Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gtest/gtest.h"
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <new>
#include <numeric>
#include <ostream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "ErrorList.h"
#include "mozilla/AlreadyAddRefed.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/FixedBufferOutputStream.h"
#include "mozilla/NotNull.h"
#include "mozilla/RefPtr.h"
#include "mozilla/Span.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/dom/SafeRefPtr.h"
#include "mozilla/dom/quota/DecryptingInputStream_impl.h"
#include "mozilla/dom/quota/DummyCipherStrategy.h"
#include "mozilla/dom/quota/EncryptedBlock.h"
#include "mozilla/dom/quota/EncryptingOutputStream_impl.h"
#include "mozilla/dom/quota/NSSCipherStrategy.h"
#include "mozilla/fallible.h"
#include "nsCOMPtr.h"
#include "nsError.h"
#include "nsICloneableInputStream.h"
#include "nsIInputStream.h"
#include "nsIOutputStream.h"
#include "nsISeekableStream.h"
#include "nsISupports.h"
#include "nsITellableStream.h"
#include "nsStreamUtils.h"
#include "nsString.h"
#include "nsStringFwd.h"
#include "nsTArray.h"
#include "nscore.h"
#include "nss.h"
namespace mozilla::dom::quota {
// Similar to ArrayBufferInputStream from netwerk/base/ArrayBufferInputStream.h,
// but this is initialized from a Span on construction, rather than lazily from
// a JS ArrayBuffer.
class ArrayBufferInputStream : public nsIInputStream,
public nsISeekableStream,
public nsICloneableInputStream {
public:
explicit ArrayBufferInputStream(mozilla::Span<const uint8_t> aData);
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSIINPUTSTREAM
NS_DECL_NSITELLABLESTREAM
NS_DECL_NSISEEKABLESTREAM
NS_DECL_NSICLONEABLEINPUTSTREAM
private:
virtual ~ArrayBufferInputStream() = default;
mozilla::UniquePtr<char[]> mArrayBuffer;
uint32_t mBufferLength;
uint32_t mPos;
bool mClosed;
};
NS_IMPL_ADDREF(ArrayBufferInputStream);
NS_IMPL_RELEASE(ArrayBufferInputStream);
NS_INTERFACE_MAP_BEGIN(ArrayBufferInputStream)
NS_INTERFACE_MAP_ENTRY(nsIInputStream)
NS_INTERFACE_MAP_ENTRY(nsISeekableStream)
NS_INTERFACE_MAP_ENTRY(nsICloneableInputStream)
NS_INTERFACE_MAP_ENTRY_AMBIGUOUS(nsISupports, nsIInputStream)
NS_INTERFACE_MAP_END
ArrayBufferInputStream::ArrayBufferInputStream(
mozilla::Span<const uint8_t> aData)
: mArrayBuffer(MakeUnique<char[]>(aData.Length())),
mBufferLength(aData.Length()),
mPos(0),
mClosed(false) {
std::copy(aData.cbegin(), aData.cend(), mArrayBuffer.get());
}
NS_IMETHODIMP
ArrayBufferInputStream::Close() {
mClosed = true;
return NS_OK;
}
NS_IMETHODIMP
ArrayBufferInputStream::Available(uint64_t* aCount) {
if (mClosed) {
return NS_BASE_STREAM_CLOSED;
}
if (mArrayBuffer) {
*aCount = mBufferLength ? mBufferLength - mPos : 0;
} else {
*aCount = 0;
}
return NS_OK;
}
NS_IMETHODIMP
ArrayBufferInputStream::StreamStatus() {
return mClosed ? NS_BASE_STREAM_CLOSED : NS_OK;
}
NS_IMETHODIMP
ArrayBufferInputStream::Read(char* aBuf, uint32_t aCount,
uint32_t* aReadCount) {
return ReadSegments(NS_CopySegmentToBuffer, aBuf, aCount, aReadCount);
}
NS_IMETHODIMP
ArrayBufferInputStream::ReadSegments(nsWriteSegmentFun writer, void* closure,
uint32_t aCount, uint32_t* result) {
MOZ_RELEASE_ASSERT(result, "null ptr");
MOZ_RELEASE_ASSERT(mBufferLength >= mPos, "bad stream state");
if (mClosed) {
return NS_BASE_STREAM_CLOSED;
}
MOZ_RELEASE_ASSERT(mArrayBuffer || (mPos == mBufferLength),
"stream inited incorrectly");
*result = 0;
while (mPos < mBufferLength) {
uint32_t remaining = mBufferLength - mPos;
MOZ_RELEASE_ASSERT(mArrayBuffer);
uint32_t count = std::min(aCount, remaining);
if (count == 0) {
break;
}
uint32_t written;
nsresult rv = writer(this, closure, &mArrayBuffer[0] + mPos, *result, count,
&written);
if (NS_FAILED(rv)) {
// InputStreams do not propagate errors to caller.
