Source code
Revision control
Copy as Markdown
Other Tools
/*
** 2016-06-29
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file demonstrates how to create a table-valued-function that
** returns the values in a C-language array.
** Examples:
**
** SELECT * FROM carray($ptr,5)
**
** The query above returns 5 integers contained in a C-language array
** at the address $ptr. $ptr is a pointer to the array of integers.
** The pointer value must be assigned to $ptr using the
** sqlite3_bind_pointer() interface with a pointer type of "carray".
** For example:
**
** static int aX[] = { 53, 9, 17, 2231, 4, 99 };
** int i = sqlite3_bind_parameter_index(pStmt, "$ptr");
** sqlite3_bind_pointer(pStmt, i, aX, "carray", 0);
**
** There is an optional third parameter to determine the datatype of
** the C-language array. Allowed values of the third parameter are
** 'int32', 'int64', 'double', 'char*', 'struct iovec'. Example:
**
** SELECT * FROM carray($ptr,10,'char*');
**
** The default value of the third parameter is 'int32'.
**
** HOW IT WORKS
**
** The carray "function" is really a virtual table with the
** following schema:
**
** CREATE TABLE carray(
** value,
** pointer HIDDEN,
** count HIDDEN,
** ctype TEXT HIDDEN
** );
**
** If the hidden columns "pointer" and "count" are unconstrained, then
** the virtual table has no rows. Otherwise, the virtual table interprets
** the integer value of "pointer" as a pointer to the array and "count"
** as the number of elements in the array. The virtual table steps through
** the array, element by element.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#ifdef _WIN32
struct iovec {
void *iov_base;
size_t iov_len;
};
#else
# include <sys/uio.h>
#endif
/* Allowed values for the mFlags parameter to sqlite3_carray_bind().
** Must exactly match the definitions in carray.h.
*/
#ifndef CARRAY_INT32
# define CARRAY_INT32 0 /* Data is 32-bit signed integers */
# define CARRAY_INT64 1 /* Data is 64-bit signed integers */
# define CARRAY_DOUBLE 2 /* Data is doubles */
# define CARRAY_TEXT 3 /* Data is char* */
# define CARRAY_BLOB 4 /* Data is struct iovec* */
#endif
#ifndef SQLITE_API
# ifdef _WIN32
# define SQLITE_API __declspec(dllexport)
# else
# define SQLITE_API
# endif
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Names of allowed datatypes
*/
static const char *azType[] = { "int32", "int64", "double", "char*",
"struct iovec" };
/*
** Structure used to hold the sqlite3_carray_bind() information
*/
typedef struct carray_bind carray_bind;
struct carray_bind {
void *aData; /* The data */
int nData; /* Number of elements */
int mFlags; /* Control flags */
void (*xDel)(void*); /* Destructor for aData */
};
/* carray_cursor is a subclass of sqlite3_vtab_cursor which will
** serve as the underlying representation of a cursor that scans
** over rows of the result
*/
typedef struct carray_cursor carray_cursor;
struct carray_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
sqlite3_int64 iRowid; /* The rowid */
void *pPtr; /* Pointer to the array of values */
sqlite3_int64 iCnt; /* Number of integers in the array */
unsigned char eType; /* One of the CARRAY_type values */
};
/*
** The carrayConnect() method is invoked to create a new
** carray_vtab that describes the carray virtual table.
**
** Think of this routine as the constructor for carray_vtab objects.
**
** All this routine needs to do is:
**
** (1) Allocate the carray_vtab object and initialize all fields.
**
** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
** result set of queries against carray will look like.
*/
static int carrayConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
sqlite3_vtab *pNew;
int rc;
/* Column numbers */
#define CARRAY_COLUMN_VALUE 0
#define CARRAY_COLUMN_POINTER 1
#define CARRAY_COLUMN_COUNT 2
#define CARRAY_COLUMN_CTYPE 3
rc = sqlite3_declare_vtab(db,
"CREATE TABLE x(value,pointer hidden,count hidden,ctype hidden)");
if( rc==SQLITE_OK ){
pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(*pNew));
}
return rc;
}
/*
** This method is the destructor for carray_cursor objects.
*/
static int carrayDisconnect(sqlite3_vtab *pVtab){
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new carray_cursor object.
