Source code

Revision control

Copy as Markdown

Other Tools

use super::*;↩
use core::convert::{TryFrom, TryInto};↩
#[cfg(feature = "serde")]↩
use core::marker::PhantomData;↩
#[cfg(feature = "serde")]↩
use serde::de::{↩
Deserialize, Deserializer, Error as DeserializeError, SeqAccess, Visitor,↩
};↩
#[cfg(feature = "serde")]↩
use serde::ser::{Serialize, SerializeSeq, Serializer};↩
/// Helper to make an `ArrayVec`.↩
///↩
/// You specify the backing array type, and optionally give all the elements you↩
/// want to initially place into the array.↩
///↩
/// ```rust↩
/// use tinyvec::*;↩
///↩
/// // The backing array type can be specified in the macro call↩
/// let empty_av = array_vec!([u8; 16]);↩
/// let some_ints = array_vec!([i32; 4] => 1, 2, 3);↩
///↩
/// // Or left to inference↩
/// let empty_av: ArrayVec<[u8; 10]> = array_vec!();↩
/// let some_ints: ArrayVec<[u8; 10]> = array_vec!(5, 6, 7, 8);↩
/// ```↩
#[macro_export]↩
macro_rules! array_vec {↩
($array_type:ty => $($elem:expr),* $(,)?) => {↩
{↩
let mut av: $crate::ArrayVec<$array_type> = Default::default();↩
$( av.push($elem); )*↩
av↩
}↩
};↩
($array_type:ty) => {↩
$crate::ArrayVec::<$array_type>::default()↩
};↩
($($elem:expr),*) => {↩
$crate::array_vec!(_ => $($elem),*)↩
};↩
($elem:expr; $n:expr) => {↩
$crate::ArrayVec::from([$elem; $n])↩
};↩
() => {↩
$crate::array_vec!(_)↩
};↩
}↩
/// An array-backed, vector-like data structure.↩
///↩
/// * `ArrayVec` has a fixed capacity, equal to the minimum of the array size↩
/// and `u16::MAX`. Note that not all capacities are necessarily supported by↩
/// default. See comments in [`Array`].↩
/// * `ArrayVec` has a variable length, as you add and remove elements. Attempts↩
/// to fill the vec beyond its capacity will cause a panic.↩
/// * All of the vec's array slots are always initialized in terms of Rust's↩
/// memory model. When you remove a element from a location, the old value at↩
/// that location is replaced with the type's default value.↩
///↩
/// The overall API of this type is intended to, as much as possible, emulate↩
/// type.↩
///↩
/// ## Construction↩
///↩
/// You can use the `array_vec!` macro similarly to how you might use the `vec!`↩
/// macro. Specify the array type, then optionally give all the initial values↩
/// you want to have.↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let some_ints = array_vec!([i32; 4] => 1, 2, 3);↩
/// assert_eq!(some_ints.len(), 3);↩
/// ```↩
///↩
/// The [`default`](ArrayVec::new) for an `ArrayVec` is to have a default↩
/// array with length 0. The [`new`](ArrayVec::new) method is the same as↩
/// calling `default`↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let some_ints = ArrayVec::<[i32; 7]>::default();↩
/// assert_eq!(some_ints.len(), 0);↩
///↩
/// let more_ints = ArrayVec::<[i32; 7]>::new();↩
/// assert_eq!(some_ints, more_ints);↩
/// ```↩
///↩
/// If you have an array and want the _whole thing_ so count as being "in" the↩
/// new `ArrayVec` you can use one of the `from` implementations. If you want↩
/// _part of_ the array then you can use↩
/// [`from_array_len`](ArrayVec::from_array_len):↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let some_ints = ArrayVec::from([5, 6, 7, 8]);↩
/// assert_eq!(some_ints.len(), 4);↩
///↩
/// let more_ints = ArrayVec::from_array_len([5, 6, 7, 8], 2);↩
/// assert_eq!(more_ints.len(), 2);↩
///↩
/// let no_ints: ArrayVec<[u8; 5]> = ArrayVec::from_array_empty([1, 2, 3, 4, 5]);↩
/// assert_eq!(no_ints.len(), 0);↩
/// ```↩
#[repr(C)]↩
pub struct ArrayVec<A> {↩
len: u16,↩
pub(crate) data: A,↩
}↩
impl<A> Clone for ArrayVec<A>↩
where
A: Array + Clone,↩
A::Item: Clone,↩
{↩
#[inline]↩
fn clone(&self) -> Self {↩
Self { data: self.data.clone(), len: self.len }↩
}↩
#[inline]↩
fn clone_from(&mut self, o: &Self) {↩
let iter = self
.data
.as_slice_mut()↩
.iter_mut()↩
.zip(o.data.as_slice())↩
.take(self.len.max(o.len) as usize);↩
for (dst, src) in iter {↩
dst.clone_from(src)↩
}↩
if let Some(to_drop) =↩
self.data.as_slice_mut().get_mut((o.len as usize)..(self.len as usize))↩
{↩
to_drop.iter_mut().for_each(|x| drop(core::mem::take(x)));↩
}↩
self.len = o.len;↩
}↩
}↩
impl<A> Copy for ArrayVec<A>↩
