Source code

Revision control

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* This checker implements the "can run script" analysis. The idea is to detect
* functions that can run script that are being passed reference-counted
* arguments (including "this") whose refcount might go to zero as a result of
* the script running. We want to prevent that.
*
* The approach is to attempt to enforce the following invariants on the call
* graph:
*
* 1) Any caller of a MOZ_CAN_RUN_SCRIPT function is itself MOZ_CAN_RUN_SCRIPT.
* 2) If a virtual MOZ_CAN_RUN_SCRIPT method overrides a base class method,
* that base class method is also MOZ_CAN_RUN_SCRIPT.
*
* Invariant 2 ensures that we don't accidentally call a MOZ_CAN_RUN_SCRIPT
* function via a base-class virtual call. Invariant 1 ensures that
* the property of being able to run script propagates up the callstack. There
* is an opt-out for invariant 1: A function (declaration _or_ implementation)
* can be decorated with MOZ_CAN_RUN_SCRIPT_BOUNDARY to indicate that we do not
* require it or any of its callers to be MOZ_CAN_RUN_SCRIPT even if it calls
* MOZ_CAN_RUN_SCRIPT functions.
*
* There are two known holes in invariant 1, apart from the
* MOZ_CAN_RUN_SCRIPT_BOUNDARY opt-out:
*
* - Functions called via function pointers can be MOZ_CAN_RUN_SCRIPT even if
* their caller is not, because we have no way to determine from the function
* pointer what function is being called.
* - MOZ_CAN_RUN_SCRIPT destructors can happen in functions that are not
* MOZ_CAN_RUN_SCRIPT.
*
* Given those invariants we then require that when calling a MOZ_CAN_RUN_SCRIPT
* function all refcounted arguments (including "this") satisfy one of these
* conditions:
* a) The argument is held via a strong pointer on the stack.
* b) The argument is a const strong pointer member of "this". We know "this"
* is being kept alive, and a const strong pointer member can't drop its ref
* until "this" dies.
* c) The argument is an argument of the caller (and hence held by a strong
* pointer somewhere higher up the callstack).
* d) The argument is explicitly annotated with MOZ_KnownLive, which indicates
* that something is guaranteed to keep it alive (e.g. it's rooted via a JS
* reflector).
* e) The argument is constexpr and therefore cannot disappear.
*/
#include "CanRunScriptChecker.h"
#include "CustomMatchers.h"
#include "clang/Lex/Lexer.h"
void CanRunScriptChecker::registerMatchers(MatchFinder *AstMatcher) {
auto Refcounted = qualType(hasDeclaration(cxxRecordDecl(isRefCounted())));
auto StackSmartPtr =
ignoreTrivials(declRefExpr(to(varDecl(hasAutomaticStorageDuration(),
hasType(isSmartPtrToRefCounted())))));
auto ConstMemberOfThisSmartPtr =
memberExpr(hasType(isSmartPtrToRefCounted()), hasType(isConstQualified()),
hasObjectExpression(cxxThisExpr()));
// A smartptr can be known-live for three reasons:
// 1) It's declared on the stack.
// 2) It's a const member of "this". We know "this" is alive (recursively)
// and const members can't change their value hence can't drop their
// reference until "this" gets destroyed.
// 3) It's an immediate temporary being constructed at the point where the
// call is happening.
auto KnownLiveSmartPtr = anyOf(
StackSmartPtr, ConstMemberOfThisSmartPtr,
ignoreTrivials(cxxConstructExpr(hasType(isSmartPtrToRefCounted()))));
auto MozKnownLiveCall =
ignoreTrivials(callExpr(callee(functionDecl(hasName("MOZ_KnownLive")))));
// Params of the calling function are presumed live, because it itself should
// be MOZ_CAN_RUN_SCRIPT. Note that this is subject to
auto KnownLiveParam = anyOf(
// "this" is OK
cxxThisExpr(),
// A parameter of the calling function is OK.
declRefExpr(to(parmVarDecl())));
// A matcher that matches various things that are known to be live directly,
// without making any assumptions about operators.
auto KnownLiveBase = anyOf(
// Things that are known to be a stack or immutable refptr.
