Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AppleVTEncoder.h"
#include <CoreFoundation/CFArray.h>
#include <CoreFoundation/CFByteOrder.h>
#include <CoreFoundation/CFDictionary.h>
#include "ImageContainer.h"
#include "AnnexB.h"
#include "H264.h"
#include "AppleUtils.h"
namespace mozilla {
extern LazyLogModule sPEMLog;
#define LOGE(fmt, ...) \
MOZ_LOG(sPEMLog, mozilla::LogLevel::Error, \
("[AppleVTEncoder] %s: " fmt, __func__, ##__VA_ARGS__))
#define LOGD(fmt, ...) \
MOZ_LOG(sPEMLog, mozilla::LogLevel::Debug, \
("[AppleVTEncoder] %s: " fmt, __func__, ##__VA_ARGS__))
static CFDictionaryRef BuildEncoderSpec(const bool aHardwareNotAllowed) {
const void* keys[] = {
kVTVideoEncoderSpecification_EnableHardwareAcceleratedVideoEncoder};
const void* values[] = {aHardwareNotAllowed ? kCFBooleanFalse
: kCFBooleanTrue};
static_assert(ArrayLength(keys) == ArrayLength(values),
"Non matching keys/values array size");
return CFDictionaryCreate(kCFAllocatorDefault, keys, values,
ArrayLength(keys), &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
}
static void FrameCallback(void* aEncoder, void* aFrameRefCon, OSStatus aStatus,
VTEncodeInfoFlags aInfoFlags,
CMSampleBufferRef aSampleBuffer) {
if (aStatus != noErr || !aSampleBuffer) {
LOGE("VideoToolbox encoder returned no data status=%d sample=%p", aStatus,
aSampleBuffer);
aSampleBuffer = nullptr;
} else if (aInfoFlags & kVTEncodeInfo_FrameDropped) {
LOGE("frame tagged as dropped");
return;
}
(static_cast<AppleVTEncoder*>(aEncoder))->OutputFrame(aSampleBuffer);
}
static bool SetAverageBitrate(VTCompressionSessionRef& aSession,
uint32_t aBitsPerSec) {
int64_t bps(aBitsPerSec);
AutoCFRelease<CFNumberRef> bitrate(
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt64Type, &bps));
return VTSessionSetProperty(aSession,
kVTCompressionPropertyKey_AverageBitRate,
bitrate) == noErr;
}
static bool SetConstantBitrate(VTCompressionSessionRef& aSession,
uint32_t aBitsPerSec) {
int32_t bps(aBitsPerSec);
AutoCFRelease<CFNumberRef> bitrate(
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &bps));
if (__builtin_available(macos 13.0, *)) {
int rv = VTSessionSetProperty(aSession,
kVTCompressionPropertyKey_ConstantBitRate,
bitrate) == noErr;
if (rv == kVTPropertyNotSupportedErr) {
LOGE("Constant bitrate not supported.");
}
}
return false;
}
static bool SetBitrateAndMode(VTCompressionSessionRef& aSession,
BitrateMode aBitrateMode, uint32_t aBitsPerSec) {
if (aBitrateMode == BitrateMode::Variable) {
return SetAverageBitrate(aSession, aBitsPerSec);
}
return SetConstantBitrate(aSession, aBitsPerSec);
}
static bool SetFrameRate(VTCompressionSessionRef& aSession, int64_t aFPS) {
AutoCFRelease<CFNumberRef> framerate(
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt64Type, &framerate));
return VTSessionSetProperty(aSession,
kVTCompressionPropertyKey_ExpectedFrameRate,
framerate) == noErr;
}
static bool SetRealtime(VTCompressionSessionRef& aSession, bool aEnabled) {
if (aEnabled) {
return VTSessionSetProperty(aSession, kVTCompressionPropertyKey_RealTime,
kCFBooleanTrue) == noErr &&
VTSessionSetProperty(aSession,
