Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include "LulCommonExt.h"
#include "LulDwarfExt.h"
#include "LulDwarfInt.h"
#include "LulTestInfrastructure.h"
using lul_test::CFISection;
using lul_test::test_assembler::kBigEndian;
using lul_test::test_assembler::kLittleEndian;
using lul_test::test_assembler::Label;
using testing::_;
using testing::InSequence;
using testing::Return;
using testing::Sequence;
using testing::Test;
#define PERHAPS_WRITE_DEBUG_FRAME_FILE(name, section) /**/
#define PERHAPS_WRITE_EH_FRAME_FILE(name, section) /**/
// Set this to 0 to make LUL be completely silent during tests.
// Set it to 1 to get logging output from LUL, presumably for
// the purpose of debugging it.
#define DEBUG_LUL_TEST_DWARF 0
// LUL needs a callback for its logging sink.
static void gtest_logging_sink_for_LulTestDwarf(const char* str) {
if (DEBUG_LUL_TEST_DWARF == 0) {
return;
}
// Ignore any trailing \n, since LOG will add one anyway.
size_t n = strlen(str);
if (n > 0 && str[n - 1] == '\n') {
char* tmp = strdup(str);
tmp[n - 1] = 0;
fprintf(stderr, "LUL-in-gtest: %s\n", tmp);
free(tmp);
} else {
fprintf(stderr, "LUL-in-gtest: %s\n", str);
}
}
namespace lul {
class MockCallFrameInfoHandler : public CallFrameInfo::Handler {
public:
MOCK_METHOD6(Entry,
bool(size_t offset, uint64 address, uint64 length, uint8 version,
const std::string& augmentation, unsigned return_address));
MOCK_METHOD2(UndefinedRule, bool(uint64 address, int reg));
MOCK_METHOD2(SameValueRule, bool(uint64 address, int reg));
MOCK_METHOD4(OffsetRule,
bool(uint64 address, int reg, int base_register, long offset));
MOCK_METHOD4(ValOffsetRule,
bool(uint64 address, int reg, int base_register, long offset));
MOCK_METHOD3(RegisterRule, bool(uint64 address, int reg, int base_register));
MOCK_METHOD3(ExpressionRule,
bool(uint64 address, int reg, const ImageSlice& expression));
MOCK_METHOD3(ValExpressionRule,
bool(uint64 address, int reg, const ImageSlice& expression));
MOCK_METHOD0(End, bool());
MOCK_METHOD2(PersonalityRoutine, bool(uint64 address, bool indirect));
MOCK_METHOD2(LanguageSpecificDataArea, bool(uint64 address, bool indirect));
MOCK_METHOD0(SignalHandler, bool());
};
class MockCallFrameErrorReporter : public CallFrameInfo::Reporter {
public:
MockCallFrameErrorReporter()
: Reporter(gtest_logging_sink_for_LulTestDwarf, "mock filename",
"mock section") {}
MOCK_METHOD2(Incomplete, void(uint64, CallFrameInfo::EntryKind));
MOCK_METHOD1(EarlyEHTerminator, void(uint64));
MOCK_METHOD2(CIEPointerOutOfRange, void(uint64, uint64));
MOCK_METHOD2(BadCIEId, void(uint64, uint64));
MOCK_METHOD2(UnrecognizedVersion, void(uint64, int version));
MOCK_METHOD2(UnrecognizedAugmentation, void(uint64, const string&));
MOCK_METHOD2(InvalidPointerEncoding, void(uint64, uint8));
MOCK_METHOD2(UnusablePointerEncoding, void(uint64, uint8));
MOCK_METHOD2(RestoreInCIE, void(uint64, uint64));
MOCK_METHOD3(BadInstruction, void(uint64, CallFrameInfo::EntryKind, uint64));
MOCK_METHOD3(NoCFARule, void(uint64, CallFrameInfo::EntryKind, uint64));
MOCK_METHOD3(EmptyStateStack, void(uint64, CallFrameInfo::EntryKind, uint64));
MOCK_METHOD3(ClearingCFARule, void(uint64, CallFrameInfo::EntryKind, uint64));
};
struct CFIFixture {
enum { kCFARegister = CallFrameInfo::Handler::kCFARegister };
CFIFixture() {
// Default expectations for the data handler.
//
// - Leave Entry and End without expectations, as it's probably a
// good idea to set those explicitly in each test.
//
// - Expect the *Rule functions to not be called,
// so that each test can simply list the calls they expect.
//
// I gather I could use StrictMock for this, but the manual seems
// to suggest using that only as a last resort, and this isn't so
// bad.
EXPECT_CALL(handler, UndefinedRule(_, _)).Times(0);
EXPECT_CALL(handler, SameValueRule(_, _)).Times(0);
EXPECT_CALL(handler, OffsetRule(_, _, _, _)).Times(0);
EXPECT_CALL(handler, ValOffsetRule(_, _, _, _)).Times(0);
EXPECT_CALL(handler, RegisterRule(_, _, _)).Times(0);
EXPECT_CALL(handler, ExpressionRule(_, _, _)).Times(0);
EXPECT_CALL(handler, ValExpressionRule(_, _, _)).Times(0);
EXPECT_CALL(handler, PersonalityRoutine(_, _)).Times(0);
EXPECT_CALL(handler, LanguageSpecificDataArea(_, _)).Times(0);
EXPECT_CALL(handler, SignalHandler()).Times(0);
// Default expectations for the error/warning reporer.
EXPECT_CALL(reporter, Incomplete(_, _)).Times(0);
EXPECT_CALL(reporter, EarlyEHTerminator(_)).Times(0);
EXPECT_CALL(reporter, CIEPointerOutOfRange(_, _)).Times(0);
EXPECT_CALL(reporter, BadCIEId(_, _)).Times(0);
EXPECT_CALL(reporter, UnrecognizedVersion(_, _)).Times(0);
EXPECT_CALL(reporter, UnrecognizedAugmentation(_, _)).Times(0);
EXPECT_CALL(reporter, InvalidPointerEncoding(_, _)).Times(0);
EXPECT_CALL(reporter, UnusablePointerEncoding(_, _)).Times(0);
EXPECT_CALL(reporter, RestoreInCIE(_, _)).Times(0);
EXPECT_CALL(reporter, BadInstruction(_, _, _)).Times(0);
EXPECT_CALL(reporter, NoCFARule(_, _, _)).Times(0);
EXPECT_CALL(reporter, EmptyStateStack(_, _, _)).Times(0);
EXPECT_CALL(reporter, ClearingCFARule(_, _, _)).Times(0);
}
MockCallFrameInfoHandler handler;
MockCallFrameErrorReporter reporter;
};
class LulDwarfCFI : public CFIFixture, public Test {};
TEST_F(LulDwarfCFI, EmptyRegion) {
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
static const char data[1] = {42};
ByteReader reader(ENDIANNESS_BIG);
CallFrameInfo parser(data, 0, &reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
TEST_F(LulDwarfCFI, IncompleteLength32) {
CFISection section(kBigEndian, 8);
section
// Not even long enough for an initial length.
.D16(0xa0f)
// Padding to keep valgrind happy. We subtract these off when we
// construct the parser.
.D16(0);
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown))
.WillOnce(Return());
string contents;
ASSERT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_BIG);
reader.SetAddressSize(8);
CallFrameInfo parser(contents.data(), contents.size() - 2, &reader, &handler,
&reporter);
EXPECT_FALSE(parser.Start());
}
TEST_F(LulDwarfCFI, IncompleteLength64) {
CFISection section(kLittleEndian, 4);
section
// An incomplete 64-bit DWARF initial length.
.D32(0xffffffff)
.D32(0x71fbaec2)
// Padding to keep valgrind happy. We subtract these off when we
// construct the parser.
.D32(0);
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown))
.WillOnce(Return());
string contents;
ASSERT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_LITTLE);
reader.SetAddressSize(4);
CallFrameInfo parser(contents.data(), contents.size() - 4, &reader, &handler,
&reporter);
EXPECT_FALSE(parser.Start());
}
TEST_F(LulDwarfCFI, IncompleteId32) {
CFISection section(kBigEndian, 8);
section
.D32(3) // Initial length, not long enough for id
.D8(0xd7)
.D8(0xe5)
.D8(0xf1) // incomplete id
.CIEHeader(8727, 3983, 8889, 3, "")
.FinishEntry();
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown))
.WillOnce(Return());
string contents;
ASSERT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_BIG);
reader.SetAddressSize(8);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_FALSE(parser.Start());
}
TEST_F(LulDwarfCFI, BadId32) {
CFISection section(kBigEndian, 8);
section
.D32(0x100) // Initial length
.D32(0xe802fade) // bogus ID
.Append(0x100 - 4, 0x42); // make the length true
section.CIEHeader(1672, 9872, 8529, 3, "").FinishEntry();
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
EXPECT_CALL(reporter, CIEPointerOutOfRange(_, 0xe802fade)).WillOnce(Return());
string contents;
ASSERT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_BIG);
reader.SetAddressSize(8);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_FALSE(parser.Start());
}
// A lone CIE shouldn't cause any handler calls.