KnownLiveSmartPtr,
// MOZ_KnownLive() calls.
MozKnownLiveCall,
// Params of the caller function.
KnownLiveParam,
// Constexpr things.
declRefExpr(to(varDecl(isConstexpr()))));
// A matcher that matches various known-live things that don't involve
// non-unary operators.
auto KnownLiveSimple = anyOf(
// Things that are just known live.
KnownLiveBase,
// Method calls on a live things that are smart ptrs. Note that we don't
// want to allow general method calls on live things, because those can
// return non-live objects (e.g. consider "live_pointer->foo()" as an
// example). For purposes of this analysis we are assuming the method
// calls on smart ptrs all just return the pointer inside,
cxxMemberCallExpr(
on(allOf(hasType(isSmartPtrToRefCounted()), KnownLiveBase))),
// operator* or operator-> on a thing that is already known to be live.
cxxOperatorCallExpr(anyOf(hasOverloadedOperatorName("*"),
hasOverloadedOperatorName("->")),
hasAnyArgument(KnownLiveBase), argumentCountIs(1)),
// A dereference on a thing that is known to be live. This is _not_
// caught by the "operator* or operator->" clause above, because
// cxxOperatorCallExpr() only catches cases when a class defines
// operator*. The default (built-in) operator* matches unaryOperator()
// instead.),
unaryOperator(
unaryDereferenceOperator(),
hasUnaryOperand(
// If we're doing *someArg, the argument of the dereference is an
// ImplicitCastExpr LValueToRValue which has the DeclRefExpr as an
// argument. We could try to match that explicitly with a custom
// matcher (none of the built-in matchers seem to match on the
// thing being cast for an implicitCastExpr), but it's simpler to
// just use ignoreTrivials to strip off the cast.
ignoreTrivials(KnownLiveBase))),
// Taking a pointer to a live reference. We explicitly want to exclude
// things that are not of type reference-to-refcounted or type refcounted,
// because if someone takes a pointer to a pointer to refcounted or a
// pointer to a smart ptr and passes those in to a callee that definitely
// does not guarantee liveness; in fact the callee could modify those
// things! In practice they would be the wrong type anyway, though, so
// it's hard to add a test for this.
unaryOperator(hasOperatorName("&"),
hasUnaryOperand(allOf(anyOf(hasType(references(Refcounted)),
hasType(Refcounted)),
ignoreTrivials(KnownLiveBase)))));
auto KnownLive = anyOf(
// Anything above, of course.
KnownLiveSimple,
// Conditional operators where both arms are live.
conditionalOperator(hasFalseExpression(ignoreTrivials(KnownLiveSimple)),
hasTrueExpression(ignoreTrivials(KnownLiveSimple)))
// We're not handling cases like a dereference of a conditional operator,
// mostly because handling a dereference in general is so ugly. I
// _really_ wish I could just write a recursive matcher here easily.
);
auto InvalidArg = ignoreTrivialsConditional(
// We want to consider things if there is anything refcounted involved,
// including in any of the trivials that we otherwise strip off.
anyOf(hasType(Refcounted), hasType(pointsTo(Refcounted)),
hasType(references(Refcounted)), hasType(isSmartPtrToRefCounted())),
// We want to find any expression,
expr(
// which is not known live,
unless(KnownLive),
// and which is not a default arg with value nullptr, since those are
// always safe,
unless(cxxDefaultArgExpr(isNullDefaultArg())),
// and which is not a literal nullptr,
unless(cxxNullPtrLiteralExpr()), expr().bind("invalidArg")));
// A matcher which will mark the first invalid argument it finds invalid, but
// will always match, even if it finds no invalid arguments, so it doesn't
// preclude other matchers from running and maybe finding invalid args.
auto OptionalInvalidExplicitArg = anyOf(
// We want to find any argument which is invalid.
hasAnyArgument(InvalidArg),
// This makes this matcher optional.
anything());
// Please note that the hasCanRunScriptAnnotation() matchers are not present
// directly in the cxxMemberCallExpr, callExpr and constructExpr matchers
// because we check that the corresponding functions can run script later in
// the checker code.