return NS_OK;
}
MOZ_RELEASE_ASSERT(
written <= count,
"writer should not write more than we asked it to write");
mPos += written;
*result += written;
aCount -= written;
}
return NS_OK;
}
NS_IMETHODIMP
ArrayBufferInputStream::IsNonBlocking(bool* aNonBlocking) {
// Actually, the stream never blocks, but we lie about it because of the
// assumptions in DecryptingInputStream.
*aNonBlocking = false;
return NS_OK;
}
NS_IMETHODIMP ArrayBufferInputStream::Tell(int64_t* const aRetval) {
MOZ_RELEASE_ASSERT(aRetval);
*aRetval = mPos;
return NS_OK;
}
NS_IMETHODIMP ArrayBufferInputStream::Seek(const int32_t aWhence,
const int64_t aOffset) {
// XXX This is not safe. it's hard to use CheckedInt here, though. As long as
// the class is only used for testing purposes, that's probably fine.
int32_t newPos = mPos;
switch (aWhence) {
case NS_SEEK_SET:
newPos = aOffset;
break;
case NS_SEEK_CUR:
newPos += aOffset;
break;
case NS_SEEK_END:
newPos = mBufferLength;
newPos += aOffset;
break;
default:
return NS_ERROR_ILLEGAL_VALUE;
}
if (newPos < 0 || static_cast<uint32_t>(newPos) > mBufferLength) {
return NS_ERROR_ILLEGAL_VALUE;
}
mPos = newPos;
return NS_OK;
}
NS_IMETHODIMP ArrayBufferInputStream::SetEOF() {
// Truncating is not supported on a read-only stream.
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP ArrayBufferInputStream::GetCloneable(bool* aCloneable) {
*aCloneable = true;
return NS_OK;
}
NS_IMETHODIMP ArrayBufferInputStream::Clone(nsIInputStream** _retval) {
*_retval = MakeAndAddRef<ArrayBufferInputStream>(
AsBytes(Span{mArrayBuffer.get(), mBufferLength}))
.take();
return NS_OK;
}
} // namespace mozilla::dom::quota
using namespace mozilla;
using namespace mozilla::dom::quota;
class DOM_Quota_EncryptedStream : public ::testing::Test {
public:
static void SetUpTestCase() {
// Do this only once, do not tear it down per test case.
if (!sNssContext) {
sNssContext.reset(
NSS_InitContext("", "", "", "", nullptr,
NSS_INIT_READONLY | NSS_INIT_NOCERTDB |
NSS_INIT_NOMODDB | NSS_INIT_FORCEOPEN |
NSS_INIT_OPTIMIZESPACE | NSS_INIT_NOROOTINIT));
}
}
static void TearDownTestCase() { sNssContext = nullptr; }
private:
struct NSSInitContextDeleter {
void operator()(NSSInitContext* p) { NSS_ShutdownContext(p); }
};
inline static std::unique_ptr<NSSInitContext, NSSInitContextDeleter>
sNssContext;
};
enum struct FlushMode { AfterEachChunk, Never };
enum struct ChunkSize { SingleByte, Unaligned, DataSize };
using PackedTestParams =
std::tuple<size_t, ChunkSize, ChunkSize, size_t, FlushMode>;
static size_t EffectiveChunkSize(const ChunkSize aChunkSize,
const size_t aDataSize) {
switch (aChunkSize) {
case ChunkSize::SingleByte:
return 1;
case ChunkSize::Unaligned:
return 17;
case ChunkSize::DataSize:
return aDataSize;
}
MOZ_CRASH("Unknown ChunkSize");
}
struct TestParams {
MOZ_IMPLICIT constexpr TestParams(const PackedTestParams& aPackedParams)
: mDataSize(std::get<0>(aPackedParams)),
mWriteChunkSize(std::get<1>(aPackedParams)),
mReadChunkSize(std::get<2>(aPackedParams)),
mBlockSize(std::get<3>(aPackedParams)),
mFlushMode(std::get<4>(aPackedParams)) {}
constexpr size_t DataSize() const { return mDataSize; }
size_t EffectiveWriteChunkSize() const {
return EffectiveChunkSize(mWriteChunkSize, mDataSize);
}
size_t EffectiveReadChunkSize() const {