TEST_F(LulDwarfCFI, SingleCIE) {
CFISection section(kLittleEndian, 4);
section.CIEHeader(0xffe799a8, 0x3398dcdd, 0x6e9683de, 3, "");
section.Append(10, lul::DW_CFA_nop);
section.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("SingleCIE", section);
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_LITTLE);
reader.SetAddressSize(4);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_TRUE(parser.Start());
}
// One FDE, one CIE.
TEST_F(LulDwarfCFI, OneFDE) {
CFISection section(kBigEndian, 4);
Label cie;
section.Mark(&cie)
.CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "")
.FinishEntry()
.FDEHeader(cie, 0x7714740d, 0x3d5a10cd)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("OneFDE", section);
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0x7714740d, 0x3d5a10cd, 3, "", 0x6b6efb87))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_BIG);
reader.SetAddressSize(4);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_TRUE(parser.Start());
}
// Two FDEs share a CIE.
TEST_F(LulDwarfCFI, TwoFDEsOneCIE) {
CFISection section(kBigEndian, 4);
Label cie;
section
// First FDE. readelf complains about this one because it makes
// a forward reference to its CIE.
.FDEHeader(cie, 0xa42744df, 0xa3b42121)
.FinishEntry()
// CIE.
.Mark(&cie)
.CIEHeader(0x04f7dc7b, 0x3d00c05f, 0xbd43cb59, 3, "")
.FinishEntry()
// Second FDE.
.FDEHeader(cie, 0x6057d391, 0x700f608d)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsOneCIE", section);
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0xa42744df, 0xa3b42121, 3, "", 0xbd43cb59))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0x6057d391, 0x700f608d, 3, "", 0xbd43cb59))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_BIG);
reader.SetAddressSize(4);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_TRUE(parser.Start());
}
// Two FDEs, two CIEs.
TEST_F(LulDwarfCFI, TwoFDEsTwoCIEs) {
CFISection section(kLittleEndian, 8);
Label cie1, cie2;
section
// First CIE.
.Mark(&cie1)
.CIEHeader(0x694d5d45, 0x4233221b, 0xbf45e65a, 3, "")
.FinishEntry()
// First FDE which cites second CIE. readelf complains about
// this one because it makes a forward reference to its CIE.
.FDEHeader(cie2, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL)
.FinishEntry()
// Second FDE, which cites first CIE.
.FDEHeader(cie1, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL)
.FinishEntry()
// Second CIE.
.Mark(&cie2)
.CIEHeader(0xfba3fad7, 0x6287e1fd, 0x61d2c581, 2, "")
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsTwoCIEs", section);
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL,
2, "", 0x61d2c581))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL,
3, "", 0xbf45e65a))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_LITTLE);
reader.SetAddressSize(8);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_TRUE(parser.Start());
}
// An FDE whose CIE specifies a version we don't recognize.
TEST_F(LulDwarfCFI, BadVersion) {
CFISection section(kBigEndian, 4);
Label cie1, cie2;
section.Mark(&cie1)
.CIEHeader(0xca878cf0, 0x7698ec04, 0x7b616f54, 0x52, "")
.FinishEntry()
// We should skip this entry, as its CIE specifies a version we
// don't recognize.
.FDEHeader(cie1, 0x08852292, 0x2204004a)
.FinishEntry()
// Despite the above, we should visit this entry.
.Mark(&cie2)
.CIEHeader(0x7c3ae7c9, 0xb9b9a512, 0x96cb3264, 3, "")
.FinishEntry()
.FDEHeader(cie2, 0x2094735a, 0x6e875501)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("BadVersion", section);
EXPECT_CALL(reporter, UnrecognizedVersion(_, 0x52)).WillOnce(Return());
{
InSequence s;
// We should see no mention of the first FDE, but we should get
// a call to Entry for the second.
EXPECT_CALL(handler, Entry(_, 0x2094735a, 0x6e875501, 3, "", 0x96cb3264))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_BIG);
reader.SetAddressSize(4);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_FALSE(parser.Start());
}
// An FDE whose CIE specifies an augmentation we don't recognize.
TEST_F(LulDwarfCFI, BadAugmentation) {
CFISection section(kBigEndian, 4);
Label cie1, cie2;
section.Mark(&cie1)
.CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "spaniels!")
.FinishEntry()
// We should skip this entry, as its CIE specifies an
// augmentation we don't recognize.
.FDEHeader(cie1, 0x7714740d, 0x3d5a10cd)
.FinishEntry()
// Despite the above, we should visit this entry.
.Mark(&cie2)
.CIEHeader(0xf8bc4399, 0x8cf09931, 0xf2f519b2, 3, "")
.FinishEntry()
.FDEHeader(cie2, 0x7bf0fda0, 0xcbcd28d8)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("BadAugmentation", section);
EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "spaniels!"))
.WillOnce(Return());
{
InSequence s;
// We should see no mention of the first FDE, but we should get
// a call to Entry for the second.
EXPECT_CALL(handler, Entry(_, 0x7bf0fda0, 0xcbcd28d8, 3, "", 0xf2f519b2))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_BIG);
reader.SetAddressSize(4);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_FALSE(parser.Start());
}
// The return address column field is a byte in CFI version 1
// (DWARF2), but a ULEB128 value in version 3 (DWARF3).
TEST_F(LulDwarfCFI, CIEVersion1ReturnColumn) {
CFISection section(kBigEndian, 4);
Label cie;
section
// CIE, using the version 1 format: return column is a ubyte.
.Mark(&cie)
// Use a value for the return column that is parsed differently
// as a ubyte and as a ULEB128.
.CIEHeader(0xbcdea24f, 0x5be28286, 0x9f, 1, "")
.FinishEntry()
// FDE, citing that CIE.
.FDEHeader(cie, 0xb8d347b5, 0x825e55dc)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion1ReturnColumn", section);
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0xb8d347b5, 0x825e55dc, 1, "", 0x9f))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_BIG);
reader.SetAddressSize(4);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_TRUE(parser.Start());
}
// The return address column field is a byte in CFI version 1
// (DWARF2), but a ULEB128 value in version 3 (DWARF3).
TEST_F(LulDwarfCFI, CIEVersion3ReturnColumn) {
CFISection section(kBigEndian, 4);
Label cie;
section
// CIE, using the version 3 format: return column is a ULEB128.
.Mark(&cie)
// Use a value for the return column that is parsed differently
// as a ubyte and as a ULEB128.
.CIEHeader(0x0ab4758d, 0xc010fdf7, 0x89, 3, "")
.FinishEntry()
// FDE, citing that CIE.
.FDEHeader(cie, 0x86763f2b, 0x2a66dc23)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion3ReturnColumn", section);
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0x86763f2b, 0x2a66dc23, 3, "", 0x89))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader reader(ENDIANNESS_BIG);
reader.SetAddressSize(4);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter);
EXPECT_TRUE(parser.Start());
}
struct CFIInsnFixture : public CFIFixture {
CFIInsnFixture() {
data_factor = 0xb6f;
return_register = 0x9be1ed9f;
version = 3;
cfa_base_register = 0x383a3aa;
cfa_offset = 0xf748;
}
// Prepare SECTION to receive FDE instructions.
//
// - Append a stock CIE header that establishes the fixture's
// code_factor, data_factor, return_register, version, and
// augmentation values.
// - Have the CIE set up a CFA rule using cfa_base_register and
// cfa_offset.
// - Append a stock FDE header, referring to the above CIE, for the
// fde_size bytes at fde_start. Choose fde_start and fde_size
// appropriately for the section's address size.
// - Set appropriate expectations on handler in sequence s for the
// frame description entry and the CIE's CFA rule.
//
// On return, SECTION is ready to have FDE instructions appended to
// it, and its FinishEntry member called.
void StockCIEAndFDE(CFISection* section) {
// Choose appropriate constants for our address size.
if (section->AddressSize() == 4) {
fde_start = 0xc628ecfbU;
fde_size = 0x5dee04a2;
code_factor = 0x60b;
} else {
assert(section->AddressSize() == 8);
fde_start = 0x0005c57ce7806bd3ULL;
fde_size = 0x2699521b5e333100ULL;
code_factor = 0x01008e32855274a8ULL;
}
// Create the CIE.