AstMatcher->addMatcher(
expr(
anyOf(
// We want to match a method call expression,
cxxMemberCallExpr(
// which optionally has an invalid arg,
OptionalInvalidExplicitArg,
// or which optionally has an invalid this argument,
anyOf(on(InvalidArg), anything()), expr().bind("callExpr")),
// or a regular call expression,
callExpr(
// which optionally has an invalid arg.
OptionalInvalidExplicitArg, expr().bind("callExpr")),
// or a construct expression,
cxxConstructExpr(
// which optionally has an invalid arg.
OptionalInvalidExplicitArg, expr().bind("constructExpr"))),
anyOf(
// We want to match the parent function.
forFunction(functionDecl().bind("nonCanRunScriptParentFunction")),
// ... optionally.
anything())),
this);
}
void CanRunScriptChecker::onStartOfTranslationUnit() {
IsFuncSetBuilt = false;
CanRunScriptFuncs.clear();
}
namespace {
/// This class is a callback used internally to match function declarations with
/// the MOZ_CAN_RUN_SCRIPT annotation, adding these functions to the
/// can-run-script function set and making sure the functions they override (if
/// any) also have the annotation.
class FuncSetCallback : public MatchFinder::MatchCallback {
public:
FuncSetCallback(CanRunScriptChecker &Checker,
std::unordered_set<const FunctionDecl *> &FuncSet)
: CanRunScriptFuncs(FuncSet), Checker(Checker) {}
void run(const MatchFinder::MatchResult &Result) override;
private:
/// This method checks the methods overriden by the given parameter.
void checkOverriddenMethods(const CXXMethodDecl *Method);
std::unordered_set<const FunctionDecl *> &CanRunScriptFuncs;
CanRunScriptChecker &Checker;
};
void FuncSetCallback::run(const MatchFinder::MatchResult &Result) {
const FunctionDecl *Func;
if (auto *Lambda = Result.Nodes.getNodeAs<LambdaExpr>("lambda")) {
Func = Lambda->getCallOperator();
if (!Func || !hasCustomAttribute<moz_can_run_script>(Func))
return;
} else {
Func = Result.Nodes.getNodeAs<FunctionDecl>("canRunScriptFunction");
}
CanRunScriptFuncs.insert(Func);
// If this is a method, we check the methods it overrides.
if (auto *Method = dyn_cast<CXXMethodDecl>(Func)) {
checkOverriddenMethods(Method);
}
}
void FuncSetCallback::checkOverriddenMethods(const CXXMethodDecl *Method) {
for (auto OverriddenMethod : Method->overridden_methods()) {
if (!hasCustomAttribute<moz_can_run_script>(OverriddenMethod)) {
const char *ErrorNonCanRunScriptOverridden =
"functions marked as MOZ_CAN_RUN_SCRIPT cannot override functions "
"that are not marked MOZ_CAN_RUN_SCRIPT";
const char *NoteNonCanRunScriptOverridden =
"overridden function declared here";
Checker.diag(Method->getLocation(), ErrorNonCanRunScriptOverridden,
DiagnosticIDs::Error);
Checker.diag(OverriddenMethod->getLocation(),
NoteNonCanRunScriptOverridden, DiagnosticIDs::Note);
}
}
}
} // namespace
void CanRunScriptChecker::buildFuncSet(ASTContext *Context) {
// We create a match finder.
MatchFinder Finder;
// We create the callback which will be called when we find a function with
// a MOZ_CAN_RUN_SCRIPT annotation.
FuncSetCallback Callback(*this, CanRunScriptFuncs);
// We add the matcher to the finder, linking it to our callback.
Finder.addMatcher(
functionDecl(hasCanRunScriptAnnotation()).bind("canRunScriptFunction"),
&Callback);
Finder.addMatcher(lambdaExpr().bind("lambda"), &Callback);
// We start the analysis, given the ASTContext our main checker is in.
