutureFrames = 0;
stream.pInputSurface = inputView.get();
RECT destRect;
destRect.left = 0;
destRect.top = 0;
destRect.right = mSwapChainSize.width;
destRect.bottom = mSwapChainSize.height;
videoContext->VideoProcessorSetOutputTargetRect(videoProcessor, TRUE,
&destRect);
videoContext->VideoProcessorSetStreamDestRect(videoProcessor, 0, TRUE,
&destRect);
RECT sourceRect;
sourceRect.left = 0;
sourceRect.top = 0;
sourceRect.right = mVideoSize.width;
sourceRect.bottom = mVideoSize.height;
videoContext->VideoProcessorSetStreamSourceRect(videoProcessor, 0, TRUE,
&sourceRect);
if (!mOutputView) {
RefPtr<ID3D11Texture2D> backBuf;
mVideoSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D),
(void**)getter_AddRefs(backBuf));
D3D11_VIDEO_PROCESSOR_OUTPUT_VIEW_DESC outputDesc = {};
outputDesc.ViewDimension = D3D11_VPOV_DIMENSION_TEXTURE2D;
outputDesc.Texture2D.MipSlice = 0;
hr = videoDevice->CreateVideoProcessorOutputView(
backBuf, videoProcessorEnumerator, &outputDesc,
getter_AddRefs(mOutputView));
if (FAILED(hr)) {
gfxCriticalNote << "ID3D11VideoProcessorOutputView creation failed: "
<< gfx::hexa(hr);
return false;
}
}
const UINT vendorId = GetVendorId(videoDevice);
const auto powerIsCharging = RenderThread::Get()->GetPowerIsCharging();
const bool useSuperResolution =
gfx::gfxVars::WebRenderOverlayVpSuperResolution() && powerIsCharging &&
!mVpSuperResolutionFailed;
if (profiler_thread_is_being_profiled_for_markers()) {
nsPrintfCString str(
"useSuperResolution %d gfxVars %d charging %d failed %d",
useSuperResolution, gfx::gfxVars::WebRenderOverlayVpSuperResolution(),
powerIsCharging, mVpSuperResolutionFailed);
PROFILER_MARKER_TEXT("DCSurfaceVideo", GRAPHICS, {}, str);
}
if (useSuperResolution) {
PROFILER_MARKER_TEXT("DCSurfaceVideo", GRAPHICS, {},
"SetVpSuperResolution"_ns);
hr = SetVpSuperResolution(vendorId, videoContext, videoProcessor, true);
if (FAILED(hr)) {
if (hr != E_NOTIMPL) {
gfxCriticalNoteOnce << "SetVpSuperResolution failed: " << gfx::hexa(hr);
}
mVpSuperResolutionFailed = true;
}
}
if (mUseVpAutoHDR) {
PROFILER_MARKER_TEXT("DCSurfaceVideo", GRAPHICS, {}, "SetVpAutoHDR"_ns);
hr = SetVpAutoHDR(vendorId, videoContext, videoProcessor, true);
if (FAILED(hr)) {
gfxCriticalNoteOnce << "SetVpAutoHDR failed: " << gfx::hexa(hr);
mVpAutoHDRFailed = true;
}
}
hr = videoContext->VideoProcessorBlt(videoProcessor, mOutputView, 0, 1,
&stream);
if (FAILED(hr)) {
gfxCriticalNote << "VideoProcessorBlt failed: " << gfx::hexa(hr);
return false;
}
return true;
}
void DCSurfaceVideo::ReleaseDecodeSwapChainResources() {
mOutputView = nullptr;
mVideoSwapChain = nullptr;
mDecodeSwapChain = nullptr;
mDecodeResource = nullptr;
if (mSwapChainSurfaceHandle) {
::CloseHandle(mSwapChainSurfaceHandle);
mSwapChainSurfaceHandle = 0;
}
mUseVpAutoHDR = false;
}
DCSurfaceHandle::DCSurfaceHandle(bool aIsOpaque, DCLayerTree* aDCLayerTree)
: DCSurface(wr::DeviceIntSize{}, wr::DeviceIntPoint{}, false, aIsOpaque,
aDCLayerTree) {}
void DCSurfaceHandle::AttachExternalImage(wr::ExternalImageId aExternalImage) {
RenderTextureHost* texture =
RenderThread::Get()->GetRenderTexture(aExternalImage);
RenderDcompSurfaceTextureHost* renderTexture =
texture ? texture->AsRenderDcompSurfaceTextureHost() : nullptr;
if (!renderTexture) {
gfxCriticalNote << "Unsupported RenderTexture for DCSurfaceHandle: "
<< gfx::hexa(texture);
return;
}
const auto handle = renderTexture->GetDcompSurfaceHandle();
if (GetSurfaceHandle() == handle) {
return;
}
LOG_H("AttachExternalImage, ext-image=%" PRIu64 ", texture=%p, handle=%p",
wr::AsUint64(aExternalImage), renderTexture, handle);
mDcompTextureHost = renderTexture;
}
HANDLE DCSurfaceHandle::GetSurfaceHandle() const {
if (mDcompTextureHost) {
return mDcompTextureHost->GetDcompSurfaceHandle();
}
return nullptr;
}
IDCompositionSurface* DCSurfaceHandle::EnsureSurface() {
if (auto* surface = mDcompTextureHost->GetSurface()) {
return surface;
}
// Texture host hasn't created the surface yet, ask it to create a new one.