return EffectiveChunkSize(mReadChunkSize, mDataSize);
}
constexpr size_t BlockSize() const { return mBlockSize; }
constexpr enum FlushMode FlushMode() const { return mFlushMode; }
private:
size_t mDataSize;
ChunkSize mWriteChunkSize;
ChunkSize mReadChunkSize;
size_t mBlockSize;
enum FlushMode mFlushMode;
};
std::string TestParamToString(
const testing::TestParamInfo<PackedTestParams>& aTestParams) {
const TestParams& testParams = aTestParams.param;
static constexpr char kSeparator[] = "_";
std::stringstream ss;
ss << "data" << testParams.DataSize() << kSeparator << "writechunk"
<< testParams.EffectiveWriteChunkSize() << kSeparator << "readchunk"
<< testParams.EffectiveReadChunkSize() << kSeparator << "block"
<< testParams.BlockSize() << kSeparator;
switch (testParams.FlushMode()) {
case FlushMode::Never:
ss << "FlushNever";
break;
case FlushMode::AfterEachChunk:
ss << "FlushAfterEachChunk";
break;
};
return ss.str();
}
class ParametrizedCryptTest
: public DOM_Quota_EncryptedStream,
public testing::WithParamInterface<PackedTestParams> {};
static auto MakeTestData(const size_t aDataSize) {
auto data = nsTArray<uint8_t>();
data.SetLength(aDataSize);
std::iota(data.begin(), data.end(), 0);
return data;
}
template <typename CipherStrategy>
static void WriteTestData(nsCOMPtr<nsIOutputStream>&& aBaseOutputStream,
const Span<const uint8_t> aData,
const size_t aWriteChunkSize, const size_t aBlockSize,
const typename CipherStrategy::KeyType& aKey,
const FlushMode aFlushMode) {
auto outStream = MakeSafeRefPtr<EncryptingOutputStream<CipherStrategy>>(
std::move(aBaseOutputStream), aBlockSize, aKey);
for (auto remaining = aData; !remaining.IsEmpty();) {
auto [currentChunk, newRemaining] =
remaining.SplitAt(std::min(aWriteChunkSize, remaining.Length()));
remaining = newRemaining;
uint32_t written;
EXPECT_EQ(NS_OK, outStream->Write(
reinterpret_cast<const char*>(currentChunk.Elements()),
currentChunk.Length(), &written));
EXPECT_EQ(currentChunk.Length(), written);
if (aFlushMode == FlushMode::AfterEachChunk) {
outStream->Flush();
}
}
// Close explicitly so we can check the result.
EXPECT_EQ(NS_OK, outStream->Close());
}
template <typename CipherStrategy>
static void NoExtraChecks(DecryptingInputStream<CipherStrategy>& aInputStream,
Span<const uint8_t> aExpectedData,
Span<const uint8_t> aRemainder) {}
template <typename CipherStrategy,
typename ExtraChecks = decltype(NoExtraChecks<CipherStrategy>)>
static void ReadTestData(
DecryptingInputStream<CipherStrategy>& aDecryptingInputStream,
const Span<const uint8_t> aExpectedData, const size_t aReadChunkSize,
const ExtraChecks& aExtraChecks = NoExtraChecks<CipherStrategy>) {
auto readData = nsTArray<uint8_t>();
readData.SetLength(aReadChunkSize);
for (auto remainder = aExpectedData; !remainder.IsEmpty();) {
auto [currentExpected, newExpectedRemainder] =
remainder.SplitAt(std::min(aReadChunkSize, remainder.Length()));
remainder = newExpectedRemainder;
uint32_t read;
EXPECT_EQ(NS_OK, aDecryptingInputStream.Read(
reinterpret_cast<char*>(readData.Elements()),
currentExpected.Length(), &read));
EXPECT_EQ(currentExpected.Length(), read);
EXPECT_EQ(currentExpected,
Span{readData}.First(currentExpected.Length()).AsConst());
aExtraChecks(aDecryptingInputStream, aExpectedData, remainder);
}
// Expect EOF.