where
A: Array + Copy,↩
A::Item: Copy,↩
{↩
}↩
impl<A: Array> Default for ArrayVec<A> {↩
#[inline]↩
fn default() -> Self {↩
Self { len: 0, data: A::default() }↩
}↩
}↩
impl<A: Array> Deref for ArrayVec<A> {↩
type Target = [A::Item];↩
#[inline(always)]↩
#[must_use]↩
fn deref(&self) -> &Self::Target {↩
&self.data.as_slice()[..self.len as usize]↩
}↩
}↩
impl<A: Array> DerefMut for ArrayVec<A> {↩
#[inline(always)]↩
#[must_use]↩
fn deref_mut(&mut self) -> &mut Self::Target {↩
&mut self.data.as_slice_mut()[..self.len as usize]↩
}↩
}↩
impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for ArrayVec<A> {↩
type Output = <I as SliceIndex<[A::Item]>>::Output;↩
#[inline(always)]↩
#[must_use]↩
fn index(&self, index: I) -> &Self::Output {↩
&self.deref()[index]↩
}↩
}↩
impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for ArrayVec<A> {↩
#[inline(always)]↩
#[must_use]↩
fn index_mut(&mut self, index: I) -> &mut Self::Output {↩
&mut self.deref_mut()[index]↩
}↩
}↩
#[cfg(feature = "serde")]↩
#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]↩
impl<A: Array> Serialize for ArrayVec<A>↩
where
A::Item: Serialize,↩
{↩
#[must_use]↩
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>↩
where
S: Serializer,↩
{↩
let mut seq = serializer.serialize_seq(Some(self.len()))?;↩
for element in self.iter() {↩
seq.serialize_element(element)?;↩
}↩
seq.end()↩
}↩
}↩
#[cfg(feature = "serde")]↩
#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]↩
impl<'de, A: Array> Deserialize<'de> for ArrayVec<A>↩
where
A::Item: Deserialize<'de>,↩
{↩
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>↩
where
D: Deserializer<'de>,↩
{↩
deserializer.deserialize_seq(ArrayVecVisitor(PhantomData))↩
}↩
}↩
#[cfg(feature = "borsh")]↩
#[cfg_attr(docs_rs, doc(cfg(feature = "borsh")))]↩
impl<A: Array> borsh::BorshSerialize for ArrayVec<A>↩
where
<A as Array>::Item: borsh::BorshSerialize,↩
{↩
fn serialize<W: borsh::io::Write>(↩
&self, writer: &mut W,↩
) -> borsh::io::Result<()> {↩
<usize as borsh::BorshSerialize>::serialize(&self.len(), writer)?;↩
for elem in self.iter() {↩
<<A as Array>::Item as borsh::BorshSerialize>::serialize(elem, writer)?;↩
}↩
Ok(())↩
}↩
}↩
#[cfg(feature = "borsh")]↩
#[cfg_attr(docs_rs, doc(cfg(feature = "borsh")))]↩
impl<A: Array> borsh::BorshDeserialize for ArrayVec<A>↩
where
<A as Array>::Item: borsh::BorshDeserialize,↩
{↩
fn deserialize_reader<R: borsh::io::Read>(↩
reader: &mut R,↩
) -> borsh::io::Result<Self> {↩
let len = <usize as borsh::BorshDeserialize>::deserialize_reader(reader)?;↩
let mut new_arrayvec = Self::default();↩
for idx in 0..len {↩
let value =↩
<<A as Array>::Item as borsh::BorshDeserialize>::deserialize_reader(↩
reader,↩
)?;↩
if idx >= new_arrayvec.capacity() {↩
return Err(borsh::io::Error::new(↩
borsh::io::ErrorKind::InvalidData,↩
"invalid ArrayVec length",↩
));↩
}↩
new_arrayvec.push(value)↩
}↩
Ok(new_arrayvec)↩
}↩
}↩
#[cfg(feature = "arbitrary")]↩
#[cfg_attr(docs_rs, doc(cfg(feature = "arbitrary")))]↩
impl<'a, A> arbitrary::Arbitrary<'a> for ArrayVec<A>↩
where
A: Array,↩
A::Item: arbitrary::Arbitrary<'a>,↩
{↩
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {↩
let max_len = A::CAPACITY.min(u16::MAX as usize) as u16;↩
let len = u.int_in_range::<u16>(0..=max_len)?;↩
let mut self_: Self = Default::default();↩
for _ in 0..len {↩
self_.push(u.arbitrary()?);↩
}↩
Ok(self_)↩
}↩
fn size_hint(depth: usize) -> (usize, Option<usize>) {↩
arbitrary::size_hint::recursion_guard(depth, |depth| {↩
let max_len = A::CAPACITY.min(u16::MAX as usize);↩
let inner = A::Item::size_hint(depth).1;↩
(0, inner.map(|inner| 2 + max_len * inner))↩
})↩
}↩
}↩
impl<A: Array> ArrayVec<A> {↩
/// Move all values from `other` into this vec.↩
///↩
/// ## Panics↩
/// * If the vec overflows its capacity↩
///↩
/// ## Example↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 10] => 1, 2, 3);↩
/// let mut av2 = array_vec!([i32; 10] => 4, 5, 6);↩
/// av.append(&mut av2);↩
/// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]);↩
/// assert_eq!(av2, &[][..]);↩
/// ```↩
#[inline]↩
pub fn append(&mut self, other: &mut Self) {↩
assert!(↩
self.try_append(other).is_none(),↩