(*section)
.Mark(&cie_label)
.CIEHeader(code_factor, data_factor, return_register, version, "")
.D8(lul::DW_CFA_def_cfa)
.ULEB128(cfa_base_register)
.ULEB128(cfa_offset)
.FinishEntry();
// Create the FDE.
section->FDEHeader(cie_label, fde_start, fde_size);
// Expect an Entry call for the FDE and a ValOffsetRule call for the
// CIE's CFA rule.
EXPECT_CALL(handler,
Entry(_, fde_start, fde_size, version, "", return_register))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister,
cfa_base_register, cfa_offset))
.InSequence(s)
.WillOnce(Return(true));
}
// Run the contents of SECTION through a CallFrameInfo parser,
// expecting parser.Start to return SUCCEEDS. Caller may optionally
// supply, via READER, its own ByteReader. If that's absent, a
// local one is used.
void ParseSection(CFISection* section, bool succeeds = true,
ByteReader* reader = nullptr) {
string contents;
EXPECT_TRUE(section->GetContents(&contents));
lul::Endianness endianness;
if (section->endianness() == kBigEndian)
endianness = ENDIANNESS_BIG;
else {
assert(section->endianness() == kLittleEndian);
endianness = ENDIANNESS_LITTLE;
}
ByteReader local_reader(endianness);
ByteReader* reader_to_use = reader ? reader : &local_reader;
reader_to_use->SetAddressSize(section->AddressSize());
CallFrameInfo parser(contents.data(), contents.size(), reader_to_use,
&handler, &reporter);
if (succeeds)
EXPECT_TRUE(parser.Start());
else
EXPECT_FALSE(parser.Start());
}
Label cie_label;
Sequence s;
uint64 code_factor;
int data_factor;
unsigned return_register;
unsigned version;
unsigned cfa_base_register;
int cfa_offset;
uint64 fde_start, fde_size;
};
class LulDwarfCFIInsn : public CFIInsnFixture, public Test {};
TEST_F(LulDwarfCFIInsn, DW_CFA_set_loc) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_set_loc)
.D32(0xb1ee3e7a)
// Use DW_CFA_def_cfa to force a handler call that we can use to
// check the effect of the DW_CFA_set_loc.
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x4defb431)
.ULEB128(0x6d17b0ee)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_set_loc", section);
EXPECT_CALL(handler,
ValOffsetRule(0xb1ee3e7a, kCFARegister, 0x4defb431, 0x6d17b0ee))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc) {
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
section
.D8(lul::DW_CFA_advance_loc | 0x2a)
// Use DW_CFA_def_cfa to force a handler call that we can use to
// check the effect of the DW_CFA_advance_loc.
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x5bbb3715)
.ULEB128(0x0186c7bf)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc", section);
EXPECT_CALL(handler, ValOffsetRule(fde_start + 0x2a * code_factor,
kCFARegister, 0x5bbb3715, 0x0186c7bf))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc1) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_advance_loc1)
.D8(0xd8)
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x69d5696a)
.ULEB128(0x1eb7fc93)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc1", section);
EXPECT_CALL(handler, ValOffsetRule((fde_start + 0xd8 * code_factor),
kCFARegister, 0x69d5696a, 0x1eb7fc93))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc2) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_advance_loc2)
.D16(0x3adb)
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x3a368bed)
.ULEB128(0x3194ee37)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc2", section);
EXPECT_CALL(handler, ValOffsetRule((fde_start + 0x3adb * code_factor),
kCFARegister, 0x3a368bed, 0x3194ee37))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc4) {
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_advance_loc4)
.D32(0x15813c88)
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x135270c5)
.ULEB128(0x24bad7cb)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc4", section);
EXPECT_CALL(handler, ValOffsetRule((fde_start + 0x15813c88ULL * code_factor),
kCFARegister, 0x135270c5, 0x24bad7cb))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_MIPS_advance_loc8) {
code_factor = 0x2d;
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_MIPS_advance_loc8)
.D64(0x3c4f3945b92c14ULL)
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0xe17ed602)
.ULEB128(0x3d162e7f)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc8", section);
EXPECT_CALL(handler,
ValOffsetRule((fde_start + 0x3c4f3945b92c14ULL * code_factor),
kCFARegister, 0xe17ed602, 0x3d162e7f))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x4e363a85)
.ULEB128(0x815f9aa7)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_def_cfa", section);
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x4e363a85, 0x815f9aa7))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_sf) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_def_cfa_sf)
.ULEB128(0x8ccb32b7)
.LEB128(0x9ea)
.D8(lul::DW_CFA_def_cfa_sf)
.ULEB128(0x9b40f5da)
.LEB128(-0x40a2)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x8ccb32b7,
0x9ea * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x9b40f5da,
-0x40a2 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_register) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_def_cfa_register).ULEB128(0x3e7e9363).FinishEntry();
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x3e7e9363, cfa_offset))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
// DW_CFA_def_cfa_register should have no effect when applied to a
// non-base/offset rule.
TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_registerBadRule) {
ByteReader reader(ENDIANNESS_BIG);
CFISection section(kBigEndian, 4);
ImageSlice expr("needle in a haystack");
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_def_cfa_expression)
.Block(expr)
.D8(lul::DW_CFA_def_cfa_register)
.ULEB128(0xf1b49e49)
.FinishEntry();
EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister, expr))
.WillRepeatedly(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_offset) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_def_cfa_offset).ULEB128(0x1e8e3b9b).FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register,
0x1e8e3b9b))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_offset_sf) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_def_cfa_offset_sf)
.LEB128(0x970)
.D8(lul::DW_CFA_def_cfa_offset_sf)
.LEB128(-0x2cd)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register,
0x970 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register,
-0x2cd * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
// DW_CFA_def_cfa_offset should have no effect when applied to a
// non-base/offset rule.
TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_offsetBadRule) {
ByteReader reader(ENDIANNESS_BIG);
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
ImageSlice expr("six ways to Sunday");
section.D8(lul::DW_CFA_def_cfa_expression)
.Block(expr)
.D8(lul::DW_CFA_def_cfa_offset)
.ULEB128(0x1e8e3b9b)
.FinishEntry();
EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister, expr))
.WillRepeatedly(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_expression) {
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 8);
ImageSlice expr("eating crow");
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_def_cfa_expression).Block(expr).FinishEntry();
EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister, expr))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_undefined) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_undefined).ULEB128(0x300ce45d).FinishEntry();
EXPECT_CALL(handler, UndefinedRule(fde_start, 0x300ce45d))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_same_value) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_same_value).ULEB128(0x3865a760).FinishEntry();
EXPECT_CALL(handler, SameValueRule(fde_start, 0x3865a760))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_offset) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_offset | 0x2c).ULEB128(0x9f6).FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x2c, kCFARegister, 0x9f6 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_offset_extended) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_offset_extended)
.ULEB128(0x402b)
.ULEB128(0xb48)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x402b, kCFARegister, 0xb48 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_offset_extended_sf) {
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_offset_extended_sf)
.ULEB128(0x997c23ee)
.LEB128(0x2d00)
.D8(lul::DW_CFA_offset_extended_sf)
.ULEB128(0x9519eb82)
.LEB128(-0xa77)
.FinishEntry();
EXPECT_CALL(handler, OffsetRule(fde_start, 0x997c23ee, kCFARegister,
0x2d00 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(fde_start, 0x9519eb82, kCFARegister,
-0xa77 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_val_offset) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_val_offset)
.ULEB128(0x623562fe)
.ULEB128(0x673)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x623562fe, kCFARegister,
0x673 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_val_offset_sf) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_val_offset_sf)
.ULEB128(0x6f4f)
.LEB128(0xaab)
.D8(lul::DW_CFA_val_offset_sf)
.ULEB128(0x2483)
.LEB128(-0x8a2)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x6f4f, kCFARegister,
0xaab * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x2483, kCFARegister,
-0x8a2 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_register) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_register)
.ULEB128(0x278d18f9)
.ULEB128(0x1a684414)
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0x278d18f9, 0x1a684414))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_expression) {
ByteReader reader(ENDIANNESS_BIG);
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
ImageSlice expr("plus ça change, plus c'est la même chose");
section.D8(lul::DW_CFA_expression)
.ULEB128(0xa1619fb2)
.Block(expr)
.FinishEntry();
EXPECT_CALL(handler, ExpressionRule(fde_start, 0xa1619fb2, expr))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_val_expression) {
ByteReader reader(ENDIANNESS_BIG);
CFISection section(kBigEndian, 4);
ImageSlice expr("he who has the gold makes the rules");
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_val_expression)
.ULEB128(0xc5e4a9e3)
.Block(expr)
.FinishEntry();
EXPECT_CALL(handler, ValExpressionRule(fde_start, 0xc5e4a9e3, expr))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_restore) {
CFISection section(kLittleEndian, 8);
code_factor = 0x01bd188a9b1fa083ULL;
data_factor = -0x1ac8;
return_register = 0x8c35b049;
version = 2;
fde_start = 0x2d70fe998298bbb1ULL;
fde_size = 0x46ccc2e63cf0b108ULL;
Label cie;
section.Mark(&cie)
.CIEHeader(code_factor, data_factor, return_register, version, "")
// Provide a CFA rule, because register rules require them.