kVTCompressionPropertyKey_AllowFrameReordering,
kCFBooleanFalse) == noErr;
}
return VTSessionSetProperty(aSession, kVTCompressionPropertyKey_RealTime,
kCFBooleanFalse) == noErr &&
VTSessionSetProperty(aSession,
kVTCompressionPropertyKey_AllowFrameReordering,
kCFBooleanTrue) == noErr;
}
static bool SetProfileLevel(VTCompressionSessionRef& aSession,
H264_PROFILE aValue) {
CFStringRef profileLevel = nullptr;
switch (aValue) {
case H264_PROFILE::H264_PROFILE_BASE:
profileLevel = kVTProfileLevel_H264_Baseline_AutoLevel;
break;
case H264_PROFILE::H264_PROFILE_MAIN:
profileLevel = kVTProfileLevel_H264_Main_AutoLevel;
break;
case H264_PROFILE::H264_PROFILE_HIGH:
profileLevel = kVTProfileLevel_H264_High_AutoLevel;
break;
default:
LOGE("Profile %d not handled", static_cast<int>(aValue));
}
return profileLevel ? VTSessionSetProperty(
aSession, kVTCompressionPropertyKey_ProfileLevel,
profileLevel) == noErr
: false;
}
RefPtr<MediaDataEncoder::InitPromise> AppleVTEncoder::Init() {
MOZ_ASSERT(!mInited, "Cannot initialize encoder again without shutting down");
if (mConfig.mSize.width == 0 || mConfig.mSize.height == 0) {
LOGE("width or height 0 in encoder init");
return InitPromise::CreateAndReject(NS_ERROR_ILLEGAL_VALUE, __func__);
}
AutoCFRelease<CFDictionaryRef> spec(BuildEncoderSpec(mHardwareNotAllowed));
AutoCFRelease<CFDictionaryRef> srcBufferAttr(
BuildSourceImageBufferAttributes());
if (!srcBufferAttr) {
LOGE("Failed to create source buffer attr");
return InitPromise::CreateAndReject(
MediaResult(NS_ERROR_DOM_MEDIA_NOT_SUPPORTED_ERR,
"fail to create source buffer attributes"),
__func__);
}
OSStatus status = VTCompressionSessionCreate(
kCFAllocatorDefault, mConfig.mSize.width, mConfig.mSize.height,
kCMVideoCodecType_H264, spec, srcBufferAttr, kCFAllocatorDefault,
&FrameCallback, this /* outputCallbackRefCon */, &mSession);
if (status != noErr) {
LOGE("Failed to create compression session");
return InitPromise::CreateAndReject(
MediaResult(NS_ERROR_DOM_MEDIA_FATAL_ERR,
"fail to create encoder session"),
__func__);
}
if (mConfig.mUsage == Usage::Realtime && !SetRealtime(mSession, true)) {
LOGE("fail to configurate realtime properties");
return InitPromise::CreateAndReject(
MediaResult(NS_ERROR_DOM_MEDIA_FATAL_ERR,
"fail to configurate average bitrate"),
__func__);
}
if (mConfig.mBitrate) {
if (!SetBitrateAndMode(mSession, mConfig.mBitrateMode, mConfig.mBitrate)) {
LOGE("failed to set bitrate to %d and mode to %s", mConfig.mBitrate,
mConfig.mBitrateMode == BitrateMode::Constant ? "constant"
: "variable");
return InitPromise::CreateAndReject(
MediaResult(NS_ERROR_DOM_MEDIA_FATAL_ERR,
"fail to configurate bitrate"),
__func__);
}
}
int64_t interval =
mConfig.mKeyframeInterval > std::numeric_limits<int64_t>::max()
? std::numeric_limits<int64_t>::max()
: AssertedCast<int64_t>(mConfig.mKeyframeInterval);
AutoCFRelease<CFNumberRef> cf(
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt64Type, &interval));
if (VTSessionSetProperty(mSession,
kVTCompressionPropertyKey_MaxKeyFrameInterval,
cf) != noErr) {
LOGE("Failed to set max keyframe interval");