"ArrayVec::append> total length {} exceeds capacity {}!",↩
self.len() + other.len(),↩
A::CAPACITY
);↩
}↩
/// Move all values from `other` into this vec.↩
/// If appending would overflow the capacity, Some(other) is returned.↩
/// ## Example↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);↩
/// let mut av2 = array_vec!([i32; 7] => 4, 5, 6);↩
/// av.append(&mut av2);↩
/// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]);↩
/// assert_eq!(av2, &[][..]);↩
///↩
/// let mut av3 = array_vec!([i32; 7] => 7, 8, 9);↩
/// assert!(av.try_append(&mut av3).is_some());↩
/// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]);↩
/// assert_eq!(av3, &[7, 8, 9][..]);↩
/// ```↩
#[inline]↩
pub fn try_append<'other>(↩
&mut self, other: &'other mut Self,↩
) -> Option<&'other mut Self> {↩
let new_len = self.len() + other.len();↩
if new_len > A::CAPACITY {↩
return Some(other);↩
}↩
let iter = other.iter_mut().map(core::mem::take);↩
for item in iter {↩
self.push(item);↩
}↩
other.set_len(0);↩
return None;↩
}↩
/// A `*mut` pointer to the backing array.↩
///↩
/// ## Safety↩
///↩
/// This pointer has provenance over the _entire_ backing array.↩
#[inline(always)]↩
#[must_use]↩
pub fn as_mut_ptr(&mut self) -> *mut A::Item {↩
self.data.as_slice_mut().as_mut_ptr()↩
}↩
/// Performs a `deref_mut`, into unique slice form.↩
#[inline(always)]↩
#[must_use]↩
pub fn as_mut_slice(&mut self) -> &mut [A::Item] {↩
self.deref_mut()↩
}↩
/// A `*const` pointer to the backing array.↩
///↩
/// ## Safety↩
///↩
/// This pointer has provenance over the _entire_ backing array.↩
#[inline(always)]↩
#[must_use]↩
pub fn as_ptr(&self) -> *const A::Item {↩
self.data.as_slice().as_ptr()↩
}↩
/// Performs a `deref`, into shared slice form.↩
#[inline(always)]↩
#[must_use]↩
pub fn as_slice(&self) -> &[A::Item] {↩
self.deref()↩
}↩
/// The capacity of the `ArrayVec`.↩
///↩
/// This is fixed based on the array type, but can't yet be made a `const fn`↩
/// on Stable Rust.↩
#[inline(always)]↩
#[must_use]↩
pub fn capacity(&self) -> usize {↩
// Note: This shouldn't use A::CAPACITY, because unsafe code can't rely on↩
// any Array invariants. This ensures that at the very least, the returned↩
// value is a valid length for a subslice of the backing array.↩
self.data.as_slice().len().min(u16::MAX as usize)↩
}↩
/// Truncates the `ArrayVec` down to length 0.↩
#[inline(always)]↩
pub fn clear(&mut self) {↩
self.truncate(0)↩
}↩
/// Creates a draining iterator that removes the specified range in the vector↩
/// and yields the removed items.↩
///↩
/// ## Panics↩
/// * If the start is greater than the end↩
/// * If the end is past the edge of the vec.↩
///↩
/// ## Example↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 4] => 1, 2, 3);↩
/// let av2: ArrayVec<[i32; 4]> = av.drain(1..).collect();↩
/// assert_eq!(av.as_slice(), &[1][..]);↩
/// assert_eq!(av2.as_slice(), &[2, 3][..]);↩
///↩
/// av.drain(..);↩
/// assert_eq!(av.as_slice(), &[]);↩
/// ```↩
#[inline]↩
pub fn drain<R>(&mut self, range: R) -> ArrayVecDrain<'_, A::Item>↩
where
R: RangeBounds<usize>,↩
{↩
ArrayVecDrain::new(self, range)↩
}↩
/// Returns the inner array of the `ArrayVec`.↩
///↩
/// This returns the full array, even if the `ArrayVec` length is currently↩
/// less than that.↩
///↩
/// ## Example↩
///↩
/// ```rust↩
/// # use tinyvec::{array_vec, ArrayVec};↩
/// let mut favorite_numbers = array_vec!([i32; 5] => 87, 48, 33, 9, 26);↩
/// assert_eq!(favorite_numbers.clone().into_inner(), [87, 48, 33, 9, 26]);↩
///↩
/// favorite_numbers.pop();↩
/// assert_eq!(favorite_numbers.into_inner(), [87, 48, 33, 9, 0]);↩
/// ```↩
///↩
/// A use for this function is to build an array from an iterator by first↩
/// collecting it into an `ArrayVec`.↩
///↩
/// ```rust↩
/// # use tinyvec::ArrayVec;↩
/// let arr_vec: ArrayVec<[i32; 10]> = (1..=3).cycle().take(10).collect();↩
/// let inner = arr_vec.into_inner();↩
/// assert_eq!(inner, [1, 2, 3, 1, 2, 3, 1, 2, 3, 1]);↩
/// ```↩
#[inline]↩
pub fn into_inner(self) -> A {↩
self.data
}↩
/// Clone each element of the slice into this `ArrayVec`.↩
///↩
/// ## Panics↩
/// * If the `ArrayVec` would overflow, this will panic.↩
#[inline]↩
pub fn extend_from_slice(&mut self, sli: &[A::Item])↩