uint32_t read;
EXPECT_EQ(NS_OK, aDecryptingInputStream.Read(
reinterpret_cast<char*>(readData.Elements()),
readData.Length(), &read));
EXPECT_EQ(0u, read);
}
template <typename CipherStrategy,
typename ExtraChecks = decltype(NoExtraChecks<CipherStrategy>)>
static auto ReadTestData(
MovingNotNull<nsCOMPtr<nsIInputStream>>&& aBaseInputStream,
const Span<const uint8_t> aExpectedData, const size_t aReadChunkSize,
const size_t aBlockSize, const typename CipherStrategy::KeyType& aKey,
const ExtraChecks& aExtraChecks = NoExtraChecks<CipherStrategy>) {
auto inStream = MakeSafeRefPtr<DecryptingInputStream<CipherStrategy>>(
std::move(aBaseInputStream), aBlockSize, aKey);
ReadTestData(*inStream, aExpectedData, aReadChunkSize, aExtraChecks);
return inStream;
}
// XXX Change to return the buffer instead.
template <typename CipherStrategy,
typename ExtraChecks = decltype(NoExtraChecks<CipherStrategy>)>
static RefPtr<FixedBufferOutputStream> DoRoundtripTest(
const size_t aDataSize, const size_t aWriteChunkSize,
const size_t aReadChunkSize, const size_t aBlockSize,
const typename CipherStrategy::KeyType& aKey, const FlushMode aFlushMode,
const ExtraChecks& aExtraChecks = NoExtraChecks<CipherStrategy>) {
// XXX Add deduction guide for RefPtr from already_AddRefed
const auto baseOutputStream = WrapNotNull(
RefPtr<FixedBufferOutputStream>{FixedBufferOutputStream::Create(2048)});
const auto data = MakeTestData(aDataSize);
WriteTestData<CipherStrategy>(
nsCOMPtr<nsIOutputStream>{baseOutputStream.get()}, Span{data},
aWriteChunkSize, aBlockSize, aKey, aFlushMode);
const auto baseInputStream =
MakeRefPtr<ArrayBufferInputStream>(baseOutputStream->WrittenData());
ReadTestData<CipherStrategy>(
WrapNotNull(nsCOMPtr<nsIInputStream>{baseInputStream}), Span{data},
aReadChunkSize, aBlockSize, aKey, aExtraChecks);
return baseOutputStream;
}
TEST_P(ParametrizedCryptTest, NSSCipherStrategy) {
using CipherStrategy = NSSCipherStrategy;
const TestParams& testParams = GetParam();
auto keyOrErr = CipherStrategy::GenerateKey();
ASSERT_FALSE(keyOrErr.isErr());
DoRoundtripTest<CipherStrategy>(
testParams.DataSize(), testParams.EffectiveWriteChunkSize(),
testParams.EffectiveReadChunkSize(), testParams.BlockSize(),
keyOrErr.unwrap(), testParams.FlushMode());
}
TEST_P(ParametrizedCryptTest, DummyCipherStrategy_CheckOutput) {
using CipherStrategy = DummyCipherStrategy;
const TestParams& testParams = GetParam();
const auto encryptedDataStream = DoRoundtripTest<CipherStrategy>(
testParams.DataSize(), testParams.EffectiveWriteChunkSize(),
testParams.EffectiveReadChunkSize(), testParams.BlockSize(),
CipherStrategy::KeyType{}, testParams.FlushMode());
if (HasFailure()) {
return;
}
const auto encryptedData = encryptedDataStream->WrittenData();
const auto encryptedDataSpan = AsBytes(Span(encryptedData));
const auto plainTestData = MakeTestData(testParams.DataSize());
auto encryptedBlock = EncryptedBlock<DummyCipherStrategy::BlockPrefixLength,
DummyCipherStrategy::BasicBlockSize>{
testParams.BlockSize(),
};
for (auto [encryptedRemainder, plainRemainder] =
std::pair(encryptedDataSpan, Span(plainTestData));
!encryptedRemainder.IsEmpty();) {
const auto [currentBlock, newEncryptedRemainder] =
encryptedRemainder.SplitAt(testParams.BlockSize());
