Source code

Revision control

Copy as Markdown

Other Tools

#!/usr/bin/env python
# jsonlink.py - Merge JSON typelib files into a .cpp file
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import json
from collections import OrderedDict
import buildconfig
from mozbuild.util import memoize
from perfecthash import PerfectHash
# Pick a nice power-of-two size for our intermediate PHF tables.
PHFSIZE = 512
def indented(s):
return s.replace("\n", "\n ")
def cpp(v):
if type(v) is bool:
return "true" if v else "false"
return str(v)
def mkstruct(*fields):
def mk(comment, **vals):
assert len(fields) == len(vals)
r = "{ // " + comment
r += indented(",".join("\n/* %s */ %s" % (k, cpp(vals[k])) for k in fields))
r += "\n}"
return r
return mk
##########################################################
# Ensure these fields are in the same order as xptinfo.h #
##########################################################
nsXPTInterfaceInfo = mkstruct(
"mIID",
"mName",
"mParent",
"mBuiltinClass",
"mMainProcessScriptableOnly",
"mMethods",
"mConsts",
"mFunction",
"mNumMethods",
"mNumConsts",
)
##########################################################
# Ensure these fields are in the same order as xptinfo.h #
##########################################################
nsXPTType = mkstruct(
"mTag",
"mInParam",
"mOutParam",
"mOptionalParam",
"mData1",
"mData2",
)
##########################################################
# Ensure these fields are in the same order as xptinfo.h #
##########################################################
nsXPTParamInfo = mkstruct(
"mType",
)
##########################################################
# Ensure these fields are in the same order as xptinfo.h #
##########################################################
nsXPTMethodInfo = mkstruct(
"mName",
"mParams",
"mNumParams",
"mGetter",
"mSetter",
"mReflectable",
"mOptArgc",
"mContext",
"mHasRetval",
"mIsSymbol",
)
##########################################################
# Ensure these fields are in the same order as xptinfo.h #
##########################################################
nsXPTDOMObjectInfo = mkstruct(
"mUnwrap",
"mWrap",
"mCleanup",
)
##########################################################
# Ensure these fields are in the same order as xptinfo.h #
##########################################################
nsXPTConstantInfo = mkstruct(
"mName",
"mSigned",
"mValue",
)
# Helper functions for dealing with IIDs.
#
# Unfortunately, the way we represent IIDs in memory depends on the endianness
# of the target architecture. We store an nsIID as a 16-byte, 4-tuple of:
#
# (uint32_t, uint16_t, uint16_t, [uint8_t; 8])
#
# Unfortunately, this means that when we hash the bytes of the nsIID on a
# little-endian target system, we need to hash them in little-endian order.
# These functions let us split the input hexadecimal string into components,
# encoding each as a little-endian value, and producing an accurate bytearray.
#
# It would be nice to have a consistent representation of IIDs in memory such
# that we don't have to do these gymnastics to get an accurate hash.
def split_at_idxs(s, lengths):
idx = 0
for length in lengths:
yield s[idx : idx + length]
idx += length
assert idx == len(s)
def split_iid(iid): # Get the individual components out of an IID string.
iid = iid.replace("-", "") # Strip any '-' delimiters
return tuple(split_at_idxs(iid, (8, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2)))
@memoize
def iid_bytes(iid): # Get the byte representation of the IID for hashing.