where
A::Item: Clone,↩
{↩
if sli.is_empty() {↩
return;↩
}↩
let new_len = self.len as usize + sli.len();↩
assert!(↩
new_len <= A::CAPACITY,↩
"ArrayVec::extend_from_slice> total length {} exceeds capacity {}!",↩
new_len,↩
A::CAPACITY
);↩
let target = &mut self.data.as_slice_mut()[self.len as usize..new_len];↩
target.clone_from_slice(sli);↩
self.set_len(new_len);↩
}↩
/// Fill the vector until its capacity has been reached.↩
///↩
/// Successively fills unused space in the spare slice of the vector with↩
/// elements from the iterator. It then returns the remaining iterator↩
/// without exhausting it. This also allows appending the head of an↩
/// infinite iterator.↩
///↩
/// This is an alternative to `Extend::extend` method for cases where the↩
/// length of the iterator can not be checked. Since this vector can not↩
/// reallocate to increase its capacity, it is unclear what to do with↩
/// remaining elements in the iterator and the iterator itself. The↩
/// interface also provides no way to communicate this to the caller.↩
///↩
/// ## Panics↩
/// * If the `next` method of the provided iterator panics.↩
///↩
/// ## Example↩
///↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 4]);↩
/// let mut to_inf = av.fill(0..);↩
/// assert_eq!(&av[..], [0, 1, 2, 3]);↩
/// assert_eq!(to_inf.next(), Some(4));↩
/// ```↩
#[inline]↩
pub fn fill<I: IntoIterator<Item = A::Item>>(↩
&mut self, iter: I,↩
) -> I::IntoIter {↩
// If this is written as a call to push for each element in iter, the↩
// compiler emits code that updates the length for every element. The↩
// additional complexity from that length update is worth nearly 2x in↩
// the runtime of this function.↩
let mut iter = iter.into_iter();↩
let mut pushed = 0;↩
let to_take = self.capacity() - self.len();↩
let target = &mut self.data.as_slice_mut()[self.len as usize..];↩
for element in iter.by_ref().take(to_take) {↩
target[pushed] = element;↩
pushed += 1;↩
}↩
self.len += pushed as u16;↩
iter
}↩
/// Wraps up an array and uses the given length as the initial length.↩
///↩
/// If you want to simply use the full array, use `from` instead.↩
///↩
/// ## Panics↩
///↩
/// * The length specified must be less than or equal to the capacity of the↩
/// array.↩
#[inline]↩
#[must_use]↩
#[allow(clippy::match_wild_err_arm)]↩
pub fn from_array_len(data: A, len: usize) -> Self {↩
match Self::try_from_array_len(data, len) {↩
Ok(out) => out,↩
Err(_) => panic!(↩
"ArrayVec::from_array_len> length {} exceeds capacity {}!",↩
len,↩
A::CAPACITY
),↩
}↩
}↩
/// Inserts an item at the position given, moving all following elements +1↩
/// index.↩
///↩
/// ## Panics↩
/// * If `index` > `len`↩
/// * If the capacity is exhausted↩
///↩
/// ## Example↩
/// ```rust↩
/// use tinyvec::*;↩
/// let mut av = array_vec!([i32; 10] => 1, 2, 3);↩
/// av.insert(1, 4);↩
/// assert_eq!(av.as_slice(), &[1, 4, 2, 3]);↩
/// av.insert(4, 5);↩
/// assert_eq!(av.as_slice(), &[1, 4, 2, 3, 5]);↩
/// ```↩
#[inline]↩
pub fn insert(&mut self, index: usize, item: A::Item) {↩
let x = self.try_insert(index, item);↩
assert!(x.is_none(), "ArrayVec::insert> capacity overflow!");↩
}↩
/// Tries to insert an item at the position given, moving all following↩
/// elements +1 index.↩
/// Returns back the element if the capacity is exhausted,↩
/// otherwise returns None.↩
///↩
/// ## Panics↩
/// * If `index` > `len`↩
///↩
/// ## Example↩
/// ```rust↩
/// use tinyvec::*;↩
/// let mut av = array_vec!([&'static str; 4] => "one", "two", "three");↩
/// av.insert(1, "four");↩
/// assert_eq!(av.as_slice(), &["one", "four", "two", "three"]);↩
/// assert_eq!(av.try_insert(4, "five"), Some("five"));↩
/// ```↩
#[inline]↩
pub fn try_insert(↩
&mut self, index: usize, mut item: A::Item,↩
) -> Option<A::Item> {↩
assert!(↩
index <= self.len as usize,↩
"ArrayVec::try_insert> index {} is out of bounds {}",↩
index,↩
self.len
);↩
// A previous implementation used self.try_push and slice::rotate_right↩
// rotate_right and rotate_left generate a huge amount of code and fail to↩
// inline; calling them here incurs the cost of all the cases they↩
// handle even though we're rotating a usually-small array by a constant↩