RefPtr<IDCompositionDevice> device;
HRESULT hr = mDCLayerTree->GetCompositionDevice()->QueryInterface(
(IDCompositionDevice**)getter_AddRefs(device));
if (FAILED(hr)) {
gfxCriticalNote
<< "Failed to convert IDCompositionDevice2 to IDCompositionDevice: "
<< gfx::hexa(hr);
return nullptr;
}
return mDcompTextureHost->CreateSurfaceFromDevice(device);
}
void DCSurfaceHandle::PresentSurfaceHandle() {
LOG_H("PresentSurfaceHandle");
if (IDCompositionSurface* surface = EnsureSurface()) {
LOG_H("Set surface %p to visual", surface);
mVisual->SetContent(surface);
} else {
mVisual->SetContent(nullptr);
}
}
DCTile::DCTile(DCLayerTree* aDCLayerTree) : mDCLayerTree(aDCLayerTree) {}
DCTile::~DCTile() {}
bool DCTile::Initialize(int aX, int aY, wr::DeviceIntSize aSize,
bool aIsVirtualSurface, bool aIsOpaque,
RefPtr<IDCompositionVisual2> mSurfaceVisual) {
if (aSize.width <= 0 || aSize.height <= 0) {
return false;
}
mSize = aSize;
mIsOpaque = aIsOpaque;
mIsVirtualSurface = aIsVirtualSurface;
mNeedsFullDraw = !aIsVirtualSurface;
if (aIsVirtualSurface) {
// Initially, the entire tile is considered valid, unless it is set by
// the SetTileProperties method.
mValidRect.x = 0;
mValidRect.y = 0;
mValidRect.width = aSize.width;
mValidRect.height = aSize.height;
} else {
HRESULT hr;
const auto dCompDevice = mDCLayerTree->GetCompositionDevice();
// Create the visual and put it in the tree under the surface visual
hr = dCompDevice->CreateVisual(getter_AddRefs(mVisual));
if (FAILED(hr)) {
gfxCriticalNote << "Failed to CreateVisual for DCTile: " << gfx::hexa(hr);
return false;
}
mSurfaceVisual->AddVisual(mVisual, false, nullptr);
// Position the tile relative to the surface visual
mVisual->SetOffsetX(aX * aSize.width);
mVisual->SetOffsetY(aY * aSize.height);
// Clip the visual so it doesn't show anything until we update it
D2D_RECT_F clip = {0, 0, 0, 0};
mVisual->SetClip(clip);
// Create the underlying pixel buffer.
mCompositionSurface = CreateCompositionSurface(aSize, aIsOpaque);
if (!mCompositionSurface) {
return false;
}
hr = mVisual->SetContent(mCompositionSurface);
if (FAILED(hr)) {
gfxCriticalNote << "Failed to SetContent for DCTile: " << gfx::hexa(hr);
return false;
}
}
return true;
}
RefPtr<IDCompositionSurface> DCTile::CreateCompositionSurface(
wr::DeviceIntSize aSize, bool aIsOpaque) {
HRESULT hr;
const auto dCompDevice = mDCLayerTree->GetCompositionDevice();
const auto alphaMode =
aIsOpaque ? DXGI_ALPHA_MODE_IGNORE : DXGI_ALPHA_MODE_PREMULTIPLIED;
RefPtr<IDCompositionSurface> compositionSurface;
hr = dCompDevice->CreateSurface(aSize.width, aSize.height,
DXGI_FORMAT_R8G8B8A8_UNORM, alphaMode,
getter_AddRefs(compositionSurface));
if (FAILED(hr)) {
gfxCriticalNote << "Failed to CreateSurface for DCTile: " << gfx::hexa(hr);
return nullptr;
}
return compositionSurface;
}
RefPtr<IDCompositionSurface> DCTile::Bind(wr::DeviceIntRect aValidRect) {
if (mVisual != nullptr) {
// Tile owns a visual, set the size of the visual to match the portion we
// want to be visible.