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x6ca1d50e)
.ULEB128(0x372e38e8)
// Provide an offset(N) rule for register 0x3c.
.D8(lul::DW_CFA_offset | 0x3c)
.ULEB128(0xb348)
.FinishEntry()
// In the FDE...
.FDEHeader(cie, fde_start, fde_size)
// At a second address, provide a new offset(N) rule for register 0x3c.
.D8(lul::DW_CFA_advance_loc | 0x13)
.D8(lul::DW_CFA_offset | 0x3c)
.ULEB128(0x9a50)
// At a third address, restore the original rule for register 0x3c.
.D8(lul::DW_CFA_advance_loc | 0x01)
.D8(lul::DW_CFA_restore | 0x3c)
.FinishEntry();
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, fde_start, fde_size, version, "", return_register))
.WillOnce(Return(true));
// CIE's CFA rule.
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x6ca1d50e, 0x372e38e8))
.WillOnce(Return(true));
// CIE's rule for register 0x3c.
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x3c, kCFARegister, 0xb348 * data_factor))
.WillOnce(Return(true));
// FDE's rule for register 0x3c.
EXPECT_CALL(handler, OffsetRule(fde_start + 0x13 * code_factor, 0x3c,
kCFARegister, 0x9a50 * data_factor))
.WillOnce(Return(true));
// Restore CIE's rule for register 0x3c.
EXPECT_CALL(handler, OffsetRule(fde_start + (0x13 + 0x01) * code_factor,
0x3c, kCFARegister, 0xb348 * data_factor))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_restoreNoRule) {
CFISection section(kBigEndian, 4);
code_factor = 0x005f78143c1c3b82ULL;
data_factor = 0x25d0;
return_register = 0xe8;
version = 1;
fde_start = 0x4062e30f;
fde_size = 0x5302a389;
Label cie;
section.Mark(&cie)
.CIEHeader(code_factor, data_factor, return_register, version, "")
// Provide a CFA rule, because register rules require them.
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x470aa334)
.ULEB128(0x099ef127)
.FinishEntry()
// In the FDE...
.FDEHeader(cie, fde_start, fde_size)
// At a second address, provide an offset(N) rule for register 0x2c.
.D8(lul::DW_CFA_advance_loc | 0x7)
.D8(lul::DW_CFA_offset | 0x2c)
.ULEB128(0x1f47)
// At a third address, restore the (missing) CIE rule for register 0x2c.
.D8(lul::DW_CFA_advance_loc | 0xb)
.D8(lul::DW_CFA_restore | 0x2c)
.FinishEntry();
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, fde_start, fde_size, version, "", return_register))
.WillOnce(Return(true));
// CIE's CFA rule.
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x470aa334, 0x099ef127))
.WillOnce(Return(true));
// FDE's rule for register 0x2c.
EXPECT_CALL(handler, OffsetRule(fde_start + 0x7 * code_factor, 0x2c,
kCFARegister, 0x1f47 * data_factor))
.WillOnce(Return(true));
// Restore CIE's (missing) rule for register 0x2c.
EXPECT_CALL(handler,
SameValueRule(fde_start + (0x7 + 0xb) * code_factor, 0x2c))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_restore_extended) {
CFISection section(kBigEndian, 4);
code_factor = 0x126e;
data_factor = -0xd8b;
return_register = 0x77711787;
version = 3;
fde_start = 0x01f55a45;
fde_size = 0x452adb80;
Label cie;
section.Mark(&cie)
.CIEHeader(code_factor, data_factor, return_register, version, "",
true /* dwarf64 */)
// Provide a CFA rule, because register rules require them.
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x56fa0edd)
.ULEB128(0x097f78a5)
// Provide an offset(N) rule for register 0x0f9b8a1c.
.D8(lul::DW_CFA_offset_extended)
.ULEB128(0x0f9b8a1c)
.ULEB128(0xc979)
.FinishEntry()
// In the FDE...
.FDEHeader(cie, fde_start, fde_size)
// At a second address, provide a new offset(N) rule for reg 0x0f9b8a1c.
.D8(lul::DW_CFA_advance_loc | 0x3)
.D8(lul::DW_CFA_offset_extended)
.ULEB128(0x0f9b8a1c)
.ULEB128(0x3b7b)
// At a third address, restore the original rule for register 0x0f9b8a1c.
.D8(lul::DW_CFA_advance_loc | 0x04)
.D8(lul::DW_CFA_restore_extended)
.ULEB128(0x0f9b8a1c)
.FinishEntry();
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, fde_start, fde_size, version, "", return_register))
.WillOnce(Return(true));
// CIE's CFA rule.
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x56fa0edd, 0x097f78a5))
.WillOnce(Return(true));
// CIE's rule for register 0x0f9b8a1c.
EXPECT_CALL(handler, OffsetRule(fde_start, 0x0f9b8a1c, kCFARegister,
0xc979 * data_factor))
.WillOnce(Return(true));
// FDE's rule for register 0x0f9b8a1c.
EXPECT_CALL(handler, OffsetRule(fde_start + 0x3 * code_factor, 0x0f9b8a1c,
kCFARegister, 0x3b7b * data_factor))
.WillOnce(Return(true));
// Restore CIE's rule for register 0x0f9b8a1c.
EXPECT_CALL(handler,
OffsetRule(fde_start + (0x3 + 0x4) * code_factor, 0x0f9b8a1c,
kCFARegister, 0xc979 * data_factor))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_remember_and_restore_state) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
// We create a state, save it, modify it, and then restore. We
// refer to the state that is overridden the restore as the
// "outgoing" state, and the restored state the "incoming" state.
//
// Register outgoing incoming expect
// 1 offset(N) no rule new "same value" rule
// 2 register(R) offset(N) report changed rule
// 3 offset(N) offset(M) report changed offset
// 4 offset(N) offset(N) no report
// 5 offset(N) no rule new "same value" rule
section
// Create the "incoming" state, which we will save and later restore.
.D8(lul::DW_CFA_offset | 2)
.ULEB128(0x9806)
.D8(lul::DW_CFA_offset | 3)
.ULEB128(0x995d)
.D8(lul::DW_CFA_offset | 4)
.ULEB128(0x7055)
.D8(lul::DW_CFA_remember_state)
// Advance to a new instruction; an implementation could legitimately
// ignore all but the final rule for a given register at a given address.
.D8(lul::DW_CFA_advance_loc | 1)
// Create the "outgoing" state, which we will discard.
.D8(lul::DW_CFA_offset | 1)
.ULEB128(0xea1a)
.D8(lul::DW_CFA_register)
.ULEB128(2)
.ULEB128(0x1d2a3767)
.D8(lul::DW_CFA_offset | 3)
.ULEB128(0xdd29)
.D8(lul::DW_CFA_offset | 5)
.ULEB128(0xf1ce)
// At a third address, restore the incoming state.
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
uint64 addr = fde_start;
// Expect the incoming rules to be reported.
EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 4, kCFARegister, 0x7055 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
addr += code_factor;
// After the save, we establish the outgoing rule set.
EXPECT_CALL(handler, OffsetRule(addr, 1, kCFARegister, 0xea1a * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, RegisterRule(addr, 2, 0x1d2a3767))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0xdd29 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 5, kCFARegister, 0xf1ce * data_factor))
.InSequence(s)
.WillOnce(Return(true));
addr += code_factor;
// Finally, after the restore, expect to see the differences from
// the outgoing to the incoming rules reported.
EXPECT_CALL(handler, SameValueRule(addr, 1))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, SameValueRule(addr, 5))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
// Check that restoring a rule set reports changes to the CFA rule.
TEST_F(LulDwarfCFIInsn, DW_CFA_remember_and_restore_stateCFA) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_def_cfa_offset)
.ULEB128(0x90481102)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, kCFARegister,
cfa_base_register, 0x90481102))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor * 2, kCFARegister,
cfa_base_register, cfa_offset))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_nop) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_nop)
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x3fb8d4f1)
.ULEB128(0x078dc67b)
.D8(lul::DW_CFA_nop)
.FinishEntry();
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x3fb8d4f1, 0x078dc67b))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_GNU_window_save) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_GNU_window_save).FinishEntry();
// Don't include all the rules in any particular sequence.