// 1 offset. This swap-based implementation benchmarks much better for↩
// small array lengths in particular.↩
if (self.len as usize) < A::CAPACITY {↩
self.len += 1;↩
} else {↩
return Some(item);↩
}↩
let target = &mut self.as_mut_slice()[index..];↩
#[allow(clippy::needless_range_loop)]↩
for i in 0..target.len() {↩
core::mem::swap(&mut item, &mut target[i]);↩
}↩
return None;↩
}↩
/// Checks if the length is 0.↩
#[inline(always)]↩
#[must_use]↩
pub fn is_empty(&self) -> bool {↩
self.len == 0↩
}↩
/// The length of the `ArrayVec` (in elements).↩
#[inline(always)]↩
#[must_use]↩
pub fn len(&self) -> usize {↩
self.len as usize↩
}↩
/// Makes a new, empty `ArrayVec`.↩
#[inline(always)]↩
#[must_use]↩
pub fn new() -> Self {↩
Self::default()↩
}↩
/// Remove and return the last element of the vec, if there is one.↩
///↩
/// ## Failure↩
/// * If the vec is empty you get `None`.↩
///↩
/// ## Example↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 10] => 1, 2);↩
/// assert_eq!(av.pop(), Some(2));↩
/// assert_eq!(av.pop(), Some(1));↩
/// assert_eq!(av.pop(), None);↩
/// ```↩
#[inline]↩
pub fn pop(&mut self) -> Option<A::Item> {↩
if self.len > 0 {↩
self.len -= 1;↩
let out =↩
core::mem::take(&mut self.data.as_slice_mut()[self.len as usize]);↩
Some(out)↩
} else {↩
None
}↩
}↩
/// Place an element onto the end of the vec.↩
///↩
/// ## Panics↩
/// * If the length of the vec would overflow the capacity.↩
///↩
/// ## Example↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 2]);↩
/// assert_eq!(&av[..], []);↩
/// av.push(1);↩
/// assert_eq!(&av[..], [1]);↩
/// av.push(2);↩
/// assert_eq!(&av[..], [1, 2]);↩
/// // av.push(3); this would overflow the ArrayVec and panic!↩
/// ```↩
#[inline(always)]↩
pub fn push(&mut self, val: A::Item) {↩
let x = self.try_push(val);↩
assert!(x.is_none(), "ArrayVec::push> capacity overflow!");↩
}↩
/// Tries to place an element onto the end of the vec.\↩
/// Returns back the element if the capacity is exhausted,↩
/// otherwise returns None.↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 2]);↩
/// assert_eq!(av.as_slice(), []);↩
/// assert_eq!(av.try_push(1), None);↩
/// assert_eq!(&av[..], [1]);↩
/// assert_eq!(av.try_push(2), None);↩
/// assert_eq!(&av[..], [1, 2]);↩
/// assert_eq!(av.try_push(3), Some(3));↩
/// ```↩
#[inline(always)]↩
pub fn try_push(&mut self, val: A::Item) -> Option<A::Item> {↩
debug_assert!(self.len as usize <= A::CAPACITY);↩
let itemref = match self.data.as_slice_mut().get_mut(self.len as usize) {↩
None => return Some(val),↩
Some(x) => x,↩
};↩
*itemref = val;↩
self.len += 1;↩
return None;↩
}↩
/// Removes the item at `index`, shifting all others down by one index.↩
///↩
/// Returns the removed element.↩
///↩
/// ## Panics↩
///↩
/// * If the index is out of bounds.↩
///↩
/// ## Example↩
///↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 4] => 1, 2, 3);↩
/// assert_eq!(av.remove(1), 2);↩
/// assert_eq!(&av[..], [1, 3]);↩
/// ```↩
#[inline]↩
pub fn remove(&mut self, index: usize) -> A::Item {↩
let targets: &mut [A::Item] = &mut self.deref_mut()[index..];↩
let item = core::mem::take(&mut targets[0]);↩
// A previous implementation used rotate_left↩
// rotate_right and rotate_left generate a huge amount of code and fail to↩
// inline; calling them here incurs the cost of all the cases they↩
// handle even though we're rotating a usually-small array by a constant↩
// 1 offset. This swap-based implementation benchmarks much better for↩
// small array lengths in particular.↩
for i in 0..targets.len() - 1 {↩
targets.swap(i, i + 1);↩
}↩
self.len -= 1;↩
item
}↩
/// As [`resize_with`](ArrayVec::resize_with)↩
/// and it clones the value as the closure.↩
///↩
/// ## Example↩
///↩
/// ```rust↩
/// # use tinyvec::*;↩
///↩
/// let mut av = array_vec!([&str; 10] => "hello");↩
/// av.resize(3, "world");↩
/// assert_eq!(&av[..], ["hello", "world", "world"]);↩
///↩
/// let mut av = array_vec!([i32; 10] => 1, 2, 3, 4);↩
/// av.resize(2, 0);↩
/// assert_eq!(&av[..], [1, 2]);↩
/// ```↩
#[inline]↩
pub fn resize(&mut self, new_len: usize, new_val: A::Item)↩
where
A::Item: Clone,↩
{↩
self.resize_with(new_len, || new_val.clone())↩
