Source code

Revision control

Copy as Markdown

Other Tools

use crate::runtime::time::{TimerHandle, TimerShared};
use crate::time::error::InsertError;
mod level;
pub(crate) use self::level::Expiration;
use self::level::Level;
use std::{array, ptr::NonNull};
use super::EntryList;
/// Timing wheel implementation.
///
/// This type provides the hashed timing wheel implementation that backs `Timer`
/// and `DelayQueue`.
///
/// The structure is generic over `T: Stack`. This allows handling timeout data
/// being stored on the heap or in a slab. In order to support the latter case,
/// the slab must be passed into each function allowing the implementation to
/// lookup timer entries.
///
/// See `Timer` documentation for some implementation notes.
#[derive(Debug)]
pub(crate) struct Wheel {
/// The number of milliseconds elapsed since the wheel started.
elapsed: u64,
/// Timer wheel.
///
/// Levels:
///
/// * 1 ms slots / 64 ms range
/// * 64 ms slots / ~ 4 sec range
/// * ~ 4 sec slots / ~ 4 min range
/// * ~ 4 min slots / ~ 4 hr range
/// * ~ 4 hr slots / ~ 12 day range
/// * ~ 12 day slots / ~ 2 yr range
levels: Box<[Level; NUM_LEVELS]>,
/// Entries queued for firing
pending: EntryList,
}
/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
/// each, the timer is able to track time up to 2 years into the future with a
/// precision of 1 millisecond.
const NUM_LEVELS: usize = 6;
/// The maximum duration of a `Sleep`.
pub(super) const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1;
impl Wheel {
/// Creates a new timing wheel.
pub(crate) fn new() -> Wheel {
Wheel {
elapsed: 0,
levels: Box::new(array::from_fn(Level::new)),
pending: EntryList::new(),
}
}
/// Returns the number of milliseconds that have elapsed since the timing
/// wheel's creation.
pub(crate) fn elapsed(&self) -> u64 {
self.elapsed
}
/// Inserts an entry into the timing wheel.
///
/// # Arguments
///
/// * `item`: The item to insert into the wheel.
///
/// # Return
///
/// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
///
/// `Err(Elapsed)` indicates that `when` represents an instant that has
/// already passed. In this case, the caller should fire the timeout
/// immediately.
///
/// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
///
/// # Safety
///
/// This function registers item into an intrusive linked list. The caller
/// must ensure that `item` is pinned and will not be dropped without first
/// being deregistered.
pub(crate) unsafe fn insert(
&mut self,
item: TimerHandle,
) -> Result<u64, (TimerHandle, InsertError)> {
let when = item.sync_when();
if when <= self.elapsed {
return Err((item, InsertError::Elapsed));
}
// Get the level at which the entry should be stored
let level = self.level_for(when);
unsafe {
self.levels[level].add_entry(item);
}
debug_assert!({
self.levels[level]
.next_expiration(self.elapsed)
.map(|e| e.deadline >= self.elapsed)
.unwrap_or(true)
});
Ok(when)
}
/// Removes `item` from the timing wheel.
pub(crate) unsafe fn remove(&mut self, item: NonNull<TimerShared>) {
unsafe {
let when = item.as_ref().cached_when();
if when == u64::MAX {
self.pending.remove(item);
} else {
debug_assert!(
self.elapsed <= when,
"elapsed={}; when={}",
self.elapsed,
when
);
let level = self.level_for(when);
self.levels[level].remove_entry(item);
}
}
}
/// Instant at which to poll.
pub(crate) fn poll_at(&self) -> Option<u64> {
self.next_expiration().map(|expiration| expiration.deadline)
}
/// Advances the timer up to the instant represented by `now`.
pub(crate) fn poll(&mut self, now: u64) -> Option<TimerHandle> {
loop {
if let Some(handle) = self.pending.pop_back() {
return Some(handle);
}
match self.next_expiration() {
Some(ref expiration) if expiration.deadline <= now => {
self.process_expiration(expiration);
self.set_elapsed(expiration.deadline);
}
_ => {
// in this case the poll did not indicate an expiration
// _and_ we were not able to find a next expiration in
// the current list of timers. advance to the poll's
// current time and do nothing else.
self.set_elapsed(now);
break;
}
}
}
self.pending.pop_back()
}
/// Returns the instant at which the next timeout expires.