// The caller's %o0-%o7 have become the callee's %i0-%i7. This is
// the GCC register numbering.
for (int i = 8; i < 16; i++)
EXPECT_CALL(handler, RegisterRule(fde_start, i, i + 16))
.WillOnce(Return(true));
// The caller's %l0-%l7 and %i0-%i7 have been saved at the top of
// its frame.
for (int i = 16; i < 32; i++)
EXPECT_CALL(handler, OffsetRule(fde_start, i, kCFARegister, (i - 16) * 4))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_GNU_args_size) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_GNU_args_size)
.ULEB128(0xeddfa520)
// Verify that we see this, meaning we parsed the above properly.
.D8(lul::DW_CFA_offset | 0x23)
.ULEB128(0x269)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x23, kCFARegister, 0x269 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIInsn, DW_CFA_GNU_negative_offset_extended) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_GNU_negative_offset_extended)
.ULEB128(0x430cc87a)
.ULEB128(0x613)
.FinishEntry();
EXPECT_CALL(handler, OffsetRule(fde_start, 0x430cc87a, kCFARegister,
-0x613 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
// Three FDEs: skip the second
TEST_F(LulDwarfCFIInsn, SkipFDE) {
CFISection section(kBigEndian, 4);
Label cie;
section
// CIE, used by all FDEs.
.Mark(&cie)
.CIEHeader(0x010269f2, 0x9177, 0xedca5849, 2, "")
.D8(lul::DW_CFA_def_cfa)
.ULEB128(0x42ed390b)
.ULEB128(0x98f43aad)
.FinishEntry()
// First FDE.
.FDEHeader(cie, 0xa870ebdd, 0x60f6aa4)
.D8(lul::DW_CFA_register)
.ULEB128(0x3a860351)
.ULEB128(0x6c9a6bcf)
.FinishEntry()
// Second FDE.
.FDEHeader(cie, 0xc534f7c0, 0xf6552e9, true /* dwarf64 */)
.D8(lul::DW_CFA_register)
.ULEB128(0x1b62c234)
.ULEB128(0x26586b18)
.FinishEntry()
// Third FDE.
.FDEHeader(cie, 0xf681cfc8, 0x7e4594e)
.D8(lul::DW_CFA_register)
.ULEB128(0x26c53934)
.ULEB128(0x18eeb8a4)
.FinishEntry();
{
InSequence s;
// Process the first FDE.
EXPECT_CALL(handler, Entry(_, 0xa870ebdd, 0x60f6aa4, 2, "", 0xedca5849))
.WillOnce(Return(true));
EXPECT_CALL(handler,
ValOffsetRule(0xa870ebdd, kCFARegister, 0x42ed390b, 0x98f43aad))
.WillOnce(Return(true));
EXPECT_CALL(handler, RegisterRule(0xa870ebdd, 0x3a860351, 0x6c9a6bcf))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
// Skip the second FDE.
EXPECT_CALL(handler, Entry(_, 0xc534f7c0, 0xf6552e9, 2, "", 0xedca5849))
.WillOnce(Return(false));
// Process the third FDE.
EXPECT_CALL(handler, Entry(_, 0xf681cfc8, 0x7e4594e, 2, "", 0xedca5849))
.WillOnce(Return(true));
EXPECT_CALL(handler,
ValOffsetRule(0xf681cfc8, kCFARegister, 0x42ed390b, 0x98f43aad))
.WillOnce(Return(true));
EXPECT_CALL(handler, RegisterRule(0xf681cfc8, 0x26c53934, 0x18eeb8a4))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
ParseSection(&section);
}
// Quit processing in the middle of an entry's instructions.
TEST_F(LulDwarfCFIInsn, QuitMidentry) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_register)
.ULEB128(0xe0cf850d)
.ULEB128(0x15aab431)
.D8(lul::DW_CFA_expression)
.ULEB128(0x46750aa5)
.Block("meat")
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0xe0cf850d, 0x15aab431))
.InSequence(s)
.WillOnce(Return(false));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section, false);
}
class LulDwarfCFIRestore : public CFIInsnFixture, public Test {};
TEST_F(LulDwarfCFIRestore, RestoreUndefinedRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_undefined)
.ULEB128(0x0bac878e)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, UndefinedRule(fde_start, 0x0bac878e))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreUndefinedRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_undefined)
.ULEB128(0x7dedff5f)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_same_value)
.ULEB128(0x7dedff5f)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, UndefinedRule(fde_start, 0x7dedff5f))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, SameValueRule(fde_start + code_factor, 0x7dedff5f))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + 2 * code_factor, 0x7dedff5f))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreSameValueRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_same_value)
.ULEB128(0xadbc9b3a)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, SameValueRule(fde_start, 0xadbc9b3a))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreSameValueRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_same_value)
.ULEB128(0x3d90dcb5)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_undefined)
.ULEB128(0x3d90dcb5)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, SameValueRule(fde_start, 0x3d90dcb5))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x3d90dcb5))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, SameValueRule(fde_start + 2 * code_factor, 0x3d90dcb5))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreOffsetRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_offset | 0x14)
.ULEB128(0xb6f)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x14, kCFARegister, 0xb6f * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreOffsetRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_offset | 0x21)
.ULEB128(0xeb7)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_undefined)
.ULEB128(0x21)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x21, kCFARegister, 0xeb7 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x21))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21,
kCFARegister, 0xeb7 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreOffsetRuleChangedOffset) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_offset | 0x21)
.ULEB128(0x134)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_offset | 0x21)
.ULEB128(0xf4f)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x21, kCFARegister, 0x134 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(fde_start + code_factor, 0x21, kCFARegister,
0xf4f * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21,
kCFARegister, 0x134 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreValOffsetRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_val_offset)
.ULEB128(0x829caee6)
.ULEB128(0xe4c)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x829caee6, kCFARegister,
0xe4c * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreValOffsetRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_val_offset)
.ULEB128(0xf17c36d6)
.ULEB128(0xeb7)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_undefined)
.ULEB128(0xf17c36d6)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, 0xf17c36d6, kCFARegister,
0xeb7 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xf17c36d6))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0xf17c36d6,
kCFARegister, 0xeb7 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreValOffsetRuleChangedValOffset) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_val_offset)
.ULEB128(0x2cf0ab1b)
.ULEB128(0x562)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_val_offset)
.ULEB128(0x2cf0ab1b)
.ULEB128(0xe88)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x2cf0ab1b, kCFARegister,
0x562 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, 0x2cf0ab1b,
kCFARegister, 0xe88 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0x2cf0ab1b,
kCFARegister, 0x562 * data_factor))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreRegisterRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_register)
.ULEB128(0x77514acc)
.ULEB128(0x464de4ce)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0x77514acc, 0x464de4ce))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreRegisterRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_register)
.ULEB128(0xe39acce5)
.ULEB128(0x095f1559)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_undefined)
.ULEB128(0xe39acce5)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0xe39acce5, 0x095f1559))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xe39acce5))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler,
RegisterRule(fde_start + 2 * code_factor, 0xe39acce5, 0x095f1559))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreRegisterRuleChangedRegister) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_register)
.ULEB128(0xd40e21b1)
.ULEB128(0x16607d6a)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_register)
.ULEB128(0xd40e21b1)
.ULEB128(0xbabb4742)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0xd40e21b1, 0x16607d6a))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler,
RegisterRule(fde_start + code_factor, 0xd40e21b1, 0xbabb4742))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler,
RegisterRule(fde_start + 2 * code_factor, 0xd40e21b1, 0x16607d6a))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(LulDwarfCFIRestore, RestoreExpressionRuleUnchanged) {
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 4);
ImageSlice dwarf("dwarf");
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_expression)
.ULEB128(0x666ae152)
.Block("dwarf")
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ExpressionRule(fde_start, 0x666ae152, dwarf))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIRestore, RestoreExpressionRuleChanged) {
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 4);
ImageSlice elf("elf");
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_expression)
.ULEB128(0xb5ca5c46)
.Block(elf)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_undefined)
.ULEB128(0xb5ca5c46)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ExpressionRule(fde_start, 0xb5ca5c46, elf))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler,
ExpressionRule(fde_start + 2 * code_factor, 0xb5ca5c46, elf))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIRestore, RestoreExpressionRuleChangedExpression) {
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
ImageSlice smurf("smurf");
ImageSlice orc("orc");
section.D8(lul::DW_CFA_expression)
.ULEB128(0x500f5739)
.Block(smurf)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_expression)
.ULEB128(0x500f5739)
.Block(orc)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ExpressionRule(fde_start, 0x500f5739, smurf))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ExpressionRule(fde_start + code_factor, 0x500f5739, orc))
.InSequence(s)
.WillOnce(Return(true));
// Expectations are not wishes.