*/
static int carrayOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
carray_cursor *pCur;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/*
** Destructor for a carray_cursor.
*/
static int carrayClose(sqlite3_vtab_cursor *cur){
sqlite3_free(cur);
return SQLITE_OK;
}
/*
** Advance a carray_cursor to its next row of output.
*/
static int carrayNext(sqlite3_vtab_cursor *cur){
carray_cursor *pCur = (carray_cursor*)cur;
pCur->iRowid++;
return SQLITE_OK;
}
/*
** Return values of columns for the row at which the carray_cursor
** is currently pointing.
*/
static int carrayColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
carray_cursor *pCur = (carray_cursor*)cur;
sqlite3_int64 x = 0;
switch( i ){
case CARRAY_COLUMN_POINTER: return SQLITE_OK;
case CARRAY_COLUMN_COUNT: x = pCur->iCnt; break;
case CARRAY_COLUMN_CTYPE: {
sqlite3_result_text(ctx, azType[pCur->eType], -1, SQLITE_STATIC);
return SQLITE_OK;
}
default: {
switch( pCur->eType ){
case CARRAY_INT32: {
int *p = (int*)pCur->pPtr;
sqlite3_result_int(ctx, p[pCur->iRowid-1]);
return SQLITE_OK;
}
case CARRAY_INT64: {
sqlite3_int64 *p = (sqlite3_int64*)pCur->pPtr;
sqlite3_result_int64(ctx, p[pCur->iRowid-1]);
return SQLITE_OK;
}
case CARRAY_DOUBLE: {
double *p = (double*)pCur->pPtr;
sqlite3_result_double(ctx, p[pCur->iRowid-1]);
return SQLITE_OK;
}
case CARRAY_TEXT: {
const char **p = (const char**)pCur->pPtr;
sqlite3_result_text(ctx, p[pCur->iRowid-1], -1, SQLITE_TRANSIENT);
return SQLITE_OK;
}
case CARRAY_BLOB: {
const struct iovec *p = (struct iovec*)pCur->pPtr;
sqlite3_result_blob(ctx, p[pCur->iRowid-1].iov_base,
(int)p[pCur->iRowid-1].iov_len, SQLITE_TRANSIENT);
return SQLITE_OK;
}
}
}
}
sqlite3_result_int64(ctx, x);
return SQLITE_OK;
}
/*
** Return the rowid for the current row. In this implementation, the
** rowid is the same as the output value.
*/
static int carrayRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
carray_cursor *pCur = (carray_cursor*)cur;
*pRowid = pCur->iRowid;
return SQLITE_OK;
}
/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int carrayEof(sqlite3_vtab_cursor *cur){
carray_cursor *pCur = (carray_cursor*)cur;
return pCur->iRowid>pCur->iCnt;
}
/*
** This method is called to "rewind" the carray_cursor object back
** to the first row of output.
*/
static int carrayFilter(
sqlite3_vtab_cursor *pVtabCursor,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
carray_cursor *pCur = (carray_cursor *)pVtabCursor;
pCur->pPtr = 0;
pCur->iCnt = 0;
switch( idxNum ){
case 1: {
carray_bind *pBind = sqlite3_value_pointer(argv[0], "carray-bind");
if( pBind==0 ) break;
pCur->pPtr = pBind->aData;
pCur->iCnt = pBind->nData;
pCur->eType = pBind->mFlags & 0x07;
break;
}
case 2:
case 3: {
pCur->pPtr = sqlite3_value_pointer(argv[0], "carray");
pCur->iCnt = pCur->pPtr ? sqlite3_value_int64(argv[1]) : 0;
if( idxNum<3 ){
pCur->eType = CARRAY_INT32;
}else{
unsigned char i;
const char *zType = (const char*)sqlite3_value_text(argv[2]);
for(i=0; i<sizeof(azType)/sizeof(azType[0]); i++){
if( sqlite3_stricmp(zType, azType[i])==0 ) break;
}
if( i>=sizeof(azType)/sizeof(azType[0]) ){
pVtabCursor->pVtab->zErrMsg = sqlite3_mprintf(
"unknown datatype: %Q", zType);
return SQLITE_ERROR;
}else{
pCur->eType = i;
}
}
break;
}
}
pCur->iRowid = 1;
return SQLITE_OK;