bs = bytearray()
for num in split_iid(iid):
b = bytearray.fromhex(num)
# Match endianness of the target platform for each component
if buildconfig.substs["TARGET_ENDIANNESS"] == "little":
b.reverse()
bs += b
return bs
# Split a 16-bit integer into its high and low 8 bits
def splitint(i):
assert i < 2**16
return (i >> 8, i & 0xFF)
# Occasionally in xpconnect, we need to fabricate types to pass into the
# conversion methods. In some cases, these types need to be arrays, which hold
# indicies into the extra types array.
#
# These are some types which should have known indexes into the extra types
# array.
utility_types = [
{"tag": "TD_INT8"},
{"tag": "TD_UINT8"},
{"tag": "TD_INT16"},
{"tag": "TD_UINT16"},
{"tag": "TD_INT32"},
{"tag": "TD_UINT32"},
{"tag": "TD_INT64"},
{"tag": "TD_UINT64"},
{"tag": "TD_FLOAT"},
{"tag": "TD_DOUBLE"},
{"tag": "TD_BOOL"},
{"tag": "TD_CHAR"},
{"tag": "TD_WCHAR"},
{"tag": "TD_NSIDPTR"},
{"tag": "TD_PSTRING"},
{"tag": "TD_PWSTRING"},
{"tag": "TD_INTERFACE_IS_TYPE", "iid_is": 0},
]
# Core of the code generator. Takes a list of raw JSON XPT interfaces, and
# writes out a file containing the necessary static declarations into fd.
def link_to_cpp(interfaces, fd, header_fd):
# Perfect Hash from IID to interface.
iid_phf = PerfectHash(interfaces, PHFSIZE, key=lambda i: iid_bytes(i["uuid"]))
for idx, iface in enumerate(iid_phf.entries):
iface["idx"] = idx # Store the index in iid_phf of the entry.
# Perfect Hash from name to iid_phf index.
name_phf = PerfectHash(interfaces, PHFSIZE, key=lambda i: i["name"].encode("ascii"))
def interface_idx(name):
entry = name and name_phf.get_entry(name.encode("ascii"))
if entry:
return entry["idx"] + 1 # 1-based, use 0 as a sentinel.
return 0
# NOTE: State used while linking. This is done with closures rather than a
# class due to how this file's code evolved.
includes = set()
types = []
type_cache = {}
params = []
param_cache = {}
methods = []
max_params = 0
method_with_max_params = None
consts = []
domobjects = []
domobject_cache = {}
strings = OrderedDict()
def lower_uuid(uuid):
return (
"{0x%s, 0x%s, 0x%s, {0x%s, 0x%s, 0x%s, 0x%s, 0x%s, 0x%s, 0x%s, 0x%s}}"
% split_iid(uuid)
)
def lower_domobject(do):
assert do["tag"] == "TD_DOMOBJECT"
idx = domobject_cache.get(do["name"])
if idx is None:
idx = domobject_cache[do["name"]] = len(domobjects)
includes.add(do["headerFile"])
domobjects.append(
nsXPTDOMObjectInfo(
"%d = %s" % (idx, do["name"]),
# These methods are defined at the top of the generated file.
mUnwrap="UnwrapDOMObject<mozilla::dom::prototypes::id::%s, %s>"
% (do["name"], do["native"]),
mWrap="WrapDOMObject<%s>" % do["native"],
mCleanup="CleanupDOMObject<%s>" % do["native"],
)
)
return idx
def lower_string(s):
if s in strings:
# We've already seen this string.
return strings[s]
elif len(strings):
# Get the last string we inserted (should be O(1) on OrderedDict).
last_s = next(reversed(strings))
strings[s] = strings[last_s] + len(last_s) + 1
else:
strings[s] = 0
return strings[s]
def lower_symbol(s):
return "uint32_t(JS::SymbolCode::%s)" % s
def lower_extra_type(type):
key = describe_type(type)
idx = type_cache.get(key)
if idx is None:
idx = type_cache[key] = len(types)
# Make sure `types` is the proper length for any recursive calls
# to `lower_extra_type` that might happen from within `lower_type`.
types.append(None)
realtype = lower_type(type)
types[idx] = realtype
return idx
def describe_type(type): # Create the type's documentation comment.
