Source code
Revision control
Copy as Markdown
Other Tools
use crate::io::util::DEFAULT_BUF_SIZE;
use crate::io::{AsyncBufRead, AsyncRead, AsyncSeek, AsyncWrite, ReadBuf};
use pin_project_lite::pin_project;
use std::io::{self, IoSlice, SeekFrom};
use std::pin::Pin;
use std::task::{Context, Poll};
use std::{cmp, fmt, mem};
pin_project! {
/// The `BufReader` struct adds buffering to any reader.
///
/// It can be excessively inefficient to work directly with a [`AsyncRead`]
/// instance. A `BufReader` performs large, infrequent reads on the underlying
/// [`AsyncRead`] and maintains an in-memory buffer of the results.
///
/// `BufReader` can improve the speed of programs that make *small* and
/// *repeated* read calls to the same file or network socket. It does not
/// help when reading very large amounts at once, or reading just one or a few
/// times. It also provides no advantage when reading from a source that is
/// already in memory, like a `Vec<u8>`.
///
/// When the `BufReader` is dropped, the contents of its buffer will be
/// discarded. Creating multiple instances of a `BufReader` on the same
/// stream can cause data loss.
#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
pub struct BufReader<R> {
#[pin]
pub(super) inner: R,
pub(super) buf: Box<[u8]>,
pub(super) pos: usize,
pub(super) cap: usize,
pub(super) seek_state: SeekState,
}
}
impl<R: AsyncRead> BufReader<R> {
/// Creates a new `BufReader` with a default buffer capacity. The default is currently 8 KB,
/// but may change in the future.
pub fn new(inner: R) -> Self {
Self::with_capacity(DEFAULT_BUF_SIZE, inner)
}
/// Creates a new `BufReader` with the specified buffer capacity.
pub fn with_capacity(capacity: usize, inner: R) -> Self {
let buffer = vec![0; capacity];
Self {
inner,
buf: buffer.into_boxed_slice(),
pos: 0,
cap: 0,
seek_state: SeekState::Init,
}
}
/// Gets a reference to the underlying reader.
///
/// It is inadvisable to directly read from the underlying reader.
pub fn get_ref(&self) -> &R {
&self.inner
}
/// Gets a mutable reference to the underlying reader.
///
/// It is inadvisable to directly read from the underlying reader.
pub fn get_mut(&mut self) -> &mut R {
&mut self.inner
}
/// Gets a pinned mutable reference to the underlying reader.
///
/// It is inadvisable to directly read from the underlying reader.
pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut R> {
self.project().inner
}
/// Consumes this `BufReader`, returning the underlying reader.
///
/// Note that any leftover data in the internal buffer is lost.
pub fn into_inner(self) -> R {
self.inner
}
/// Returns a reference to the internally buffered data.
///
/// Unlike `fill_buf`, this will not attempt to fill the buffer if it is empty.
pub fn buffer(&self) -> &[u8] {
&self.buf[self.pos..self.cap]
}
/// Invalidates all data in the internal buffer.
#[inline]
fn discard_buffer(self: Pin<&mut Self>) {
let me = self.project();
*me.pos = 0;
*me.cap = 0;
}
}
impl<R: AsyncRead> AsyncRead for BufReader<R> {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
// If we don't have any buffered data and we're doing a massive read
// (larger than our internal buffer), bypass our internal buffer
// entirely.
if self.pos == self.cap && buf.remaining() >= self.buf.len() {
let res = ready!(self.as_mut().get_pin_mut().poll_read(cx, buf));
self.discard_buffer();
return Poll::Ready(res);
}
let rem = ready!(self.as_mut().poll_fill_buf(cx))?;
let amt = std::cmp::min(rem.len(), buf.remaining());
buf.put_slice(&rem[..amt]);
self.consume(amt);
Poll::Ready(Ok(()))
}
}
impl<R: AsyncRead> AsyncBufRead for BufReader<R> {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
let me = self.project();
// If we've reached the end of our internal buffer then we need to fetch
// some more data from the underlying reader.
// Branch using `>=` instead of the more correct `==`
// to tell the compiler that the pos..cap slice is always valid.
if *me.pos >= *me.cap {
debug_assert!(*me.pos == *me.cap);
let mut buf = ReadBuf::new(me.buf);
ready!(me.inner.poll_read(cx, &mut buf))?;
*me.cap = buf.filled().len();
*me.pos = 0;
}
Poll::Ready(Ok(&me.buf[*me.pos..*me.cap]))
}
fn consume(self: Pin<&mut Self>, amt: usize) {
let me = self.project();
*me.pos = cmp::min(*me.pos + amt, *me.cap);
}
}
#[derive(Debug, Clone, Copy)]
pub(super) enum SeekState {
/// `start_seek` has not been called.
Init,
/// `start_seek` has been called, but `poll_complete` has not yet been called.