}
/*
** SQLite will invoke this method one or more times while planning a query
** that uses the carray virtual table. This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
**
** In this implementation idxNum is used to represent the
** query plan. idxStr is unused.
**
** idxNum is:
**
** 1 If only the pointer= constraint exists. In this case, the
** parameter must be bound using sqlite3_carray_bind().
**
** 2 if the pointer= and count= constraints exist.
**
** 3 if the ctype= constraint also exists.
**
** idxNum is 0 otherwise and carray becomes an empty table.
*/
static int carrayBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int i; /* Loop over constraints */
int ptrIdx = -1; /* Index of the pointer= constraint, or -1 if none */
int cntIdx = -1; /* Index of the count= constraint, or -1 if none */
int ctypeIdx = -1; /* Index of the ctype= constraint, or -1 if none */
const struct sqlite3_index_constraint *pConstraint;
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
if( pConstraint->usable==0 ) continue;
if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
switch( pConstraint->iColumn ){
case CARRAY_COLUMN_POINTER:
ptrIdx = i;
break;
case CARRAY_COLUMN_COUNT:
cntIdx = i;
break;
case CARRAY_COLUMN_CTYPE:
ctypeIdx = i;
break;
}
}
if( ptrIdx>=0 ){
pIdxInfo->aConstraintUsage[ptrIdx].argvIndex = 1;
pIdxInfo->aConstraintUsage[ptrIdx].omit = 1;
pIdxInfo->estimatedCost = (double)1;
pIdxInfo->estimatedRows = 100;
pIdxInfo->idxNum = 1;
if( cntIdx>=0 ){
pIdxInfo->aConstraintUsage[cntIdx].argvIndex = 2;
pIdxInfo->aConstraintUsage[cntIdx].omit = 1;
pIdxInfo->idxNum = 2;
if( ctypeIdx>=0 ){
pIdxInfo->aConstraintUsage[ctypeIdx].argvIndex = 3;
pIdxInfo->aConstraintUsage[ctypeIdx].omit = 1;
pIdxInfo->idxNum = 3;
}
}
}else{
pIdxInfo->estimatedCost = (double)2147483647;
pIdxInfo->estimatedRows = 2147483647;
pIdxInfo->idxNum = 0;
}
return SQLITE_OK;
}
/*
** This following structure defines all the methods for the
** carray virtual table.
*/
static sqlite3_module carrayModule = {
0, /* iVersion */
0, /* xCreate */
carrayConnect, /* xConnect */
carrayBestIndex, /* xBestIndex */
carrayDisconnect, /* xDisconnect */
0, /* xDestroy */
carrayOpen, /* xOpen - open a cursor */
carrayClose, /* xClose - close a cursor */
carrayFilter, /* xFilter - configure scan constraints */
carrayNext, /* xNext - advance a cursor */
carrayEof, /* xEof - check for end of scan */
carrayColumn, /* xColumn - read data */
carrayRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadow */
0 /* xIntegrity */
};
/*
** Destructor for the carray_bind object
*/
static void carrayBindDel(void *pPtr){
carray_bind *p = (carray_bind*)pPtr;
if( p->xDel!=SQLITE_STATIC ){
p->xDel(p->aData);
}
sqlite3_free(p);