encryptedRemainder = newEncryptedRemainder;
std::copy(currentBlock.cbegin(), currentBlock.cend(),
encryptedBlock.MutableWholeBlock().begin());
ASSERT_FALSE(plainRemainder.IsEmpty());
const auto [currentPlain, newPlainRemainder] =
plainRemainder.SplitAt(encryptedBlock.ActualPayloadLength());
plainRemainder = newPlainRemainder;
const auto pseudoIV = encryptedBlock.CipherPrefix();
const auto payload = encryptedBlock.Payload();
EXPECT_EQ(Span(DummyCipherStrategy::MakeBlockPrefix()), pseudoIV);
auto untransformedPayload = nsTArray<uint8_t>();
untransformedPayload.SetLength(testParams.BlockSize());
DummyCipherStrategy::DummyTransform(payload, untransformedPayload);
EXPECT_EQ(
currentPlain,
Span(untransformedPayload).AsConst().First(currentPlain.Length()));
}
}
TEST_P(ParametrizedCryptTest, DummyCipherStrategy_Tell) {
using CipherStrategy = DummyCipherStrategy;
const TestParams& testParams = GetParam();
DoRoundtripTest<CipherStrategy>(
testParams.DataSize(), testParams.EffectiveWriteChunkSize(),
testParams.EffectiveReadChunkSize(), testParams.BlockSize(),
CipherStrategy::KeyType{}, testParams.FlushMode(),
[](auto& inStream, Span<const uint8_t> expectedData,
Span<const uint8_t> remainder) {
// Check that Tell tells the right position.
int64_t pos;
EXPECT_EQ(NS_OK, inStream.Tell(&pos));
EXPECT_EQ(expectedData.Length() - remainder.Length(),
static_cast<uint64_t>(pos));
});
}
TEST_P(ParametrizedCryptTest, DummyCipherStrategy_Available) {
using CipherStrategy = DummyCipherStrategy;
const TestParams& testParams = GetParam();
DoRoundtripTest<CipherStrategy>(
testParams.DataSize(), testParams.EffectiveWriteChunkSize(),
testParams.EffectiveReadChunkSize(), testParams.BlockSize(),
CipherStrategy::KeyType{}, testParams.FlushMode(),
[](auto& inStream, Span<const uint8_t> expectedData,
Span<const uint8_t> remainder) {
// Check that Available tells the right remainder.
uint64_t available;
EXPECT_EQ(NS_OK, inStream.Available(&available));
EXPECT_EQ(remainder.Length(), available);
});
}
TEST_P(ParametrizedCryptTest, DummyCipherStrategy_Clone) {
using CipherStrategy = DummyCipherStrategy;
const TestParams& testParams = GetParam();
// XXX Add deduction guide for RefPtr from already_AddRefed
const auto baseOutputStream = WrapNotNull(
RefPtr<FixedBufferOutputStream>{FixedBufferOutputStream::Create(2048)});
const auto data = MakeTestData(testParams.DataSize());
WriteTestData<CipherStrategy>(
nsCOMPtr<nsIOutputStream>{baseOutputStream.get()}, Span{data},
testParams.EffectiveWriteChunkSize(), testParams.BlockSize(),
CipherStrategy::KeyType{}, testParams.FlushMode());
const auto baseInputStream =
MakeRefPtr<ArrayBufferInputStream>(baseOutputStream->WrittenData());
const auto inStream = ReadTestData<CipherStrategy>(
WrapNotNull(nsCOMPtr<nsIInputStream>{baseInputStream}), Span{data},
testParams.EffectiveReadChunkSize(), testParams.BlockSize(),
CipherStrategy::KeyType{});
nsCOMPtr<nsIInputStream> clonedInputStream;
EXPECT_EQ(NS_OK, inStream->Clone(getter_AddRefs(clonedInputStream)));
ReadTestData(
static_cast<DecryptingInputStream<CipherStrategy>&>(*clonedInputStream),
Span{data}, testParams.EffectiveReadChunkSize());
}
// XXX This test is actually only parametrized on the block size.