EXPECT_CALL(handler,
ExpressionRule(fde_start + 2 * code_factor, 0x500f5739, smurf))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIRestore, RestoreValExpressionRuleUnchanged) {
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 4);
ImageSlice hideous("hideous");
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_val_expression)
.ULEB128(0x666ae152)
.Block(hideous)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x666ae152, hideous))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIRestore, RestoreValExpressionRuleChanged) {
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 4);
ImageSlice revolting("revolting");
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_val_expression)
.ULEB128(0xb5ca5c46)
.Block(revolting)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_undefined)
.ULEB128(0xb5ca5c46)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChanged", section);
EXPECT_CALL(handler, ValExpressionRule(fde_start, 0xb5ca5c46, revolting))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor,
0xb5ca5c46, revolting))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
TEST_F(LulDwarfCFIRestore, RestoreValExpressionRuleChangedValExpression) {
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 4);
ImageSlice repulsive("repulsive");
ImageSlice nauseous("nauseous");
StockCIEAndFDE(&section);
section.D8(lul::DW_CFA_val_expression)
.ULEB128(0x500f5739)
.Block(repulsive)
.D8(lul::DW_CFA_remember_state)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_val_expression)
.ULEB128(0x500f5739)
.Block(nauseous)
.D8(lul::DW_CFA_advance_loc | 1)
.D8(lul::DW_CFA_restore_state)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChangedValExpression",
section);
EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x500f5739, repulsive))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler,
ValExpressionRule(fde_start + code_factor, 0x500f5739, nauseous))
.InSequence(s)
.WillOnce(Return(true));
// Expectations are not wishes.
EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor,
0x500f5739, repulsive))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section, true, &reader);
}
struct EHFrameFixture : public CFIInsnFixture {
EHFrameFixture() : section(kBigEndian, 4, true) {
encoded_pointer_bases.cfi = 0x7f496cb2;
encoded_pointer_bases.text = 0x540f67b6;
encoded_pointer_bases.data = 0xe3eab768;
section.SetEncodedPointerBases(encoded_pointer_bases);
}
CFISection section;
CFISection::EncodedPointerBases encoded_pointer_bases;
// Parse CFIInsnFixture::ParseSection, but parse the section as
// .eh_frame data, supplying stock base addresses.
void ParseEHFrameSection(CFISection* section, bool succeeds = true) {
EXPECT_TRUE(section->ContainsEHFrame());
string contents;
EXPECT_TRUE(section->GetContents(&contents));
lul::Endianness endianness;
if (section->endianness() == kBigEndian)
endianness = ENDIANNESS_BIG;
else {
assert(section->endianness() == kLittleEndian);
endianness = ENDIANNESS_LITTLE;
}
ByteReader reader(endianness);
reader.SetAddressSize(section->AddressSize());
reader.SetCFIDataBase(encoded_pointer_bases.cfi, contents.data());
reader.SetTextBase(encoded_pointer_bases.text);
reader.SetDataBase(encoded_pointer_bases.data);
CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler,
&reporter, true);
if (succeeds)
EXPECT_TRUE(parser.Start());
else
EXPECT_FALSE(parser.Start());
}
};
class LulDwarfEHFrame : public EHFrameFixture, public Test {};
// A simple CIE, an FDE, and a terminator.
TEST_F(LulDwarfEHFrame, Terminator) {
Label cie;
section.Mark(&cie)
.CIEHeader(9968, 2466, 67, 1, "")
.D8(lul::DW_CFA_def_cfa)
.ULEB128(3772)
.ULEB128(1372)
.FinishEntry()
.FDEHeader(cie, 0x848037a1, 0x7b30475e)
.D8(lul::DW_CFA_set_loc)
.D32(0x17713850)
.D8(lul::DW_CFA_undefined)
.ULEB128(5721)
.FinishEntry()
.D32(0) // Terminate the sequence.
// This FDE should be ignored.
.FDEHeader(cie, 0xf19629fe, 0x439fb09b)
.FinishEntry();
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.Terminator", section);
EXPECT_CALL(handler, Entry(_, 0x848037a1, 0x7b30475e, 1, "", 67))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(0x848037a1, kCFARegister, 3772, 1372))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(0x17713850, 5721))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
EXPECT_CALL(reporter, EarlyEHTerminator(_)).InSequence(s).WillOnce(Return());
ParseEHFrameSection(&section);
}
// The parser should recognize the Linux Standards Base 'z' augmentations.
TEST_F(LulDwarfEHFrame, SimpleFDE) {
lul::DwarfPointerEncoding lsda_encoding = lul::DwarfPointerEncoding(
lul::DW_EH_PE_indirect | lul::DW_EH_PE_datarel | lul::DW_EH_PE_sdata2);
lul::DwarfPointerEncoding fde_encoding =
lul::DwarfPointerEncoding(lul::DW_EH_PE_textrel | lul::DW_EH_PE_udata2);
section.SetPointerEncoding(fde_encoding);
section.SetEncodedPointerBases(encoded_pointer_bases);
Label cie;
section.Mark(&cie)
.CIEHeader(4873, 7012, 100, 1, "zSLPR")
.ULEB128(7) // Augmentation data length
.D8(lsda_encoding) // LSDA pointer format
.D8(lul::DW_EH_PE_pcrel) // personality pointer format
.EncodedPointer(0x97baa00, lul::DW_EH_PE_pcrel) // and value
.D8(fde_encoding) // FDE pointer format
.D8(lul::DW_CFA_def_cfa)
.ULEB128(6706)
.ULEB128(31)
.FinishEntry()
.FDEHeader(cie, 0x540f6b56, 0xf686)
.ULEB128(2) // Augmentation data length
.EncodedPointer(0xe3eab475, lsda_encoding) // LSDA pointer, signed
.D8(lul::DW_CFA_set_loc)
.EncodedPointer(0x540fa4ce, fde_encoding)
.D8(lul::DW_CFA_undefined)
.ULEB128(0x675e)
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.SimpleFDE", section);
EXPECT_CALL(handler, Entry(_, 0x540f6b56, 0xf686, 1, "zSLPR", 100))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, PersonalityRoutine(0x97baa00, false))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, LanguageSpecificDataArea(0xe3eab475, true))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, SignalHandler()).InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(0x540f6b56, kCFARegister, 6706, 31))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(0x540fa4ce, 0x675e))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
// Check that we can handle an empty 'z' augmentation.
TEST_F(LulDwarfEHFrame, EmptyZ) {
Label cie;
section.Mark(&cie)
.CIEHeader(5955, 5805, 228, 1, "z")
.ULEB128(0) // Augmentation data length
.D8(lul::DW_CFA_def_cfa)
.ULEB128(3629)
.ULEB128(247)
.FinishEntry()
.FDEHeader(cie, 0xda007738, 0xfb55c641)
.ULEB128(0) // Augmentation data length
.D8(lul::DW_CFA_advance_loc1)
.D8(11)
.D8(lul::DW_CFA_undefined)
.ULEB128(3769)
.FinishEntry();
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.EmptyZ", section);
EXPECT_CALL(handler, Entry(_, 0xda007738, 0xfb55c641, 1, "z", 228))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(0xda007738, kCFARegister, 3629, 247))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(0xda007738 + 11 * 5955, 3769))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
// Check that we recognize bad 'z' augmentation characters.