tag = type["tag"][3:].lower()
if tag == "legacy_array":
return "%s[size_is=%d]" % (describe_type(type["element"]), type["size_is"])
elif tag == "array":
return "Array<%s>" % describe_type(type["element"])
elif tag == "interface_type" or tag == "domobject":
return type["name"]
elif tag == "interface_is_type":
return "iid_is(%d)" % type["iid_is"]
elif tag.endswith("_size_is"):
return "%s(size_is=%d)" % (tag, type["size_is"])
return tag
def lower_type(type, in_=False, out=False, optional=False):
tag = type["tag"]
d1 = d2 = 0
if tag == "TD_LEGACY_ARRAY":
d1 = type["size_is"]
d2 = lower_extra_type(type["element"])
elif tag == "TD_ARRAY":
# NOTE: TD_ARRAY can hold 16 bits of type index, while
# TD_LEGACY_ARRAY can only hold 8.
d1, d2 = splitint(lower_extra_type(type["element"]))
elif tag == "TD_INTERFACE_TYPE":
d1, d2 = splitint(interface_idx(type["name"]))
elif tag == "TD_INTERFACE_IS_TYPE":
d1 = type["iid_is"]
elif tag == "TD_DOMOBJECT":
d1, d2 = splitint(lower_domobject(type))
elif tag.endswith("_SIZE_IS"):
d1 = type["size_is"]
assert d1 < 256 and d2 < 256, "Data values too large"
return nsXPTType(
describe_type(type),
mTag=tag,
mData1=d1,
mData2=d2,
mInParam=in_,
mOutParam=out,
mOptionalParam=optional,
)
def lower_param(param, paramname):
params.append(
nsXPTParamInfo(
"%d = %s" % (len(params), paramname),
mType=lower_type(
param["type"],
in_="in" in param["flags"],
out="out" in param["flags"],
optional="optional" in param["flags"],
),
)
)
def lower_method(method, ifacename, builtinclass):
methodname = "%s::%s" % (ifacename, method["name"])
isSymbol = "symbol" in method["flags"]
reflectable = "hidden" not in method["flags"]
if not reflectable and builtinclass:
# Hide the parameters of methods that can't be called from JS and
# are on builtinclass interfaces to reduce the size of the file.
paramidx = name = numparams = 0
else:
if isSymbol:
name = lower_symbol(method["name"])
else:
name = lower_string(method["name"])
numparams = len(method["params"])
# Check cache for parameters
cachekey = json.dumps(method["params"], sort_keys=True)
paramidx = param_cache.get(cachekey)
if paramidx is None:
paramidx = param_cache[cachekey] = len(params)
for idx, param in enumerate(method["params"]):
lower_param(param, "%s[%d]" % (methodname, idx))
nonlocal max_params, method_with_max_params
if numparams > max_params:
max_params = numparams
method_with_max_params = methodname
methods.append(
nsXPTMethodInfo(
"%d = %s" % (len(methods), methodname),
mName=name,
mParams=paramidx,
mNumParams=numparams,
# Flags
mGetter="getter" in method["flags"],
mSetter="setter" in method["flags"],
mReflectable=reflectable,
mOptArgc="optargc" in method["flags"],
mContext="jscontext" in method["flags"],
mHasRetval="hasretval" in method["flags"],
mIsSymbol=isSymbol,
)
)
def lower_const(const, ifacename):
assert const["type"]["tag"] in [
"TD_INT16",
"TD_INT32",
"TD_UINT8",
"TD_UINT16",
"TD_UINT32",
]
is_signed = const["type"]["tag"] in ["TD_INT16", "TD_INT32"]
# Constants are always either signed or unsigned 16 or 32 bit integers,
# which we will only need to convert to JS values. To save on space,
# don't bother storing the type, and instead just store a 32-bit
# unsigned integer, and stash whether to interpret it as signed.
consts.append(
nsXPTConstantInfo(
"%d = %s::%s" % (len(consts), ifacename, const["name"]),
mName=lower_string(const["name"]),
mSigned=is_signed,
mValue="(uint32_t)%d" % const["value"],
)
)
def ancestors(iface):
yield iface
while iface["parent"]:
iface = name_phf.get_entry(iface["parent"].encode("ascii"))
yield iface
def lower_iface(iface):
method_cnt = sum(len(i["methods"]) for i in ancestors(iface))
const_cnt = sum(len(i["consts"]) for i in ancestors(iface))