return InitPromise::CreateAndReject(
MediaResult(
NS_ERROR_DOM_MEDIA_FATAL_ERR,
nsPrintfCString("fail to configurate keyframe interval:%" PRId64,
interval)),
__func__);
}
if (mConfig.mCodecSpecific) {
const H264Specific& specific = mConfig.mCodecSpecific->as<H264Specific>();
if (!SetProfileLevel(mSession, specific.mProfile)) {
LOGE("Failed to set profile level");
return InitPromise::CreateAndReject(
MediaResult(NS_ERROR_DOM_MEDIA_FATAL_ERR,
nsPrintfCString("fail to configurate profile level:%d",
int(specific.mProfile))),
__func__);
}
}
CFBooleanRef isUsingHW = nullptr;
status = VTSessionCopyProperty(
mSession, kVTCompressionPropertyKey_UsingHardwareAcceleratedVideoEncoder,
kCFAllocatorDefault, &isUsingHW);
mIsHardwareAccelerated = status == noErr && isUsingHW == kCFBooleanTrue;
LOGD("Using hw acceleration: %s", mIsHardwareAccelerated ? "yes" : "no");
if (isUsingHW) {
CFRelease(isUsingHW);
}
mError = NS_OK;
return InitPromise::CreateAndResolve(true, __func__);
}
static Maybe<OSType> MapPixelFormat(dom::ImageBitmapFormat aFormat) {
switch (aFormat) {
case dom::ImageBitmapFormat::RGBA32:
case dom::ImageBitmapFormat::BGRA32:
return Some(kCVPixelFormatType_32BGRA);
case dom::ImageBitmapFormat::RGB24:
return Some(kCVPixelFormatType_24RGB);
case dom::ImageBitmapFormat::BGR24:
return Some(kCVPixelFormatType_24BGR);
case dom::ImageBitmapFormat::GRAY8:
return Some(kCVPixelFormatType_OneComponent8);
case dom::ImageBitmapFormat::YUV444P:
return Some(kCVPixelFormatType_444YpCbCr8);
case dom::ImageBitmapFormat::YUV420P:
return Some(kCVPixelFormatType_420YpCbCr8PlanarFullRange);
case dom::ImageBitmapFormat::YUV420SP_NV12:
return Some(kCVPixelFormatType_420YpCbCr8BiPlanarFullRange);
default:
return Nothing();
}
}
CFDictionaryRef AppleVTEncoder::BuildSourceImageBufferAttributes() {
Maybe<OSType> fmt = MapPixelFormat(mConfig.mSourcePixelFormat);
if (fmt.isNothing()) {
LOGE("unsupported source pixel format");
return nullptr;
}
// Source image buffer attributes
const void* keys[] = {kCVPixelBufferOpenGLCompatibilityKey, // TODO
kCVPixelBufferIOSurfacePropertiesKey, // TODO
kCVPixelBufferPixelFormatTypeKey};
AutoCFRelease<CFDictionaryRef> ioSurfaceProps(CFDictionaryCreate(
kCFAllocatorDefault, nullptr, nullptr, 0, &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
AutoCFRelease<CFNumberRef> pixelFormat(
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &fmt));
const void* values[] = {kCFBooleanTrue, ioSurfaceProps, pixelFormat};
MOZ_ASSERT(ArrayLength(keys) == ArrayLength(values),
"Non matching keys/values array size");
return CFDictionaryCreate(kCFAllocatorDefault, keys, values,
ArrayLength(keys), &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
}
static bool IsKeyframe(CMSampleBufferRef aSample) {
CFArrayRef attachments = CMSampleBufferGetSampleAttachmentsArray(aSample, 0);
if (attachments == nullptr || CFArrayGetCount(attachments) == 0) {
return false;
}
return !CFDictionaryContainsKey(
static_cast<CFDictionaryRef>(CFArrayGetValueAtIndex(attachments, 0)),
kCMSampleAttachmentKey_NotSync);
}
static size_t GetNumParamSets(CMFormatDescriptionRef aDescription) {
