Source code

Revision control

Other Tools

// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "IIRFilter.h"
#include "DenormalDisabler.h"
#include "mozilla/FloatingPoint.h"
#include <mozilla/Assertions.h>
#include <complex>
namespace blink {
// The length of the memory buffers for the IIR filter. This MUST be a power of
// two and must be greater than the possible length of the filter coefficients.
const int kBufferLength = 32;
static_assert(kBufferLength >= IIRFilter::kMaxOrder + 1,
"Internal IIR buffer length must be greater than maximum IIR "
"Filter order.");
IIRFilter::IIRFilter(const AudioDoubleArray* feedforwardCoef,
const AudioDoubleArray* feedbackCoef)
: m_bufferIndex(0),
m_feedback(feedbackCoef),
m_feedforward(feedforwardCoef) {
m_xBuffer.SetLength(kBufferLength);
m_yBuffer.SetLength(kBufferLength);
reset();
}
IIRFilter::~IIRFilter() = default;
void IIRFilter::reset() {
memset(m_xBuffer.Elements(), 0, m_xBuffer.Length() * sizeof(double));
memset(m_yBuffer.Elements(), 0, m_yBuffer.Length() * sizeof(double));
}
static std::complex<double> evaluatePolynomial(const double* coef,
std::complex<double> z,
int order) {
// Use Horner's method to evaluate the polynomial P(z) = sum(coef[k]*z^k, k,
// 0, order);
std::complex<double> result = 0;
for (int k = order; k >= 0; --k)
result = result * z + std::complex<double>(coef[k]);
return result;
}
void IIRFilter::process(const float* sourceP, float* destP,
size_t framesToProcess) {
// Compute
//
// y[n] = sum(b[k] * x[n - k], k = 0, M) - sum(a[k] * y[n - k], k = 1, N)
//
// where b[k] are the feedforward coefficients and a[k] are the feedback
// coefficients of the filter.
// This is a Direct Form I implementation of an IIR Filter. Should we
// consider doing a different implementation such as Transposed Direct Form
// II?
const double* feedback = m_feedback->Elements();
const double* feedforward = m_feedforward->Elements();
MOZ_ASSERT(feedback);
MOZ_ASSERT(feedforward);
// Sanity check to see if the feedback coefficients have been scaled
// appropriately. It must be EXACTLY 1!
MOZ_ASSERT(feedback[0] == 1);
int feedbackLength = m_feedback->Length();
int feedforwardLength = m_feedforward->Length();
int minLength = std::min(feedbackLength, feedforwardLength);
double* xBuffer = m_xBuffer.Elements();
double* yBuffer = m_yBuffer.Elements();
for (size_t n = 0; n < framesToProcess; ++n) {
// To help minimize roundoff, we compute using double's, even though the
// filter coefficients only have single precision values.
double yn = feedforward[0] * sourceP[n];
// Run both the feedforward and feedback terms together, when possible.
for (int k = 1; k < minLength; ++k) {
int n = (m_bufferIndex - k) & (kBufferLength - 1);
yn += feedforward[k] * xBuffer[n];
yn -= feedback[k] * yBuffer[n];
}
// Handle any remaining feedforward or feedback terms.
for (int k = minLength; k < feedforwardLength; ++k)
yn += feedforward[k] * xBuffer[(m_bufferIndex - k) & (kBufferLength - 1)];
for (int k = minLength; k < feedbackLength; ++k)
yn -= feedback[k] * yBuffer[(m_bufferIndex - k) & (kBufferLength - 1)];
// Save the current input and output values in the memory buffers for the
// next output.
m_xBuffer[m_bufferIndex] = sourceP[n];
m_yBuffer[m_bufferIndex] = yn;
m_bufferIndex = (m_bufferIndex + 1) & (kBufferLength - 1);
// Avoid introducing a stream of subnormals
destP[n] = WebCore::DenormalDisabler::flushDenormalFloatToZero(yn);
MOZ_ASSERT(destP[n] == 0.0 || std::fabs(destP[n]) > FLT_MIN ||
mozilla::IsNaN(destP[n]),
"output should not be subnormal, but can be NaN");
}
}
void IIRFilter::getFrequencyResponse(int nFrequencies, const float* frequency,
float* magResponse, float* phaseResponse) {
// Evaluate the z-transform of the filter at the given normalized frequencies
// from 0 to 1. (One corresponds to the Nyquist frequency.)
//
// The z-tranform of the filter is
//
// H(z) = sum(b[k]*z^(-k), k, 0, M) / sum(a[k]*z^(-k), k, 0, N);
//
// The desired frequency response is H(exp(j*omega)), where omega is in
// [0, 1).
//
// Let P(x) = sum(c[k]*x^k, k, 0, P) be a polynomial of order P. Then each of
// the sums in H(z) is equivalent to evaluating a polynomial at the point 1/z.
for (int k = 0; k < nFrequencies; ++k) {
// zRecip = 1/z = exp(-j*frequency)
double omega = -M_PI * frequency[k];
std::complex<double> zRecip = std::complex<double>(cos(omega), sin(omega));
std::complex<double> numerator = evaluatePolynomial(
m_feedforward->Elements(), zRecip, m_feedforward->Length() - 1);
std::complex<double> denominator = evaluatePolynomial(
m_feedback->Elements(), zRecip, m_feedback->Length() - 1);
// Strangely enough, using complex division:
// e.g. Complex response = numerator / denominator;
// fails on our test machines, yielding infinities and NaNs, so we do
// things the long way here.
double n = norm(denominator);
double r = (real(numerator) * real(denominator) +
imag(numerator) * imag(denominator)) /
n;
double i = (imag(numerator) * real(denominator) -
real(numerator) * imag(denominator)) /
n;
std::complex<double> response = std::complex<double>(r, i);
magResponse[k] = static_cast<float>(abs(response));
phaseResponse[k] =
static_cast<float>(atan2(imag(response), real(response)));
}
}
bool IIRFilter::buffersAreZero() {
double* xBuffer = m_xBuffer.Elements();
double* yBuffer = m_yBuffer.Elements();
for (size_t k = 0; k < m_feedforward->Length(); ++k) {
if (xBuffer[(m_bufferIndex - k) & (kBufferLength - 1)] != 0.0) {
return false;
}
}
for (size_t k = 0; k < m_feedback->Length(); ++k) {
if (fabs(yBuffer[(m_bufferIndex - k) & (kBufferLength - 1)]) >= FLT_MIN) {
return false;
}
}
return true;
}
} // namespace blink