# The number of maximum methods is not arbitrary. It is the same value
# as in xpcom/reflect/xptcall/genstubs.pl; do not change this value
# without changing that one or you WILL see problems.
#
# In addition, mNumMethods and mNumConsts are stored as a 8-bit ints,
# meaning we cannot exceed 255 methods/consts on any interface.
assert method_cnt < 250, "%s has too many methods" % iface["name"]
assert const_cnt < 256, "%s has too many constants" % iface["name"]
builtinclass = "builtinclass" in iface["flags"]
# Store the lowered interface as 'cxx' on the iface object.
iface["cxx"] = nsXPTInterfaceInfo(
"%d = %s" % (iface["idx"], iface["name"]),
mIID=lower_uuid(iface["uuid"]),
mName=lower_string(iface["name"]),
mParent=interface_idx(iface["parent"]),
mMethods=len(methods),
mNumMethods=method_cnt,
mConsts=len(consts),
mNumConsts=const_cnt,
# Flags
mBuiltinClass=builtinclass,
mMainProcessScriptableOnly="main_process_only" in iface["flags"],
mFunction="function" in iface["flags"],
)
# Lower methods and constants used by this interface
for method in iface["methods"]:
lower_method(method, iface["name"], builtinclass)
for const in iface["consts"]:
lower_const(const, iface["name"])
# Lower the types which have fixed indexes first, and check that the indexes
# seem correct.
for expected, ty in enumerate(utility_types):
got = lower_extra_type(ty)
assert got == expected, "Wrong index when lowering"
# Lower interfaces in the order of the IID phf's entries lookup.
for iface in iid_phf.entries:
lower_iface(iface)
# Write out the final output files
fd.write("/* THIS FILE WAS GENERATED BY xptcodegen.py - DO NOT EDIT */\n\n")
header_fd.write("/* THIS FILE WAS GENERATED BY xptcodegen.py - DO NOT EDIT */\n\n")
header_fd.write(
"""
#ifndef xptdata_h
#define xptdata_h
enum class nsXPTInterface : uint16_t {
"""
)
for entry in iid_phf.entries:
header_fd.write(" %s,\n" % entry["name"])
header_fd.write(
"""
};
#endif
"""
)
# Include any bindings files which we need to include for webidl types
for include in sorted(includes):
fd.write('#include "%s"\n' % include)
# Write out our header
fd.write(
"""
#include "xptinfo.h"
#include "mozilla/PerfectHash.h"
#include "mozilla/dom/BindingUtils.h"
// These template methods are specialized to be used in the sDOMObjects table.
template<mozilla::dom::prototypes::ID PrototypeID, typename T>
static nsresult UnwrapDOMObject(JS::Handle<JS::Value> aHandle, void** aObj, JSContext* aCx)
{
RefPtr<T> p;
nsresult rv = mozilla::dom::UnwrapObject<PrototypeID, T>(aHandle, p, aCx);
p.forget(aObj);
return rv;
}
template<typename T>
static bool WrapDOMObject(JSContext* aCx, void* aObj, JS::MutableHandle<JS::Value> aHandle)
{
return mozilla::dom::GetOrCreateDOMReflector(aCx, reinterpret_cast<T*>(aObj), aHandle);
}
template<typename T>
static void CleanupDOMObject(void* aObj)
{
RefPtr<T> p = already_AddRefed<T>(reinterpret_cast<T*>(aObj));
}
namespace xpt {
namespace detail {
"""
)
# Static data arrays
def array(ty, name, els):
fd.write(
"const %s %s[] = {%s\n};\n\n"
% (ty, name, ",".join(indented("\n" + str(e)) for e in els))
)
array("nsXPTType", "sTypes", types)
array("nsXPTParamInfo", "sParams", params)
array("nsXPTMethodInfo", "sMethods", methods)