size_t numParamSets = 0;
OSStatus status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(
aDescription, 0, nullptr, nullptr, &numParamSets, nullptr);
if (status != noErr) {
LOGE("Cannot get number of parameter sets from format description");
}
return numParamSets;
}
static const uint8_t kNALUStart[4] = {0, 0, 0, 1};
static size_t GetParamSet(CMFormatDescriptionRef aDescription, size_t aIndex,
const uint8_t** aDataPtr) {
size_t length = 0;
int headerSize = 0;
if (CMVideoFormatDescriptionGetH264ParameterSetAtIndex(
aDescription, aIndex, aDataPtr, &length, nullptr, &headerSize) !=
noErr) {
LOGE("failed to get parameter set from format description");
return 0;
}
MOZ_ASSERT(headerSize == sizeof(kNALUStart), "Only support 4 byte header");
return length;
}
static bool WriteSPSPPS(MediaRawData* aDst,
CMFormatDescriptionRef aDescription) {
// Get SPS/PPS
const size_t numParamSets = GetNumParamSets(aDescription);
UniquePtr<MediaRawDataWriter> writer(aDst->CreateWriter());
for (size_t i = 0; i < numParamSets; i++) {
const uint8_t* data = nullptr;
size_t length = GetParamSet(aDescription, i, &data);
if (length == 0) {
return false;
}
if (!writer->Append(kNALUStart, sizeof(kNALUStart))) {
LOGE("Cannot write NAL unit start code");
return false;
}
if (!writer->Append(data, length)) {
LOGE("Cannot write parameter set");
return false;
}
}
return true;
}
static RefPtr<MediaByteBuffer> extractAvcc(
CMFormatDescriptionRef aDescription) {
CFPropertyListRef list = CMFormatDescriptionGetExtension(
aDescription,
kCMFormatDescriptionExtension_SampleDescriptionExtensionAtoms);
if (!list) {
LOGE("fail to get atoms");
return nullptr;
}
CFDataRef avcC = static_cast<CFDataRef>(
CFDictionaryGetValue(static_cast<CFDictionaryRef>(list), CFSTR("avcC")));
if (!avcC) {
LOGE("fail to extract avcC");
return nullptr;
}
CFIndex length = CFDataGetLength(avcC);
const UInt8* bytes = CFDataGetBytePtr(avcC);
if (length <= 0 || !bytes) {
LOGE("empty avcC");
return nullptr;
}
RefPtr<MediaByteBuffer> config = new MediaByteBuffer(length);
config->AppendElements(bytes, length);
return config;
}
bool AppleVTEncoder::WriteExtraData(MediaRawData* aDst, CMSampleBufferRef aSrc,
const bool aAsAnnexB) {
if (!IsKeyframe(aSrc)) {
return true;
}
aDst->mKeyframe = true;
CMFormatDescriptionRef desc = CMSampleBufferGetFormatDescription(aSrc);
if (!desc) {
LOGE("fail to get format description from sample");
return false;
}
if (aAsAnnexB) {
return WriteSPSPPS(aDst, desc);
}
RefPtr<MediaByteBuffer> avcc = extractAvcc(desc);
if (!avcc) {
return false;
}
if (!mAvcc || !H264::CompareExtraData(avcc, mAvcc)) {
mAvcc = avcc;
aDst->mExtraData = mAvcc;
}
return avcc != nullptr;
}
static bool WriteNALUs(MediaRawData* aDst, CMSampleBufferRef aSrc,
bool aAsAnnexB = false) {
size_t srcRemaining = CMSampleBufferGetTotalSampleSize(aSrc);
CMBlockBufferRef block = CMSampleBufferGetDataBuffer(aSrc);
if (!block) {
LOGE("Cannot get block buffer frome sample");
return false;
}
UniquePtr<MediaRawDataWriter> writer(aDst->CreateWriter());
size_t writtenLength = aDst->Size();
// Ensure capacity.