}↩
/// Resize the vec to the new length.↩
///↩
/// If it needs to be longer, it's filled with repeated calls to the provided↩
/// function. If it needs to be shorter, it's truncated.↩
///↩
/// ## Example↩
///↩
/// ```rust↩
/// # use tinyvec::*;↩
///↩
/// let mut av = array_vec!([i32; 10] => 1, 2, 3);↩
/// av.resize_with(5, Default::default);↩
/// assert_eq!(&av[..], [1, 2, 3, 0, 0]);↩
///↩
/// let mut av = array_vec!([i32; 10]);↩
/// let mut p = 1;↩
/// av.resize_with(4, || {↩
/// p *= 2;↩
/// p↩
/// });↩
/// assert_eq!(&av[..], [2, 4, 8, 16]);↩
/// ```↩
#[inline]↩
pub fn resize_with<F: FnMut() -> A::Item>(↩
&mut self, new_len: usize, mut f: F,↩
) {↩
match new_len.checked_sub(self.len as usize) {↩
None => self.truncate(new_len),↩
Some(new_elements) => {↩
for _ in 0..new_elements {↩
self.push(f());↩
}↩
}↩
}↩
}↩
/// Walk the vec and keep only the elements that pass the predicate given.↩
///↩
/// ## Example↩
///↩
/// ```rust↩
/// # use tinyvec::*;↩
///↩
/// let mut av = array_vec!([i32; 10] => 1, 1, 2, 3, 3, 4);↩
/// av.retain(|&x| x % 2 == 0);↩
/// assert_eq!(&av[..], [2, 4]);↩
/// ```↩
#[inline]↩
pub fn retain<F: FnMut(&A::Item) -> bool>(&mut self, mut acceptable: F) {↩
// Drop guard to contain exactly the remaining elements when the test↩
// panics.↩
struct JoinOnDrop<'vec, Item> {↩
items: &'vec mut [Item],↩
done_end: usize,↩
// Start of tail relative to `done_end`.↩
tail_start: usize,↩
}↩
impl<Item> Drop for JoinOnDrop<'_, Item> {↩
fn drop(&mut self) {↩
self.items[self.done_end..].rotate_left(self.tail_start);↩
}↩
}↩
let mut rest = JoinOnDrop {↩
items: &mut self.data.as_slice_mut()[..self.len as usize],↩
done_end: 0,↩
tail_start: 0,↩
};↩
let len = self.len as usize;↩
for idx in 0..len {↩
// Loop start invariant: idx = rest.done_end + rest.tail_start↩
if !acceptable(&rest.items[idx]) {↩
let _ = core::mem::take(&mut rest.items[idx]);↩
self.len -= 1;↩
rest.tail_start += 1;↩
} else {↩
rest.items.swap(rest.done_end, idx);↩
rest.done_end += 1;↩
}↩
}↩
}↩
/// Retains only the elements specified by the predicate, passing a mutable↩
/// reference to it.↩
///↩
/// In other words, remove all elements e such that f(&mut e) returns false.↩
/// This method operates in place, visiting each element exactly once in the↩
/// original order, and preserves the order of the retained elements.↩
///↩
///↩
/// ## Example↩
///↩
/// ```rust↩
/// # use tinyvec::*;↩
///↩
/// let mut av = array_vec!([i32; 10] => 1, 1, 2, 3, 3, 4);↩
/// av.retain_mut(|x| if *x % 2 == 0 { *x *= 2; true } else { false });↩
/// assert_eq!(&av[..], [4, 8]);↩
/// ```↩
#[inline]↩
pub fn retain_mut<F>(&mut self, mut acceptable: F)↩
where
F: FnMut(&mut A::Item) -> bool,↩
{↩
// Drop guard to contain exactly the remaining elements when the test↩
// panics.↩
struct JoinOnDrop<'vec, Item> {↩
items: &'vec mut [Item],↩
done_end: usize,↩
// Start of tail relative to `done_end`.↩
tail_start: usize,↩
}↩
impl<Item> Drop for JoinOnDrop<'_, Item> {↩
fn drop(&mut self) {↩
self.items[self.done_end..].rotate_left(self.tail_start);↩
}↩
}↩
let mut rest = JoinOnDrop {↩
items: &mut self.data.as_slice_mut()[..self.len as usize],↩
done_end: 0,↩
tail_start: 0,↩
};↩
let len = self.len as usize;↩
for idx in 0..len {↩
// Loop start invariant: idx = rest.done_end + rest.tail_start↩
if !acceptable(&mut rest.items[idx]) {↩
let _ = core::mem::take(&mut rest.items[idx]);↩
self.len -= 1;↩
rest.tail_start += 1;↩
} else {↩
rest.items.swap(rest.done_end, idx);↩
rest.done_end += 1;↩
}↩
}↩
}↩
/// Forces the length of the vector to `new_len`.↩
///↩
/// ## Panics↩
/// * If `new_len` is greater than the vec's capacity.↩
///↩
/// ## Safety↩
/// * This is a fully safe operation! The inactive memory already counts as↩
/// "initialized" by Rust's rules.↩
/// * Other than "the memory is initialized" there are no other guarantees↩
/// regarding what you find in the inactive portion of the vec.↩
#[inline(always)]↩
pub fn set_len(&mut self, new_len: usize) {↩
if new_len > A::CAPACITY {↩
// Note(Lokathor): Technically we don't have to panic here, and we could↩
// just let some other call later on trigger a panic on accident when the↩