TEST_P(ParametrizedCryptTest, DummyCipherStrategy_IncompleteBlock) {
using CipherStrategy = DummyCipherStrategy;
const TestParams& testParams = GetParam();
// Provide half a block, content doesn't matter.
nsTArray<uint8_t> data;
data.SetLength(testParams.BlockSize() / 2);
const auto baseInputStream = MakeRefPtr<ArrayBufferInputStream>(data);
const auto inStream = MakeSafeRefPtr<DecryptingInputStream<CipherStrategy>>(
WrapNotNull(nsCOMPtr<nsIInputStream>{baseInputStream}),
testParams.BlockSize(), CipherStrategy::KeyType{});
nsTArray<uint8_t> readData;
readData.SetLength(testParams.BlockSize());
uint32_t read;
EXPECT_EQ(NS_ERROR_CORRUPTED_CONTENT,
inStream->Read(reinterpret_cast<char*>(readData.Elements()),
readData.Length(), &read));
}
TEST_P(ParametrizedCryptTest, zeroInitializedEncryptedBlock) {
const TestParams& testParams = GetParam();
using EncryptedBlock = EncryptedBlock<DummyCipherStrategy::BlockPrefixLength,
DummyCipherStrategy::BasicBlockSize>;
EncryptedBlock encryptedBlock{testParams.BlockSize()};
auto firstBlock =
encryptedBlock.WholeBlock().First<DummyCipherStrategy::BasicBlockSize>();
auto unusedBytesInFirstBlock = firstBlock.from(sizeof(uint16_t));
EXPECT_TRUE(std::all_of(unusedBytesInFirstBlock.begin(),
unusedBytesInFirstBlock.end(),
[](const auto& e) { return 0ul == e; }));
}
enum struct SeekOffset {
Zero,
MinusHalfDataSize,
PlusHalfDataSize,
PlusDataSize,
MinusDataSize
};
using SeekOp = std::pair<int32_t, SeekOffset>;
using PackedSeekTestParams = std::tuple<size_t, size_t, std::vector<SeekOp>>;
struct SeekTestParams {
size_t mDataSize;
size_t mBlockSize;
std::vector<SeekOp> mSeekOps;
MOZ_IMPLICIT SeekTestParams(const PackedSeekTestParams& aPackedParams)
: mDataSize(std::get<0>(aPackedParams)),
mBlockSize(std::get<1>(aPackedParams)),
mSeekOps(std::get<2>(aPackedParams)) {}
};
std::string SeekTestParamToString(
const testing::TestParamInfo<PackedSeekTestParams>& aTestParams) {
const SeekTestParams& testParams = aTestParams.param;
static constexpr char kSeparator[] = "_";
std::stringstream ss;
ss << "data" << testParams.mDataSize << kSeparator << "writechunk"
<< testParams.mBlockSize << kSeparator;
for (const auto& seekOp : testParams.mSeekOps) {
switch (seekOp.first) {
case nsISeekableStream::NS_SEEK_SET:
ss << "Set";
break;
case nsISeekableStream::NS_SEEK_CUR:
ss << "Cur";
break;
case nsISeekableStream::NS_SEEK_END:
ss << "End";
break;
};
switch (seekOp.second) {
case SeekOffset::Zero:
ss << "Zero";
break;
case SeekOffset::MinusHalfDataSize:
ss << "MinusHalfDataSize";
break;
case SeekOffset::PlusHalfDataSize:
ss << "PlusHalfDataSize";
break;
case SeekOffset::MinusDataSize:
ss << "MinusDataSize";
break;
case SeekOffset::PlusDataSize:
ss << "PlusDataSize";
break;
};
}
return ss.str();
}
class ParametrizedSeekCryptTest
: public DOM_Quota_EncryptedStream,
public testing::WithParamInterface<PackedSeekTestParams> {};
TEST_P(ParametrizedSeekCryptTest, DummyCipherStrategy_Seek) {
using CipherStrategy = DummyCipherStrategy;
const SeekTestParams& testParams = GetParam();
const auto baseOutputStream = WrapNotNull(
RefPtr<FixedBufferOutputStream>{FixedBufferOutputStream::Create(2048)});
const auto data = MakeTestData(testParams.mDataSize);
WriteTestData<CipherStrategy>(
nsCOMPtr<nsIOutputStream>{baseOutputStream.get()}, Span{data},
testParams.mDataSize, testParams.mBlockSize, CipherStrategy::KeyType{},
FlushMode::Never);
const auto baseInputStream =