TEST_F(LulDwarfEHFrame, BadZ) {
Label cie;
section.Mark(&cie)
.CIEHeader(6937, 1045, 142, 1, "zQ")
.ULEB128(0) // Augmentation data length
.D8(lul::DW_CFA_def_cfa)
.ULEB128(9006)
.ULEB128(7725)
.FinishEntry()
.FDEHeader(cie, 0x1293efa8, 0x236f53f2)
.ULEB128(0) // Augmentation data length
.D8(lul::DW_CFA_advance_loc | 12)
.D8(lul::DW_CFA_register)
.ULEB128(5667)
.ULEB128(3462)
.FinishEntry();
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.BadZ", section);
EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "zQ")).WillOnce(Return());
ParseEHFrameSection(&section, false);
}
TEST_F(LulDwarfEHFrame, zL) {
Label cie;
lul::DwarfPointerEncoding lsda_encoding =
lul::DwarfPointerEncoding(lul::DW_EH_PE_funcrel | lul::DW_EH_PE_udata2);
section.Mark(&cie)
.CIEHeader(9285, 9959, 54, 1, "zL")
.ULEB128(1) // Augmentation data length
.D8(lsda_encoding) // encoding for LSDA pointer in FDE
.FinishEntry()
.FDEHeader(cie, 0xd40091aa, 0x9aa6e746)
.ULEB128(2) // Augmentation data length
.EncodedPointer(0xd40099cd, lsda_encoding) // LSDA pointer
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zL", section);
EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zL", 54))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, LanguageSpecificDataArea(0xd40099cd, false))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
TEST_F(LulDwarfEHFrame, zP) {
Label cie;
lul::DwarfPointerEncoding personality_encoding =
lul::DwarfPointerEncoding(lul::DW_EH_PE_datarel | lul::DW_EH_PE_udata2);
section.Mark(&cie)
.CIEHeader(1097, 6313, 17, 1, "zP")
.ULEB128(3) // Augmentation data length
.D8(personality_encoding) // encoding for personality routine
.EncodedPointer(0xe3eaccac, personality_encoding) // value
.FinishEntry()
.FDEHeader(cie, 0x0c8350c9, 0xbef11087)
.ULEB128(0) // Augmentation data length
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zP", section);
EXPECT_CALL(handler, Entry(_, 0x0c8350c9, 0xbef11087, 1, "zP", 17))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, PersonalityRoutine(0xe3eaccac, false))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
TEST_F(LulDwarfEHFrame, zR) {
Label cie;
lul::DwarfPointerEncoding pointer_encoding =
lul::DwarfPointerEncoding(lul::DW_EH_PE_textrel | lul::DW_EH_PE_sdata2);
section.SetPointerEncoding(pointer_encoding);
section.Mark(&cie)
.CIEHeader(8011, 5496, 75, 1, "zR")
.ULEB128(1) // Augmentation data length
.D8(pointer_encoding) // encoding for FDE addresses
.FinishEntry()
.FDEHeader(cie, 0x540f9431, 0xbd0)
.ULEB128(0) // Augmentation data length
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zR", section);
EXPECT_CALL(handler, Entry(_, 0x540f9431, 0xbd0, 1, "zR", 75))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
TEST_F(LulDwarfEHFrame, zS) {
Label cie;
section.Mark(&cie)
.CIEHeader(9217, 7694, 57, 1, "zS")
.ULEB128(0) // Augmentation data length
.FinishEntry()
.FDEHeader(cie, 0xd40091aa, 0x9aa6e746)
.ULEB128(0) // Augmentation data length
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zS", section);
EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zS", 57))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, SignalHandler()).InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
// These tests require manual inspection of the test output.
struct CFIReporterFixture {
CFIReporterFixture()
: reporter(gtest_logging_sink_for_LulTestDwarf, "test file name",
"test section name") {}
CallFrameInfo::Reporter reporter;
};
class LulDwarfCFIReporter : public CFIReporterFixture, public Test {};
TEST_F(LulDwarfCFIReporter, Incomplete) {
reporter.Incomplete(0x0102030405060708ULL, CallFrameInfo::kUnknown);
}
TEST_F(LulDwarfCFIReporter, EarlyEHTerminator) {
reporter.EarlyEHTerminator(0x0102030405060708ULL);
}
TEST_F(LulDwarfCFIReporter, CIEPointerOutOfRange) {
reporter.CIEPointerOutOfRange(0x0123456789abcdefULL, 0xfedcba9876543210ULL);
}
TEST_F(LulDwarfCFIReporter, BadCIEId) {
reporter.BadCIEId(0x0123456789abcdefULL, 0xfedcba9876543210ULL);
}
TEST_F(LulDwarfCFIReporter, UnrecognizedVersion) {
reporter.UnrecognizedVersion(0x0123456789abcdefULL, 43);
}
TEST_F(LulDwarfCFIReporter, UnrecognizedAugmentation) {
reporter.UnrecognizedAugmentation(0x0123456789abcdefULL, "poodles");
}
TEST_F(LulDwarfCFIReporter, InvalidPointerEncoding) {
reporter.InvalidPointerEncoding(0x0123456789abcdefULL, 0x42);
}
TEST_F(LulDwarfCFIReporter, UnusablePointerEncoding) {
reporter.UnusablePointerEncoding(0x0123456789abcdefULL, 0x42);
}
TEST_F(LulDwarfCFIReporter, RestoreInCIE) {
reporter.RestoreInCIE(0x0123456789abcdefULL, 0xfedcba9876543210ULL);
}
TEST_F(LulDwarfCFIReporter, BadInstruction) {
reporter.BadInstruction(0x0123456789abcdefULL, CallFrameInfo::kFDE,
0xfedcba9876543210ULL);
}
TEST_F(LulDwarfCFIReporter, NoCFARule) {
reporter.NoCFARule(0x0123456789abcdefULL, CallFrameInfo::kCIE,
0xfedcba9876543210ULL);
}
TEST_F(LulDwarfCFIReporter, EmptyStateStack) {
reporter.EmptyStateStack(0x0123456789abcdefULL, CallFrameInfo::kTerminator,
0xfedcba9876543210ULL);
}
TEST_F(LulDwarfCFIReporter, ClearingCFARule) {
reporter.ClearingCFARule(0x0123456789abcdefULL, CallFrameInfo::kFDE,
0xfedcba9876543210ULL);
}
class LulDwarfExpr : public Test {};
class MockSummariser : public Summariser {
public:
MockSummariser() : Summariser(nullptr, 0, nullptr) {}
MOCK_METHOD2(Entry, void(uintptr_t, uintptr_t));
MOCK_METHOD0(End, void());
MOCK_METHOD5(Rule, void(uintptr_t, int, LExprHow, int16_t, int64_t));
MOCK_METHOD1(AddPfxInstr, uint32_t(PfxInstr));
};
TEST_F(LulDwarfExpr, SimpleTransliteration) {
MockSummariser summ;
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 8);
section.D8(DW_OP_lit0)
.D8(DW_OP_lit31)
.D8(DW_OP_breg0 + 17)
.LEB128(-1234)
.D8(DW_OP_const4s)
.D32(0xFEDC9876)
.D8(DW_OP_deref)
.D8(DW_OP_and)
.D8(DW_OP_plus)
.D8(DW_OP_minus)
.D8(DW_OP_shl)
.D8(DW_OP_ge);
string expr;
bool ok = section.GetContents(&expr);
EXPECT_TRUE(ok);
{
InSequence s;
// required start marker
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Start, 0)));
// DW_OP_lit0
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, 0)));
// DW_OP_lit31
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, 31)));
// DW_OP_breg17 -1234
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_DwReg, 17)));
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, -1234)));
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Add)));
// DW_OP_const4s 0xFEDC9876
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, 0xFEDC9876)));
// DW_OP_deref
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Deref)));
// DW_OP_and
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_And)));
// DW_OP_plus
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Add)));
// DW_OP_minus
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Sub)));
// DW_OP_shl
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Shl)));
// DW_OP_ge
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_CmpGES)));
// required end marker
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_End)));
}
int32_t ix =
parseDwarfExpr(&summ, &reader, ImageSlice(expr), false, false, false);
EXPECT_TRUE(ix >= 0);
}
TEST_F(LulDwarfExpr, UnknownOpcode) {
MockSummariser summ;
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 8);
section.D8(DW_OP_lo_user - 1);
string expr;
bool ok = section.GetContents(&expr);
EXPECT_TRUE(ok);
{
InSequence s;
// required start marker
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Start, 0)));
}
int32_t ix =
parseDwarfExpr(&summ, &reader, ImageSlice(expr), false, false, false);
EXPECT_TRUE(ix == -1);
}
TEST_F(LulDwarfExpr, ExpressionOverrun) {
MockSummariser summ;
ByteReader reader(ENDIANNESS_LITTLE);
CFISection section(kLittleEndian, 8);
section.D8(DW_OP_const4s).D8(0x12).D8(0x34).D8(0x56);
string expr;
bool ok = section.GetContents(&expr);
EXPECT_TRUE(ok);
{
InSequence s;
// required start marker
EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Start, 0)));
// DW_OP_const4s followed by 3 (a.k.a. not enough) bytes
// We expect PfxInstr(PX_Simm32, not-known-for-sure-32-bit-immediate)
// Hence must use _ as the argument.
EXPECT_CALL(summ, AddPfxInstr(_));
}
int32_t ix =
parseDwarfExpr(&summ, &reader, ImageSlice(expr), false, false, false);
EXPECT_TRUE(ix == -1);
}
// We'll need to mention specific Dwarf registers in the EvaluatePfxExpr tests,
// and those names are arch-specific, so a bit of macro magic is helpful.