}
/*
** Invoke this interface in order to bind to the single-argument
** version of CARRAY().
*/
SQLITE_API int sqlite3_carray_bind(
sqlite3_stmt *pStmt,
int idx,
void *aData,
int nData,
int mFlags,
void (*xDestroy)(void*)
){
carray_bind *pNew;
int i;
pNew = sqlite3_malloc64(sizeof(*pNew));
if( pNew==0 ){
if( xDestroy!=SQLITE_STATIC && xDestroy!=SQLITE_TRANSIENT ){
xDestroy(aData);
}
return SQLITE_NOMEM;
}
pNew->nData = nData;
pNew->mFlags = mFlags;
if( xDestroy==SQLITE_TRANSIENT ){
sqlite3_int64 sz = nData;
switch( mFlags & 0x07 ){
case CARRAY_INT32: sz *= 4; break;
case CARRAY_INT64: sz *= 8; break;
case CARRAY_DOUBLE: sz *= 8; break;
case CARRAY_TEXT: sz *= sizeof(char*); break;
case CARRAY_BLOB: sz *= sizeof(struct iovec); break;
}
if( (mFlags & 0x07)==CARRAY_TEXT ){
for(i=0; i<nData; i++){
const char *z = ((char**)aData)[i];
if( z ) sz += strlen(z) + 1;
}
}else if( (mFlags & 0x07)==CARRAY_BLOB ){
for(i=0; i<nData; i++){
sz += ((struct iovec*)aData)[i].iov_len;
}
}
pNew->aData = sqlite3_malloc64( sz );
if( pNew->aData==0 ){
sqlite3_free(pNew);
return SQLITE_NOMEM;
}
if( (mFlags & 0x07)==CARRAY_TEXT ){
char **az = (char**)pNew->aData;
char *z = (char*)&az[nData];
for(i=0; i<nData; i++){
const char *zData = ((char**)aData)[i];
sqlite3_int64 n;
if( zData==0 ){
az[i] = 0;
continue;
}
az[i] = z;
n = strlen(zData);
memcpy(z, zData, n+1);
z += n+1;
}
}else if( (mFlags & 0x07)==CARRAY_BLOB ){
struct iovec *p = (struct iovec*)pNew->aData;
unsigned char *z = (unsigned char*)&p[nData];
for(i=0; i<nData; i++){
size_t n = ((struct iovec*)aData)[i].iov_len;
p[i].iov_len = n;
p[i].iov_base = z;
z += n;
memcpy(p[i].iov_base, ((struct iovec*)aData)[i].iov_base, n);
}
}else{
memcpy(pNew->aData, aData, sz);
}
pNew->xDel = sqlite3_free;
}else{
pNew->aData = aData;
pNew->xDel = xDestroy;
}
return sqlite3_bind_pointer(pStmt, idx, pNew, "carray-bind", carrayBindDel);
}
/*
** For testing purpose in the TCL test harness, we need a method for
** setting the pointer value. The inttoptr(X) SQL function accomplishes
** this. Tcl script will bind an integer to X and the inttoptr() SQL
** function will use sqlite3_result_pointer() to convert that integer into
** a pointer.
**
** This is for testing on TCL only.
*/
#ifdef SQLITE_TEST
static void inttoptrFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
void *p;
sqlite3_int64 i64;
i64 = sqlite3_value_int64(argv[0]);
if( sizeof(i64)==sizeof(p) ){
memcpy(&p, &i64, sizeof(p));
}else{
int i32 = i64 & 0xffffffff;
memcpy(&p, &i32, sizeof(p));
}
sqlite3_result_pointer(context, p, "carray", 0);
}
#endif /* SQLITE_TEST */
#endif /* SQLITE_OMIT_VIRTUALTABLE */
SQLITE_API int sqlite3_carray_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
#ifndef SQLITE_OMIT_VIRTUALTABLE
rc = sqlite3_create_module(db, "carray", &carrayModule, 0);
#ifdef SQLITE_TEST
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "inttoptr", 1, SQLITE_UTF8, 0,
inttoptrFunc, 0, 0);
}
#endif /* SQLITE_TEST */
#endif /* SQLITE_OMIT_VIRTUALTABLE */
return rc;
}