Finder.matchAST(*Context);
}
void CanRunScriptChecker::check(const MatchFinder::MatchResult &Result) {
// If the set of functions which can run script is not yet built, then build
// it.
if (!IsFuncSetBuilt) {
buildFuncSet(Result.Context);
IsFuncSetBuilt = true;
}
const char *ErrorInvalidArg =
"arguments must all be strong refs or caller's parameters when calling a "
"function marked as MOZ_CAN_RUN_SCRIPT (including the implicit object "
"argument). '%0' is neither.";
const char *ErrorNonCanRunScriptParent =
"functions marked as MOZ_CAN_RUN_SCRIPT can only be called from "
"functions also marked as MOZ_CAN_RUN_SCRIPT";
const char *NoteNonCanRunScriptParent = "caller function declared here";
const Expr *InvalidArg;
if (const CXXDefaultArgExpr *defaultArg =
Result.Nodes.getNodeAs<CXXDefaultArgExpr>("invalidArg")) {
InvalidArg = defaultArg->getExpr();
} else {
InvalidArg = Result.Nodes.getNodeAs<Expr>("invalidArg");
}
const CallExpr *Call = Result.Nodes.getNodeAs<CallExpr>("callExpr");
// If we don't find the FunctionDecl linked to this call or if it's not marked
// as can-run-script, consider that we didn't find a match.
if (Call && (!Call->getDirectCallee() ||
!CanRunScriptFuncs.count(Call->getDirectCallee()))) {
Call = nullptr;
}
const CXXConstructExpr *Construct =
Result.Nodes.getNodeAs<CXXConstructExpr>("constructExpr");
// If we don't find the CXXConstructorDecl linked to this construct expression
// or if it's not marked as can-run-script, consider that we didn't find a
// match.
if (Construct && (!Construct->getConstructor() ||
!CanRunScriptFuncs.count(Construct->getConstructor()))) {
Construct = nullptr;
}
const FunctionDecl *ParentFunction =
Result.Nodes.getNodeAs<FunctionDecl>("nonCanRunScriptParentFunction");
// If the parent function can run script, consider that we didn't find a match
// because we only care about parent functions which can't run script.
//
// In addition, If the parent function is annotated as a
// CAN_RUN_SCRIPT_BOUNDARY, we don't want to complain about it calling a
// CAN_RUN_SCRIPT function. This is a mechanism to opt out of the infectious
// nature of CAN_RUN_SCRIPT which is necessary in some tricky code like
// Bindings.
if (ParentFunction &&
(CanRunScriptFuncs.count(ParentFunction) ||
hasCustomAttribute<moz_can_run_script_boundary>(ParentFunction))) {
ParentFunction = nullptr;
}
// Get the call range from either the CallExpr or the ConstructExpr.
SourceRange CallRange;
if (Call) {
CallRange = Call->getSourceRange();
} else if (Construct) {
CallRange = Construct->getSourceRange();
} else {
// If we have neither a Call nor a Construct, we have nothing do to here.
return;
}
// If we have an invalid argument in the call, we emit the diagnostic to
// signal it.
if (InvalidArg) {
const StringRef invalidArgText = Lexer::getSourceText(
CharSourceRange::getTokenRange(InvalidArg->getSourceRange()),
Result.Context->getSourceManager(), Result.Context->getLangOpts());
diag(InvalidArg->getExprLoc(), ErrorInvalidArg, DiagnosticIDs::Error)
<< InvalidArg->getSourceRange() << invalidArgText;
}
// If the parent function is not marked as MOZ_CAN_RUN_SCRIPT, we emit an
// error and a not indicating it.
if (ParentFunction) {
assert(!hasCustomAttribute<moz_can_run_script>(ParentFunction) &&
"Matcher missed something");
diag(CallRange.getBegin(), ErrorNonCanRunScriptParent, DiagnosticIDs::Error)
<< CallRange;
diag(ParentFunction->getCanonicalDecl()->getLocation(),
NoteNonCanRunScriptParent, DiagnosticIDs::Note);
}
}