D2D_RECT_F clip_rect;
clip_rect.left = aValidRect.min.x;
clip_rect.top = aValidRect.min.y;
clip_rect.right = aValidRect.max.x;
clip_rect.bottom = aValidRect.max.y;
mVisual->SetClip(clip_rect);
}
return mCompositionSurface;
}
GLuint DCLayerTree::CreateEGLSurfaceForCompositionSurface(
wr::DeviceIntRect aDirtyRect, wr::DeviceIntPoint* aOffset,
RefPtr<IDCompositionSurface> aCompositionSurface,
wr::DeviceIntPoint aSurfaceOffset) {
MOZ_ASSERT(aCompositionSurface.get());
HRESULT hr;
const auto gl = GetGLContext();
RefPtr<ID3D11Texture2D> backBuf;
POINT offset;
RECT update_rect;
update_rect.left = aSurfaceOffset.x + aDirtyRect.min.x;
update_rect.top = aSurfaceOffset.y + aDirtyRect.min.y;
update_rect.right = aSurfaceOffset.x + aDirtyRect.max.x;
update_rect.bottom = aSurfaceOffset.y + aDirtyRect.max.y;
hr = aCompositionSurface->BeginDraw(&update_rect, __uuidof(ID3D11Texture2D),
(void**)getter_AddRefs(backBuf), &offset);
if (FAILED(hr)) {
LayoutDeviceIntRect rect = widget::WinUtils::ToIntRect(update_rect);
gfxCriticalNote << "DCompositionSurface::BeginDraw failed: "
<< gfx::hexa(hr) << " " << rect;
RenderThread::Get()->HandleWebRenderError(WebRenderError::BEGIN_DRAW);
return false;
}
// DC includes the origin of the dirty / update rect in the draw offset,
// undo that here since WR expects it to be an absolute offset.
offset.x -= aDirtyRect.min.x;
offset.y -= aDirtyRect.min.y;
D3D11_TEXTURE2D_DESC desc;
backBuf->GetDesc(&desc);
const auto& gle = gl::GLContextEGL::Cast(gl);
const auto& egl = gle->mEgl;
const auto buffer = reinterpret_cast<EGLClientBuffer>(backBuf.get());
// Construct an EGLImage wrapper around the D3D texture for ANGLE.
const EGLint attribs[] = {LOCAL_EGL_NONE};
mEGLImage = egl->fCreateImage(EGL_NO_CONTEXT, LOCAL_EGL_D3D11_TEXTURE_ANGLE,
buffer, attribs);
// Get the current FBO and RBO id, so we can restore them later
GLint currentFboId, currentRboId;
gl->fGetIntegerv(LOCAL_GL_DRAW_FRAMEBUFFER_BINDING, &currentFboId);
gl->fGetIntegerv(LOCAL_GL_RENDERBUFFER_BINDING, &currentRboId);
// Create a render buffer object that is backed by the EGL image.
gl->fGenRenderbuffers(1, &mColorRBO);
gl->fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, mColorRBO);
gl->fEGLImageTargetRenderbufferStorage(LOCAL_GL_RENDERBUFFER, mEGLImage);
// Get or create an FBO for the specified dimensions
GLuint fboId = GetOrCreateFbo(desc.Width, desc.Height);
// Attach the new renderbuffer to the FBO
gl->fBindFramebuffer(LOCAL_GL_DRAW_FRAMEBUFFER, fboId);
gl->fFramebufferRenderbuffer(LOCAL_GL_DRAW_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_RENDERBUFFER, mColorRBO);
// Restore previous FBO and RBO bindings
gl->fBindFramebuffer(LOCAL_GL_DRAW_FRAMEBUFFER, currentFboId);
gl->fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, currentRboId);
aOffset->x = offset.x;
aOffset->y = offset.y;
return fboId;
}
void DCLayerTree::DestroyEGLSurface() {
const auto gl = GetGLContext();
if (mColorRBO) {
gl->fDeleteRenderbuffers(1, &mColorRBO);
mColorRBO = 0;
}
if (mEGLImage) {
const auto& gle = gl::GLContextEGL::Cast(gl);
const auto& egl = gle->mEgl;
egl->fDestroyImage(mEGLImage);
mEGLImage = EGL_NO_IMAGE;
}
}
// -
color::ColorProfileDesc DCLayerTree::QueryOutputColorProfile() {
// GPU process can't simply init gfxPlatform, (and we don't need most of it)
// but we do need gfxPlatform::GetCMSOutputProfile().