#if defined(GP_ARCH_arm)
# define TESTED_REG_STRUCT_NAME r11
# define TESTED_REG_DWARF_NAME DW_REG_ARM_R11
#elif defined(GP_ARCH_arm64)
# define TESTED_REG_STRUCT_NAME x29
# define TESTED_REG_DWARF_NAME DW_REG_AARCH64_X29
#elif defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
# define TESTED_REG_STRUCT_NAME xbp
# define TESTED_REG_DWARF_NAME DW_REG_INTEL_XBP
#else
# error "Unknown plat"
#endif
struct EvaluatePfxExprFixture {
// Creates:
// initial stack, AVMA 0x12345678, at offset 4 bytes = 0xdeadbeef
// initial regs, with XBP = 0x14141356
// initial CFA = 0x5432ABCD
EvaluatePfxExprFixture() {
// The test stack.
si.mStartAvma = 0x12345678;
si.mLen = 0;
#define XX(_byte) \
do { \
si.mContents[si.mLen++] = (_byte); \
} while (0)
XX(0x55);
XX(0x55);
XX(0x55);
XX(0x55);
if (sizeof(void*) == 8) {
// le64
XX(0xEF);
XX(0xBE);
XX(0xAD);
XX(0xDE);
XX(0);
XX(0);
XX(0);
XX(0);
} else {
// le32
XX(0xEF);
XX(0xBE);
XX(0xAD);
XX(0xDE);
}
XX(0xAA);
XX(0xAA);
XX(0xAA);
XX(0xAA);
#undef XX
// The initial CFA.
initialCFA = TaggedUWord(0x5432ABCD);
// The initial register state.
memset(&regs, 0, sizeof(regs));
regs.TESTED_REG_STRUCT_NAME = TaggedUWord(0x14141356);
}
StackImage si;
TaggedUWord initialCFA;
UnwindRegs regs;
};
class LulDwarfEvaluatePfxExpr : public EvaluatePfxExprFixture, public Test {};
TEST_F(LulDwarfEvaluatePfxExpr, NormalEvaluation) {
vector<PfxInstr> instrs;
// Put some junk at the start of the insn sequence.
instrs.push_back(PfxInstr(PX_End));
instrs.push_back(PfxInstr(PX_End));
// Now the real sequence
// stack is empty
instrs.push_back(PfxInstr(PX_Start, 1));
// 0x5432ABCD
instrs.push_back(PfxInstr(PX_SImm32, 0x31415927));
// 0x5432ABCD 0x31415927
instrs.push_back(PfxInstr(PX_DwReg, TESTED_REG_DWARF_NAME));
// 0x5432ABCD 0x31415927 0x14141356
instrs.push_back(PfxInstr(PX_SImm32, 42));
// 0x5432ABCD 0x31415927 0x14141356 42
instrs.push_back(PfxInstr(PX_Sub));
// 0x5432ABCD 0x31415927 0x1414132c
instrs.push_back(PfxInstr(PX_Add));
// 0x5432ABCD 0x45556c53
instrs.push_back(PfxInstr(PX_SImm32, si.mStartAvma + 4));
// 0x5432ABCD 0x45556c53 0x1234567c
instrs.push_back(PfxInstr(PX_Deref));
// 0x5432ABCD 0x45556c53 0xdeadbeef
instrs.push_back(PfxInstr(PX_SImm32, 0xFE01DC23));
// 0x5432ABCD 0x45556c53 0xdeadbeef 0xFE01DC23
instrs.push_back(PfxInstr(PX_And));
// 0x5432ABCD 0x45556c53 0xde019c23
instrs.push_back(PfxInstr(PX_SImm32, 7));
// 0x5432ABCD 0x45556c53 0xde019c23 7
instrs.push_back(PfxInstr(PX_Shl));
// 0x5432ABCD 0x45556c53 0x6f00ce1180
instrs.push_back(PfxInstr(PX_SImm32, 0x7fffffff));
// 0x5432ABCD 0x45556c53 0x6f00ce1180 7fffffff
instrs.push_back(PfxInstr(PX_And));
// 0x5432ABCD 0x45556c53 0x00ce1180
instrs.push_back(PfxInstr(PX_Add));
// 0x5432ABCD 0x46237dd3
instrs.push_back(PfxInstr(PX_Sub));
// 0xe0f2dfa
instrs.push_back(PfxInstr(PX_End));
TaggedUWord res = EvaluatePfxExpr(2 /*offset of start insn*/, &regs,
initialCFA, &si, instrs);
EXPECT_TRUE(res.Valid());
EXPECT_TRUE(res.Value() == 0xe0f2dfa);
}
TEST_F(LulDwarfEvaluatePfxExpr, EmptySequence) {
vector<PfxInstr> instrs;
TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
EXPECT_FALSE(res.Valid());
}
TEST_F(LulDwarfEvaluatePfxExpr, BogusStartPoint) {
vector<PfxInstr> instrs;
instrs.push_back(PfxInstr(PX_SImm32, 42));
instrs.push_back(PfxInstr(PX_SImm32, 24));
instrs.push_back(PfxInstr(PX_SImm32, 4224));
TaggedUWord res = EvaluatePfxExpr(1, &regs, initialCFA, &si, instrs);
EXPECT_FALSE(res.Valid());
}
TEST_F(LulDwarfEvaluatePfxExpr, MissingEndMarker) {
vector<PfxInstr> instrs;
instrs.push_back(PfxInstr(PX_Start, 0));
instrs.push_back(PfxInstr(PX_SImm32, 24));
TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
EXPECT_FALSE(res.Valid());
}
TEST_F(LulDwarfEvaluatePfxExpr, StackUnderflow) {
vector<PfxInstr> instrs;
instrs.push_back(PfxInstr(PX_Start, 0));
instrs.push_back(PfxInstr(PX_End));
TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
EXPECT_FALSE(res.Valid());
}
TEST_F(LulDwarfEvaluatePfxExpr, StackNoUnderflow) {
vector<PfxInstr> instrs;
instrs.push_back(PfxInstr(PX_Start, 1 /*push the initial CFA*/));
instrs.push_back(PfxInstr(PX_End));
TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
EXPECT_TRUE(res.Valid());
EXPECT_TRUE(res == initialCFA);
}
TEST_F(LulDwarfEvaluatePfxExpr, StackOverflow) {
vector<PfxInstr> instrs;
instrs.push_back(PfxInstr(PX_Start, 0));
for (int i = 0; i < 10 + 1; i++) {
instrs.push_back(PfxInstr(PX_SImm32, i + 100));
}
instrs.push_back(PfxInstr(PX_End));
TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
EXPECT_FALSE(res.Valid());
}
TEST_F(LulDwarfEvaluatePfxExpr, StackNoOverflow) {
vector<PfxInstr> instrs;
instrs.push_back(PfxInstr(PX_Start, 0));
for (int i = 0; i < 10 + 0; i++) {
instrs.push_back(PfxInstr(PX_SImm32, i + 100));
}
instrs.push_back(PfxInstr(PX_End));
TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
EXPECT_TRUE(res.Valid());
EXPECT_TRUE(res == TaggedUWord(109));
}
TEST_F(LulDwarfEvaluatePfxExpr, OutOfRangeShl) {
vector<PfxInstr> instrs;
instrs.push_back(PfxInstr(PX_Start, 0));
instrs.push_back(PfxInstr(PX_SImm32, 1234));
instrs.push_back(PfxInstr(PX_SImm32, 5678));
instrs.push_back(PfxInstr(PX_Shl));
TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
EXPECT_TRUE(!res.Valid());
}
TEST_F(LulDwarfEvaluatePfxExpr, TestCmpGES) {
const int32_t argsL[6] = {0, 0, 1, -2, -1, -2};
const int32_t argsR[6] = {0, 1, 0, -2, -2, -1};
// expecting: t f t t t f = 101110 = 0x2E
vector<PfxInstr> instrs;
instrs.push_back(PfxInstr(PX_Start, 0));
// The "running total"
instrs.push_back(PfxInstr(PX_SImm32, 0));
for (unsigned int i = 0; i < sizeof(argsL) / sizeof(argsL[0]); i++) {
// Shift the "running total" at the bottom of the stack left by one bit
instrs.push_back(PfxInstr(PX_SImm32, 1));
instrs.push_back(PfxInstr(PX_Shl));
// Push both test args and do the comparison
instrs.push_back(PfxInstr(PX_SImm32, argsL[i]));
instrs.push_back(PfxInstr(PX_SImm32, argsR[i]));
instrs.push_back(PfxInstr(PX_CmpGES));
// Or the result into the running total
instrs.push_back(PfxInstr(PX_Or));
}
instrs.push_back(PfxInstr(PX_End));
TaggedUWord res = EvaluatePfxExpr(0, &regs, initialCFA, &si, instrs);
EXPECT_TRUE(res.Valid());
EXPECT_TRUE(res == TaggedUWord(0x2E));
}
} // namespace lul