Start(SeekFrom),
/// Waiting for completion of the first `poll_complete` in the `n.checked_sub(remainder).is_none()` branch.
PendingOverflowed(i64),
/// Waiting for completion of `poll_complete`.
Pending,
}
/// Seeks to an offset, in bytes, in the underlying reader.
///
/// The position used for seeking with `SeekFrom::Current(_)` is the
/// position the underlying reader would be at if the `BufReader` had no
/// internal buffer.
///
/// Seeking always discards the internal buffer, even if the seek position
/// would otherwise fall within it. This guarantees that calling
/// `.into_inner()` immediately after a seek yields the underlying reader
/// at the same position.
///
/// See [`AsyncSeek`] for more details.
///
/// Note: In the edge case where you're seeking with `SeekFrom::Current(n)`
/// where `n` minus the internal buffer length overflows an `i64`, two
/// seeks will be performed instead of one. If the second seek returns
/// `Err`, the underlying reader will be left at the same position it would
/// have if you called `seek` with `SeekFrom::Current(0)`.
impl<R: AsyncRead + AsyncSeek> AsyncSeek for BufReader<R> {
fn start_seek(self: Pin<&mut Self>, pos: SeekFrom) -> io::Result<()> {
// We needs to call seek operation multiple times.
// And we should always call both start_seek and poll_complete,
// as start_seek alone cannot guarantee that the operation will be completed.
// poll_complete receives a Context and returns a Poll, so it cannot be called
// inside start_seek.
*self.project().seek_state = SeekState::Start(pos);
Ok(())
}
fn poll_complete(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
let res = match mem::replace(self.as_mut().project().seek_state, SeekState::Init) {
SeekState::Init => {
// 1.x AsyncSeek recommends calling poll_complete before start_seek.
// We don't have to guarantee that the value returned by
// poll_complete called without start_seek is correct,
// so we'll return 0.
return Poll::Ready(Ok(0));
}
SeekState::Start(SeekFrom::Current(n)) => {
let remainder = (self.cap - self.pos) as i64;
// it should be safe to assume that remainder fits within an i64 as the alternative
// means we managed to allocate 8 exbibytes and that's absurd.
// But it's not out of the realm of possibility for some weird underlying reader to
// support seeking by i64::MIN so we need to handle underflow when subtracting
// remainder.
if let Some(offset) = n.checked_sub(remainder) {
self.as_mut()
.get_pin_mut()
.start_seek(SeekFrom::Current(offset))?;
} else {
// seek backwards by our remainder, and then by the offset
self.as_mut()
.get_pin_mut()
.start_seek(SeekFrom::Current(-remainder))?;
if self.as_mut().get_pin_mut().poll_complete(cx)?.is_pending() {
*self.as_mut().project().seek_state = SeekState::PendingOverflowed(n);
return Poll::Pending;
}
self.as_mut().discard_buffer();
self.as_mut()
.get_pin_mut()
.start_seek(SeekFrom::Current(n))?;
}
self.as_mut().get_pin_mut().poll_complete(cx)?
}
SeekState::PendingOverflowed(n) => {
if self.as_mut().get_pin_mut().poll_complete(cx)?.is_pending() {
*self.as_mut().project().seek_state = SeekState::PendingOverflowed(n);
return Poll::Pending;
}
self.as_mut().discard_buffer();
self.as_mut()
.get_pin_mut()
.start_seek(SeekFrom::Current(n))?;
self.as_mut().get_pin_mut().poll_complete(cx)?
}
SeekState::Start(pos) => {
// Seeking with Start/End doesn't care about our buffer length.
self.as_mut().get_pin_mut().start_seek(pos)?;
self.as_mut().get_pin_mut().poll_complete(cx)?
}
SeekState::Pending => self.as_mut().get_pin_mut().poll_complete(cx)?,
};
match res {
Poll::Ready(res) => {
self.discard_buffer();
Poll::Ready(Ok(res))
}
Poll::Pending => {
*self.as_mut().project().seek_state = SeekState::Pending;
Poll::Pending
}
}
}
}
impl<R: AsyncRead + AsyncWrite> AsyncWrite for BufReader<R> {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
self.get_pin_mut().poll_write(cx, buf)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[IoSlice<'_>],
) -> Poll<io::Result<usize>> {
self.get_pin_mut().poll_write_vectored(cx, bufs)
}
fn is_write_vectored(&self) -> bool {
self.get_ref().is_write_vectored()
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.get_pin_mut().poll_flush(cx)
}
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.get_pin_mut().poll_shutdown(cx)
}
}
impl<R: fmt::Debug> fmt::Debug for BufReader<R> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BufReader")
.field("reader", &self.inner)
.field(
"buffer",
&format_args!("{}/{}", self.cap - self.pos, self.buf.len()),
)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn assert_unpin() {
crate::is_unpin::<BufReader<()>>();
}
}