if (!writer->SetSize(writtenLength + srcRemaining)) {
LOGE("Cannot allocate buffer");
return false;
}
size_t readLength = 0;
while (srcRemaining > 0) {
// Extract the size of next NAL unit
uint8_t unitSizeBytes[4];
MOZ_ASSERT(srcRemaining > sizeof(unitSizeBytes));
if (CMBlockBufferCopyDataBytes(block, readLength, sizeof(unitSizeBytes),
reinterpret_cast<uint32_t*>(
unitSizeBytes)) != kCMBlockBufferNoErr) {
LOGE("Cannot copy unit size bytes");
return false;
}
size_t unitSize =
CFSwapInt32BigToHost(*reinterpret_cast<uint32_t*>(unitSizeBytes));
if (aAsAnnexB) {
// Replace unit size bytes with NALU start code.
PodCopy(writer->Data() + writtenLength, kNALUStart, sizeof(kNALUStart));
readLength += sizeof(unitSizeBytes);
srcRemaining -= sizeof(unitSizeBytes);
writtenLength += sizeof(kNALUStart);
} else {
// Copy unit size bytes + data.
unitSize += sizeof(unitSizeBytes);
}
MOZ_ASSERT(writtenLength + unitSize <= aDst->Size());
// Copy NAL unit data
if (CMBlockBufferCopyDataBytes(block, readLength, unitSize,
writer->Data() + writtenLength) !=
kCMBlockBufferNoErr) {
LOGE("Cannot copy unit data");
return false;
}
readLength += unitSize;
srcRemaining -= unitSize;
writtenLength += unitSize;
}
MOZ_ASSERT(writtenLength == aDst->Size());
return true;
}
void AppleVTEncoder::OutputFrame(CMSampleBufferRef aBuffer) {
LOGD("::OutputFrame");
RefPtr<MediaRawData> output(new MediaRawData());
bool forceAvcc = false;
if (mConfig.mCodecSpecific->is<H264Specific>()) {
forceAvcc = mConfig.mCodecSpecific->as<H264Specific>().mFormat ==
H264BitStreamFormat::AVC;
}
bool asAnnexB = mConfig.mUsage == Usage::Realtime && !forceAvcc;
bool succeeded = WriteExtraData(output, aBuffer, asAnnexB) &&
WriteNALUs(output, aBuffer, asAnnexB);
output->mTime = media::TimeUnit::FromSeconds(
CMTimeGetSeconds(CMSampleBufferGetPresentationTimeStamp(aBuffer)));
output->mDuration = media::TimeUnit::FromSeconds(
CMTimeGetSeconds(CMSampleBufferGetOutputDuration(aBuffer)));
ProcessOutput(succeeded ? std::move(output) : nullptr);
}
void AppleVTEncoder::ProcessOutput(RefPtr<MediaRawData>&& aOutput) {
if (!mTaskQueue->IsCurrentThreadIn()) {
nsresult rv = mTaskQueue->Dispatch(NewRunnableMethod<RefPtr<MediaRawData>>(
"AppleVTEncoder::ProcessOutput", this, &AppleVTEncoder::ProcessOutput,
std::move(aOutput)));
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
return;
}
LOGD("::ProcessOutput (%zu bytes)", !aOutput.get() ? 0 : aOutput->Size());
AssertOnTaskQueue();
if (aOutput) {
mEncodedData.AppendElement(std::move(aOutput));
} else {
LOGE("::ProcessOutput: fatal error");
mError = NS_ERROR_DOM_MEDIA_FATAL_ERR;
}
}
RefPtr<MediaDataEncoder::EncodePromise> AppleVTEncoder::Encode(
const MediaData* aSample) {
MOZ_ASSERT(aSample != nullptr);
RefPtr<const VideoData> sample(aSample->As<const VideoData>());