MakeRefPtr<ArrayBufferInputStream>(baseOutputStream->WrittenData());
const auto inStream = MakeSafeRefPtr<DecryptingInputStream<CipherStrategy>>(
WrapNotNull(nsCOMPtr<nsIInputStream>{baseInputStream}),
testParams.mBlockSize, CipherStrategy::KeyType{});
uint32_t accumulatedOffset = 0;
for (const auto& seekOp : testParams.mSeekOps) {
const auto offset = [offsetKind = seekOp.second,
dataSize = testParams.mDataSize]() -> int64_t {
switch (offsetKind) {
case SeekOffset::Zero:
return 0;
case SeekOffset::MinusHalfDataSize:
return -static_cast<int64_t>(dataSize) / 2;
case SeekOffset::PlusHalfDataSize:
return dataSize / 2;
case SeekOffset::MinusDataSize:
return -static_cast<int64_t>(dataSize);
case SeekOffset::PlusDataSize:
return dataSize;
}
MOZ_CRASH("Unknown SeekOffset");
}();
switch (seekOp.first) {
case nsISeekableStream::NS_SEEK_SET:
accumulatedOffset = offset;
break;
case nsISeekableStream::NS_SEEK_CUR:
accumulatedOffset += offset;
break;
case nsISeekableStream::NS_SEEK_END:
accumulatedOffset = testParams.mDataSize + offset;
break;
}
EXPECT_EQ(NS_OK, inStream->Seek(seekOp.first, offset));
}
{
int64_t actualOffset;
EXPECT_EQ(NS_OK, inStream->Tell(&actualOffset));
EXPECT_EQ(actualOffset, accumulatedOffset);
}
auto readData = nsTArray<uint8_t>();
readData.SetLength(data.Length());
uint32_t read;
EXPECT_EQ(NS_OK, inStream->Read(reinterpret_cast<char*>(readData.Elements()),
readData.Length(), &read));
// XXX Or should 'read' indicate the actual number of bytes read,
// including the encryption overhead?
EXPECT_EQ(testParams.mDataSize - accumulatedOffset, read);
EXPECT_EQ(Span{data}.SplitAt(accumulatedOffset).second,
Span{readData}.First(read).AsConst());
}
INSTANTIATE_TEST_SUITE_P(
DOM_Quota_EncryptedStream_Parametrized, ParametrizedCryptTest,
testing::Combine(
/* dataSize */ testing::Values(0u, 16u, 256u, 512u, 513u),
/* writeChunkSize */
testing::Values(ChunkSize::SingleByte, ChunkSize::Unaligned,
ChunkSize::DataSize),
/* readChunkSize */
testing::Values(ChunkSize::SingleByte, ChunkSize::Unaligned,
ChunkSize::DataSize),
/* blockSize */ testing::Values(256u, 1024u /*, 8192u*/),
/* flushMode */
testing::Values(FlushMode::Never, FlushMode::AfterEachChunk)),
TestParamToString);
INSTANTIATE_TEST_SUITE_P(
DOM_IndexedDB_EncryptedStream_ParametrizedSeek, ParametrizedSeekCryptTest,
testing::Combine(
/* dataSize */ testing::Values(0u, 16u, 256u, 512u, 513u),
/* blockSize */ testing::Values(256u, 1024u /*, 8192u*/),
/* seekOperations */
testing::Values(/* NS_SEEK_SET only, single ops */
std::vector<SeekOp>{{nsISeekableStream::NS_SEEK_SET,
SeekOffset::PlusDataSize}},
std::vector<SeekOp>{{nsISeekableStream::NS_SEEK_SET,
SeekOffset::PlusHalfDataSize}},
/* NS_SEEK_SET only, multiple ops */
std::vector<SeekOp>{
{nsISeekableStream::NS_SEEK_SET,
SeekOffset::PlusHalfDataSize},
{nsISeekableStream::NS_SEEK_SET, SeekOffset::Zero}},
/* NS_SEEK_CUR only, single ops */
std::vector<SeekOp>{
{nsISeekableStream::NS_SEEK_CUR, SeekOffset::Zero}},
std::vector<SeekOp>{{nsISeekableStream::NS_SEEK_CUR,
SeekOffset::PlusDataSize}},
std::vector<SeekOp>{{nsISeekableStream::NS_SEEK_CUR,
SeekOffset::PlusHalfDataSize}},
/* NS_SEEK_END only, single ops */
std::vector<SeekOp>{
{nsISeekableStream::NS_SEEK_END, SeekOffset::Zero}},
std::vector<SeekOp>{{nsISeekableStream::NS_SEEK_END,
SeekOffset::MinusDataSize}},
std::vector<SeekOp>{{nsISeekableStream::NS_SEEK_END,
SeekOffset::MinusHalfDataSize}})),
SeekTestParamToString);