# Verify that stack-allocated buffers will do for xptcall implementations.
msg = (
"Too many method arguments in %s. "
"Either reduce the number of arguments "
"or increase PARAM_BUFFER_COUNT." % method_with_max_params
)
fd.write('static_assert(%s <= PARAM_BUFFER_COUNT, "%s");\n\n' % (max_params, msg))
array("nsXPTDOMObjectInfo", "sDOMObjects", domobjects)
array("nsXPTConstantInfo", "sConsts", consts)
# The strings array. We write out individual characters to avoid MSVC restrictions.
fd.write("const char sStrings[] = {\n")
for s, off in strings.items():
fd.write(" // %d = %s\n '%s','\\0',\n" % (off, s, "','".join(s)))
fd.write("};\n\n")
# Build the perfect hash table for InterfaceByIID
fd.write(
iid_phf.cxx_codegen(
name="InterfaceByIID",
entry_type="nsXPTInterfaceInfo",
entries_name="sInterfaces",
lower_entry=lambda iface: iface["cxx"],
# Check that the IIDs match to support IID keys not in the map.
return_type="const nsXPTInterfaceInfo*",
return_entry="return entry.IID().Equals(aKey) ? &entry : nullptr;",
key_type="const nsIID&",
key_bytes="reinterpret_cast<const char*>(&aKey)",
key_length="sizeof(nsIID)",
)
)
fd.write("\n")
# Build the perfect hash table for InterfaceByName
fd.write(
name_phf.cxx_codegen(
name="InterfaceByName",
entry_type="uint16_t",
lower_entry=lambda iface: "%-4d /* %s */" % (iface["idx"], iface["name"]),
# Get the actual nsXPTInterfaceInfo from sInterfaces, and
# double-check that names match.
return_type="const nsXPTInterfaceInfo*",
return_entry="return strcmp(sInterfaces[entry].Name(), aKey) == 0"
" ? &sInterfaces[entry] : nullptr;",
)
)
fd.write("\n")
# Generate some checks that the indexes for the utility types match the
# declared ones in xptinfo.h
for idx, ty in enumerate(utility_types):
fd.write(
'static_assert(%d == (uint8_t)nsXPTType::Idx::%s, "Bad idx");\n'
% (idx, ty["tag"][3:])
)
fd.write(
"""
const uint16_t sInterfacesSize = std::size(sInterfaces);
} // namespace detail
} // namespace xpt
"""
)
def link_and_write(files, outfile, outheader):
interfaces = []
for file in files:
with open(file, "r") as fd:
interfaces += json.load(fd)
iids = set()
names = set()
for interface in interfaces:
assert interface["uuid"] not in iids, "duplicated UUID %s" % interface["uuid"]
assert interface["name"] not in names, "duplicated name %s" % interface["name"]
iids.add(interface["uuid"])
names.add(interface["name"])
# All forwards referenced from scriptable members must be known (as scriptable).
for iface in interfaces:
for ref in iface["needs_scriptable"]:
if not ref in names:
raise Exception(
f"Scriptable member in {iface['name']} references unknown {ref}. "
"Forward must be a known and [scriptable] interface, "
"or the referencing member marked with [noscript]."
)
link_to_cpp(interfaces, outfile, outheader)
def main():
import sys
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("outfile", help="Output C++ file to generate")
parser.add_argument("outheader", help="Output C++ header file to generate")
parser.add_argument("xpts", nargs="*", help="source xpt files")
args = parser.parse_args(sys.argv[1:])
with open(args.outfile, "w") as fd, open(args.outheader, "w") as header_fd:
link_and_write(args.xpts, fd, header_fd)
if __name__ == "__main__":
main()