return InvokeAsync<RefPtr<const VideoData>>(mTaskQueue, this, __func__,
&AppleVTEncoder::ProcessEncode,
std::move(sample));
}
RefPtr<MediaDataEncoder::ReconfigurationPromise> AppleVTEncoder::Reconfigure(
const RefPtr<const EncoderConfigurationChangeList>& aConfigurationChanges) {
return InvokeAsync<const RefPtr<const EncoderConfigurationChangeList>&>(
mTaskQueue, this, __func__, &AppleVTEncoder::ProcessReconfigure,
aConfigurationChanges);
}
RefPtr<MediaDataEncoder::EncodePromise> AppleVTEncoder::ProcessEncode(
const RefPtr<const VideoData>& aSample) {
LOGD("::ProcessEncode");
AssertOnTaskQueue();
MOZ_ASSERT(mSession);
if (NS_FAILED(mError)) {
return EncodePromise::CreateAndReject(mError, __func__);
}
AutoCVBufferRelease<CVImageBufferRef> buffer(
CreateCVPixelBuffer(aSample->mImage));
if (!buffer) {
return EncodePromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
}
CFDictionaryRef frameProps = nullptr;
if (aSample->mKeyframe) {
CFTypeRef keys[] = {kVTEncodeFrameOptionKey_ForceKeyFrame};
CFTypeRef values[] = {kCFBooleanTrue};
MOZ_ASSERT(ArrayLength(keys) == ArrayLength(values));
frameProps = CFDictionaryCreate(
kCFAllocatorDefault, keys, values, ArrayLength(keys),
&kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
};
VTEncodeInfoFlags info;
OSStatus status = VTCompressionSessionEncodeFrame(
mSession, buffer,
CMTimeMake(aSample->mTime.ToMicroseconds(), USECS_PER_S),
CMTimeMake(aSample->mDuration.ToMicroseconds(), USECS_PER_S), frameProps,
nullptr /* sourceFrameRefcon */, &info);
if (status != noErr) {
LOGE("VTCompressionSessionEncodeFrame error");
return EncodePromise::CreateAndReject(NS_ERROR_DOM_MEDIA_FATAL_ERR,
__func__);
}
return EncodePromise::CreateAndResolve(std::move(mEncodedData), __func__);
}
RefPtr<MediaDataEncoder::ReconfigurationPromise>
AppleVTEncoder::ProcessReconfigure(
const RefPtr<const EncoderConfigurationChangeList>& aConfigurationChanges) {
bool ok = false;
for (const auto& confChange : aConfigurationChanges->mChanges) {
ok |= confChange.match(
// Not supported yet
[&](const DimensionsChange& aChange) -> bool { return false; },
[&](const DisplayDimensionsChange& aChange) -> bool { return false; },
[&](const BitrateModeChange& aChange) -> bool {
mConfig.mBitrateMode = aChange.get();
return SetBitrateAndMode(mSession, mConfig.mBitrateMode,
mConfig.mBitrate);
},
[&](const BitrateChange& aChange) -> bool {
mConfig.mBitrate = aChange.get().refOr(0);
// 0 is the default in AppleVTEncoder: the encoder chooses the bitrate
// based on the content.
return SetBitrateAndMode(mSession, mConfig.mBitrateMode,
mConfig.mBitrate);
},
[&](const FramerateChange& aChange) -> bool {
// 0 means default, in VideoToolbox, and is valid, perform some light
// sanitation on other values.