// length is wrong. However, it's a lot easier to catch bugs when things↩
// are more "fail-fast".↩
panic!(↩
"ArrayVec::set_len> new length {} exceeds capacity {}",↩
new_len,↩
A::CAPACITY
)↩
}↩
let new_len: u16 = new_len
.try_into()↩
.expect("ArrayVec::set_len> new length is not in range 0..=u16::MAX");↩
self.len = new_len;↩
}↩
/// Splits the collection at the point given.↩
///↩
/// * `[0, at)` stays in this vec↩
/// * `[at, len)` ends up in the new vec.↩
///↩
/// ## Panics↩
/// * if at > len↩
///↩
/// ## Example↩
///↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 4] => 1, 2, 3);↩
/// let av2 = av.split_off(1);↩
/// assert_eq!(&av[..], [1]);↩
/// assert_eq!(&av2[..], [2, 3]);↩
/// ```↩
#[inline]↩
pub fn split_off(&mut self, at: usize) -> Self {↩
// FIXME: should this just use drain into the output?↩
if at > self.len() {↩
panic!(↩
"ArrayVec::split_off> at value {} exceeds length of {}",↩
at, self.len
);↩
}↩
let mut new = Self::default();↩
let moves = &mut self.as_mut_slice()[at..];↩
let split_len = moves.len();↩
let targets = &mut new.data.as_slice_mut()[..split_len];↩
moves.swap_with_slice(targets);↩
/* moves.len() <= u16::MAX, so these are surely in u16 range */
new.len = split_len as u16;↩
self.len = at as u16;↩
new
}↩
/// Creates a splicing iterator that removes the specified range in the↩
/// vector, yields the removed items, and replaces them with elements from↩
/// the provided iterator.↩
///↩
/// `splice` fuses the provided iterator, so elements after the first `None`↩
/// are ignored.↩
///↩
/// ## Panics↩
/// * If the start is greater than the end.↩
/// * If the end is past the edge of the vec.↩
/// * If the provided iterator panics.↩
/// * If the new length would overflow the capacity of the array. Because↩
/// `ArrayVecSplice` adds elements to this vec in its destructor when↩
/// necessary, this panic would occur when it is dropped.↩
///↩
/// ## Example↩
/// ```rust↩
/// use tinyvec::*;↩
/// let mut av = array_vec!([i32; 4] => 1, 2, 3);↩
/// let av2: ArrayVec<[i32; 4]> = av.splice(1.., 4..=6).collect();↩
/// assert_eq!(av.as_slice(), &[1, 4, 5, 6][..]);↩
/// assert_eq!(av2.as_slice(), &[2, 3][..]);↩
///↩
/// av.splice(.., None);↩
/// assert_eq!(av.as_slice(), &[]);↩
/// ```↩
#[inline]↩
pub fn splice<R, I>(↩
&mut self, range: R, replacement: I,↩
) -> ArrayVecSplice<'_, A, core::iter::Fuse<I::IntoIter>>↩
where
R: RangeBounds<usize>,↩
I: IntoIterator<Item = A::Item>,↩
{↩
use core::ops::Bound;↩
let start = match range.start_bound() {↩
Bound::Included(x) => *x,↩
Bound::Excluded(x) => x.saturating_add(1),↩
Bound::Unbounded => 0,↩
};↩
let end = match range.end_bound() {↩
Bound::Included(x) => x.saturating_add(1),↩
Bound::Excluded(x) => *x,↩
Bound::Unbounded => self.len(),↩
};↩
assert!(↩
start <= end,↩
"ArrayVec::splice> Illegal range, {} to {}",↩
start,↩
end
);↩
assert!(↩
end <= self.len(),↩
"ArrayVec::splice> Range ends at {} but length is only {}!",↩
end,↩
self.len()↩
);↩
ArrayVecSplice {↩
removal_start: start,↩
removal_end: end,↩
parent: self,↩
replacement: replacement.into_iter().fuse(),↩
}↩
}↩
/// Remove an element, swapping the end of the vec into its place.↩
///↩
/// ## Panics↩
/// * If the index is out of bounds.↩
///↩
/// ## Example↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([&str; 4] => "foo", "bar", "quack", "zap");↩
///↩
/// assert_eq!(av.swap_remove(1), "bar");↩
/// assert_eq!(&av[..], ["foo", "zap", "quack"]);↩
///↩
/// assert_eq!(av.swap_remove(0), "foo");↩
/// assert_eq!(&av[..], ["quack", "zap"]);↩
/// ```↩
#[inline]↩
pub fn swap_remove(&mut self, index: usize) -> A::Item {↩
assert!(↩
index < self.len(),↩
"ArrayVec::swap_remove> index {} is out of bounds {}",↩
index,↩
self.len
);↩
if index == self.len() - 1 {↩
self.pop().unwrap()↩
} else {↩
let i = self.pop().unwrap();↩
replace(&mut self[index], i)↩
}↩
}↩
/// Reduces the vec's length to the given value.↩
///↩
/// If the vec is already shorter than the input, nothing happens.↩
#[inline]↩
pub fn truncate(&mut self, new_len: usize) {↩
if new_len >= self.len as usize {↩
return;↩
}↩
if needs_drop::<A::Item>() {↩
let len = self.len as usize;↩
self.data.as_slice_mut()[new_len..len]↩
.iter_mut()↩
.map(core::mem::take)↩