fn next_expiration(&self) -> Option<Expiration> {
if !self.pending.is_empty() {
// Expire immediately as we have things pending firing
return Some(Expiration {
level: 0,
slot: 0,
deadline: self.elapsed,
});
}
// Check all levels
for (level_num, level) in self.levels.iter().enumerate() {
if let Some(expiration) = level.next_expiration(self.elapsed) {
// There cannot be any expirations at a higher level that happen
// before this one.
debug_assert!(self.no_expirations_before(level_num + 1, expiration.deadline));
return Some(expiration);
}
}
None
}
/// Returns the tick at which this timer wheel next needs to perform some
/// processing, or None if there are no timers registered.
pub(super) fn next_expiration_time(&self) -> Option<u64> {
self.next_expiration().map(|ex| ex.deadline)
}
/// Used for debug assertions
fn no_expirations_before(&self, start_level: usize, before: u64) -> bool {
let mut res = true;
for level in &self.levels[start_level..] {
if let Some(e2) = level.next_expiration(self.elapsed) {
if e2.deadline < before {
res = false;
}
}
}
res
}
/// iteratively find entries that are between the wheel's current
/// time and the expiration time. for each in that population either
/// queue it for notification (in the case of the last level) or tier
/// it down to the next level (in all other cases).
pub(crate) fn process_expiration(&mut self, expiration: &Expiration) {
// Note that we need to take _all_ of the entries off the list before
// processing any of them. This is important because it's possible that
// those entries might need to be reinserted into the same slot.
//
// This happens only on the highest level, when an entry is inserted
// more than MAX_DURATION into the future. When this happens, we wrap
// around, and process some entries a multiple of MAX_DURATION before
// they actually need to be dropped down a level. We then reinsert them
// back into the same position; we must make sure we don't then process
// those entries again or we'll end up in an infinite loop.
let mut entries = self.take_entries(expiration);
while let Some(item) = entries.pop_back() {
if expiration.level == 0 {
debug_assert_eq!(unsafe { item.cached_when() }, expiration.deadline);
}
// Try to expire the entry; this is cheap (doesn't synchronize) if
// the timer is not expired, and updates cached_when.
match unsafe { item.mark_pending(expiration.deadline) } {
Ok(()) => {
// Item was expired
self.pending.push_front(item);
}
Err(expiration_tick) => {
let level = level_for(expiration.deadline, expiration_tick);
unsafe {
self.levels[level].add_entry(item);
}
}
}
}
}
fn set_elapsed(&mut self, when: u64) {
assert!(
self.elapsed <= when,
"elapsed={:?}; when={:?}",
self.elapsed,
when
);
if when > self.elapsed {
self.elapsed = when;
}
}
/// Obtains the list of entries that need processing for the given expiration.
fn take_entries(&mut self, expiration: &Expiration) -> EntryList {
self.levels[expiration.level].take_slot(expiration.slot)
}
fn level_for(&self, when: u64) -> usize {
level_for(self.elapsed, when)
}
}
fn level_for(elapsed: u64, when: u64) -> usize {
const SLOT_MASK: u64 = (1 << 6) - 1;
// Mask in the trailing bits ignored by the level calculation in order to cap
// the possible leading zeros
let mut masked = elapsed ^ when | SLOT_MASK;
if masked >= MAX_DURATION {
// Fudge the timer into the top level
masked = MAX_DURATION - 1;
}
let leading_zeros = masked.leading_zeros() as usize;
let significant = 63 - leading_zeros;
significant / NUM_LEVELS
}
#[cfg(all(test, not(loom)))]
mod test {
use super::*;
#[test]
fn test_level_for() {
for pos in 0..64 {
assert_eq!(
0,
level_for(0, pos),
"level_for({}) -- binary = {:b}",
pos,
pos
);
}
for level in 1..5 {
for pos in level..64 {
let a = pos * 64_usize.pow(level as u32);
assert_eq!(
level,
level_for(0, a as u64),
"level_for({}) -- binary = {:b}",
a,
a
);
if pos > level {
let a = a - 1;
assert_eq!(
level,
level_for(0, a as u64),
"level_for({}) -- binary = {:b}",
a,
a
);
}
if pos < 64 {
let a = a + 1;
assert_eq!(
level,
level_for(0, a as u64),
"level_for({}) -- binary = {:b}",
a,
a
);
}
}
}
}
}