double fps = aChange.get().refOr(0);
if (std::isnan(fps) || fps < 0 ||
int64_t(fps) > std::numeric_limits<int32_t>::max()) {
LOGE("Invalid fps of %lf", fps);
return false;
}
return SetFrameRate(mSession, AssertedCast<int64_t>(fps));
},
[&](const UsageChange& aChange) -> bool {
mConfig.mUsage = aChange.get();
return SetRealtime(mSession, aChange.get() == Usage::Realtime);
},
[&](const ContentHintChange& aChange) -> bool { return false; },
[&](const SampleRateChange& aChange) -> bool { return false; },
[&](const NumberOfChannelsChange& aChange) -> bool { return false; });
};
using P = MediaDataEncoder::ReconfigurationPromise;
if (ok) {
return P::CreateAndResolve(true, __func__);
}
return P::CreateAndReject(NS_ERROR_DOM_MEDIA_FATAL_ERR, __func__);
}
static size_t NumberOfPlanes(dom::ImageBitmapFormat aPixelFormat) {
switch (aPixelFormat) {
case dom::ImageBitmapFormat::RGBA32:
case dom::ImageBitmapFormat::BGRA32:
case dom::ImageBitmapFormat::RGB24:
case dom::ImageBitmapFormat::BGR24:
case dom::ImageBitmapFormat::GRAY8:
return 1;
case dom::ImageBitmapFormat::YUV444P:
case dom::ImageBitmapFormat::YUV420P:
return 3;
case dom::ImageBitmapFormat::YUV420SP_NV12:
return 2;
default:
LOGE("Unsupported input pixel format");
return 0;
}
}
using namespace layers;
static void ReleaseImageInterleaved(void* aReleaseRef,
const void* aBaseAddress) {
(static_cast<Image*>(aReleaseRef))->Release();
}
static void ReleaseImage(void* aImageGrip, const void* aDataPtr,
size_t aDataSize, size_t aNumOfPlanes,
const void** aPlanes) {
(static_cast<PlanarYCbCrImage*>(aImageGrip))->Release();
}
CVPixelBufferRef AppleVTEncoder::CreateCVPixelBuffer(const Image* aSource) {
AssertOnTaskQueue();
if (aSource->GetFormat() == ImageFormat::PLANAR_YCBCR) {
PlanarYCbCrImage* image = const_cast<Image*>(aSource)->AsPlanarYCbCrImage();
if (!image || !image->GetData()) {
return nullptr;
}
OSType format = MapPixelFormat(mConfig.mSourcePixelFormat).ref();
size_t numPlanes = NumberOfPlanes(mConfig.mSourcePixelFormat);
const PlanarYCbCrImage::Data* yuv = image->GetData();
if (!yuv) {
return nullptr;
}
auto ySize = yuv->YDataSize();
auto cbcrSize = yuv->CbCrDataSize();
void* addresses[3] = {};
size_t widths[3] = {};
size_t heights[3] = {};
size_t strides[3] = {};
switch (numPlanes) {
case 3:
addresses[2] = yuv->mCrChannel;
widths[2] = cbcrSize.width;
heights[2] = cbcrSize.height;
strides[2] = yuv->mCbCrStride;
[[fallthrough]];
case 2:
addresses[1] = yuv->mCbChannel;
widths[1] = cbcrSize.width;
heights[1] = cbcrSize.height;
strides[1] = yuv->mCbCrStride;
[[fallthrough]];
case 1:
addresses[0] = yuv->mYChannel;
widths[0] = ySize.width;
heights[0] = ySize.height;
strides[0] = yuv->mYStride;
break;
default:
return nullptr;
}
CVPixelBufferRef buffer = nullptr;
image->AddRef(); // Grip input buffers.
CVReturn rv = CVPixelBufferCreateWithPlanarBytes(
kCFAllocatorDefault, yuv->mPictureRect.width, yuv->mPictureRect.height,
format, nullptr /* dataPtr */, 0 /* dataSize */, numPlanes, addresses,
widths, heights, strides, ReleaseImage /* releaseCallback */,
image /* releaseRefCon */, nullptr /* pixelBufferAttributes */,
&buffer);
if (rv == kCVReturnSuccess) {
return buffer;
// |image| will be released in |ReleaseImage()|.