// So we steal what we need through the window:
const auto outputProfileData =
gfxWindowsPlatform::GetPlatformCMSOutputProfileData_Impl();
const auto qcmsProfile = qcms_profile_from_memory(
outputProfileData.Elements(), outputProfileData.Length());
const auto release = MakeScopeExit([&]() {
if (qcmsProfile) {
qcms_profile_release(qcmsProfile);
}
});
const bool print = gfxEnv::MOZ_GL_SPEW();
const auto ret = [&]() {
if (qcmsProfile) {
return color::ColorProfileDesc::From(*qcmsProfile);
}
if (print) {
printf_stderr(
"Missing or failed to load display color profile, defaulting to "
"sRGB.\n");
}
const auto MISSING_PROFILE_DEFAULT_SPACE = color::ColorspaceDesc{
color::Chromaticities::Srgb(),
color::PiecewiseGammaDesc::Srgb(),
};
return color::ColorProfileDesc::From(MISSING_PROFILE_DEFAULT_SPACE);
}();
if (print) {
const auto gammaGuess = color::GuessGamma(ret.linearFromTf.r);
printf_stderr(
"Display profile:\n"
" Approx Gamma: %f\n"
" XYZ-D65 Red : %f, %f, %f\n"
" XYZ-D65 Green: %f, %f, %f\n"
" XYZ-D65 Blue : %f, %f, %f\n",
gammaGuess, ret.xyzd65FromLinearRgb.at(0, 0),
ret.xyzd65FromLinearRgb.at(0, 1), ret.xyzd65FromLinearRgb.at(0, 2),
ret.xyzd65FromLinearRgb.at(1, 0), ret.xyzd65FromLinearRgb.at(1, 1),
ret.xyzd65FromLinearRgb.at(1, 2),
ret.xyzd65FromLinearRgb.at(2, 0), ret.xyzd65FromLinearRgb.at(2, 1),
ret.xyzd65FromLinearRgb.at(2, 2));
}
return ret;
}
inline D2D1_MATRIX_5X4_F to_D2D1_MATRIX_5X4_F(const color::mat4& m) {
return D2D1_MATRIX_5X4_F{{{
m.rows[0][0],
m.rows[1][0],
m.rows[2][0],
m.rows[3][0],
m.rows[0][1],
m.rows[1][1],
m.rows[2][1],
m.rows[3][1],
m.rows[0][2],
m.rows[1][2],
m.rows[2][2],
m.rows[3][2],
m.rows[0][3],
m.rows[1][3],
m.rows[2][3],
m.rows[3][3],
0,
0,
0,
0,
}}};
}
ColorManagementChain ColorManagementChain::From(
IDCompositionDevice3& dcomp,
const color::ColorProfileConversionDesc& conv) {
auto ret = ColorManagementChain{};
#if !defined(MOZ_MINGW_DCOMP_H_INCOMPLETE)
const auto Append = [&](const RefPtr<IDCompositionFilterEffect>& afterLast) {
if (ret.last) {
afterLast->SetInput(0, ret.last, 0);
}
ret.last = afterLast;
};
const auto MaybeAppendColorMatrix = [&](const color::mat4& m) {
RefPtr<IDCompositionColorMatrixEffect> e;
if (approx(m, color::mat4::Identity())) return e;
dcomp.CreateColorMatrixEffect(getter_AddRefs(e));
MOZ_ASSERT(e);
if (!e) return e;
e->SetMatrix(to_D2D1_MATRIX_5X4_F(m));
Append(e);
return e;
};
const auto MaybeAppendTableTransfer = [&](const color::RgbTransferTables& t) {
RefPtr<IDCompositionTableTransferEffect> e;
if (!t.r.size() && !t.g.size() && !t.b.size()) return e;
dcomp.CreateTableTransferEffect(getter_AddRefs(e));
MOZ_ASSERT(e);
if (!e) return e;
e->SetRedTable(t.r.data(), t.r.size());
e->SetGreenTable(t.g.data(), t.g.size());
e->SetBlueTable(t.b.data(), t.b.size());
Append(e);
return e;
};
ret.srcRgbFromSrcYuv = MaybeAppendColorMatrix(conv.srcRgbFromSrcYuv);
ret.srcLinearFromSrcTf = MaybeAppendTableTransfer(conv.srcLinearFromSrcTf);
ret.dstLinearFromSrcLinear =
MaybeAppendColorMatrix(color::mat4(conv.dstLinearFromSrcLinear));
ret.dstTfFromDstLinear = MaybeAppendTableTransfer(conv.dstTfFromDstLinear);
#endif // !defined(MOZ_MINGW_DCOMP_H_INCOMPLETE)
return ret;
}
ColorManagementChain::~ColorManagementChain() = default;
} // namespace wr
} // namespace mozilla
#undef LOG_H