}
LOGE("CVPIxelBufferCreateWithPlanarBytes error");
image->Release();
return nullptr;
}
if (aSource->GetFormat() == ImageFormat::MOZ2D_SURFACE) {
Image* source = const_cast<Image*>(aSource);
RefPtr<gfx::SourceSurface> surface = source->GetAsSourceSurface();
RefPtr<gfx::DataSourceSurface> dataSurface = surface->GetDataSurface();
gfx::DataSourceSurface::ScopedMap map(dataSurface,
gfx::DataSourceSurface::READ);
if (NS_WARN_IF(!map.IsMapped())) {
LOGE("Error scopedmap");
return nullptr;
}
OSType format = MapPixelFormat(mConfig.mSourcePixelFormat).ref();
CVPixelBufferRef buffer = nullptr;
source->AddRef();
CVReturn rv = CVPixelBufferCreateWithBytes(
kCFAllocatorDefault, aSource->GetSize().Width(),
aSource->GetSize().Height(), format, map.GetData(), map.GetStride(),
ReleaseImageInterleaved, source, nullptr, &buffer);
if (rv == kCVReturnSuccess) {
return buffer;
// |source| will be released in |ReleaseImageInterleaved()|.
}
LOGE("CVPIxelBufferCreateWithBytes error");
source->Release();
return nullptr;
}
LOGE("Image conversion not implemented in AppleVTEncoder");
return nullptr;
}
RefPtr<MediaDataEncoder::EncodePromise> AppleVTEncoder::Drain() {
return InvokeAsync(mTaskQueue, this, __func__, &AppleVTEncoder::ProcessDrain);
}
RefPtr<MediaDataEncoder::EncodePromise> AppleVTEncoder::ProcessDrain() {
AssertOnTaskQueue();
MOZ_ASSERT(mSession);
if (mFramesCompleted) {
MOZ_DIAGNOSTIC_ASSERT(mEncodedData.IsEmpty());
return EncodePromise::CreateAndResolve(EncodedData(), __func__);
}
OSStatus status =
VTCompressionSessionCompleteFrames(mSession, kCMTimeIndefinite);
if (status != noErr) {
LOGE("VTCompressionSessionCompleteFrames error");
return EncodePromise::CreateAndReject(NS_ERROR_DOM_MEDIA_FATAL_ERR,
__func__);
}
mFramesCompleted = true;
// VTCompressionSessionCompleteFrames() could have queued multiple tasks with
// the new drained frames. Dispatch a task after them to resolve the promise
// with those frames.
RefPtr<AppleVTEncoder> self = this;
return InvokeAsync(mTaskQueue, __func__, [self]() {
EncodedData pendingFrames(std::move(self->mEncodedData));
self->mEncodedData = EncodedData();
return EncodePromise::CreateAndResolve(std::move(pendingFrames), __func__);
});
}
RefPtr<ShutdownPromise> AppleVTEncoder::Shutdown() {
return InvokeAsync(mTaskQueue, this, __func__,
&AppleVTEncoder::ProcessShutdown);
}
RefPtr<ShutdownPromise> AppleVTEncoder::ProcessShutdown() {
if (mSession) {
VTCompressionSessionInvalidate(mSession);
CFRelease(mSession);
mSession = nullptr;
mInited = false;
}
return ShutdownPromise::CreateAndResolve(true, __func__);
}
RefPtr<GenericPromise> AppleVTEncoder::SetBitrate(uint32_t aBitsPerSec) {
RefPtr<AppleVTEncoder> self = this;
return InvokeAsync(mTaskQueue, __func__, [self, aBitsPerSec]() {
MOZ_ASSERT(self->mSession);
bool rv = SetBitrateAndMode(self->mSession, self->mConfig.mBitrateMode,
aBitsPerSec);
return rv ? GenericPromise::CreateAndResolve(true, __func__)
: GenericPromise::CreateAndReject(
NS_ERROR_DOM_MEDIA_NOT_SUPPORTED_ERR, __func__);
});
}
#undef LOGE
#undef LOGD
} // namespace mozilla