.for_each(drop);↩
}↩
/* new_len is less than self.len */
self.len = new_len as u16;↩
}↩
/// Wraps an array, using the given length as the starting length.↩
///↩
/// If you want to use the whole length of the array, you can just use the↩
/// `From` impl.↩
///↩
/// ## Failure↩
///↩
/// If the given length is greater than the capacity of the array this will↩
/// error, and you'll get the array back in the `Err`.↩
#[inline]↩
#[cfg(not(feature = "latest_stable_rust"))]↩
pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> {↩
/* Note(Soveu): Should we allow A::CAPACITY > u16::MAX for now? */
if len <= A::CAPACITY {↩
Ok(Self { data, len: len as u16 })↩
} else {↩
Err(data)↩
}↩
}↩
/// Wraps an array, using the given length as the starting length.↩
///↩
/// If you want to use the whole length of the array, you can just use the↩
/// `From` impl.↩
///↩
/// ## Failure↩
///↩
/// If the given length is greater than the capacity of the array this will↩
/// error, and you'll get the array back in the `Err`.↩
#[inline]↩
#[cfg(feature = "latest_stable_rust")]↩
pub const fn try_from_array_len(data: A, len: usize) -> Result<Self, A> {↩
/* Note(Soveu): Should we allow A::CAPACITY > u16::MAX for now? */
if len <= A::CAPACITY {↩
Ok(Self { data, len: len as u16 })↩
} else {↩
Err(data)↩
}↩
}↩
}↩
impl<A> ArrayVec<A> {↩
/// Wraps up an array as a new empty `ArrayVec`.↩
///↩
/// If you want to simply use the full array, use `from` instead.↩
///↩
/// ## Examples↩
///↩
/// This method in particular allows to create values for statics:↩
///↩
/// ```rust↩
/// # use tinyvec::ArrayVec;↩
/// static DATA: ArrayVec<[u8; 5]> = ArrayVec::from_array_empty([0; 5]);↩
/// assert_eq!(DATA.len(), 0);↩
/// ```↩
///↩
/// But of course it is just an normal empty `ArrayVec`:↩
///↩
/// ```rust↩
/// # use tinyvec::ArrayVec;↩
/// let mut data = ArrayVec::from_array_empty([1, 2, 3, 4]);↩
/// assert_eq!(&data[..], &[]);↩
/// data.push(42);↩
/// assert_eq!(&data[..], &[42]);↩
/// ```↩
#[inline]↩
#[must_use]↩
pub const fn from_array_empty(data: A) -> Self {↩
Self { data, len: 0 }↩
}↩
}↩
#[cfg(feature = "grab_spare_slice")]↩
impl<A: Array> ArrayVec<A> {↩
/// Obtain the shared slice of the array _after_ the active memory.↩
///↩
/// ## Example↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 4]);↩
/// assert_eq!(av.grab_spare_slice().len(), 4);↩
/// av.push(10);↩
/// av.push(11);↩
/// av.push(12);↩
/// av.push(13);↩
/// assert_eq!(av.grab_spare_slice().len(), 0);↩
/// ```↩
#[inline(always)]↩
pub fn grab_spare_slice(&self) -> &[A::Item] {↩
&self.data.as_slice()[self.len as usize..]↩
}↩
/// Obtain the mutable slice of the array _after_ the active memory.↩
///↩
/// ## Example↩
/// ```rust↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 4]);↩
/// assert_eq!(av.grab_spare_slice_mut().len(), 4);↩
/// av.push(10);↩
/// av.push(11);↩
/// assert_eq!(av.grab_spare_slice_mut().len(), 2);↩
/// ```↩
#[inline(always)]↩
pub fn grab_spare_slice_mut(&mut self) -> &mut [A::Item] {↩
&mut self.data.as_slice_mut()[self.len as usize..]↩
}↩
}↩
#[cfg(feature = "nightly_slice_partition_dedup")]↩
impl<A: Array> ArrayVec<A> {↩
/// De-duplicates the vec contents.↩
#[inline(always)]↩
pub fn dedup(&mut self)↩
where
A::Item: PartialEq,↩
{↩
self.dedup_by(|a, b| a == b)↩
}↩
/// De-duplicates the vec according to the predicate given.↩
#[inline(always)]↩
pub fn dedup_by<F>(&mut self, same_bucket: F)↩
where
F: FnMut(&mut A::Item, &mut A::Item) -> bool,↩
{↩
let len = {↩
let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket);↩
dedup.len()↩
};↩
self.truncate(len);↩
}↩
/// De-duplicates the vec according to the key selector given.↩
#[inline(always)]↩
pub fn dedup_by_key<F, K>(&mut self, mut key: F)↩
where
F: FnMut(&mut A::Item) -> K,↩
K: PartialEq,↩
{↩
self.dedup_by(|a, b| key(a) == key(b))↩
}↩
}↩
impl<A> ArrayVec<A> {↩
/// Returns the reference to the inner array of the `ArrayVec`.↩
///↩
/// This returns the full array, even if the `ArrayVec` length is currently↩
/// less than that.↩
#[inline(always)]↩
#[must_use]↩
pub const fn as_inner(&self) -> &A {↩
&self.data
}↩
}↩
/// Splicing iterator for `ArrayVec`↩
/// See [`ArrayVec::splice`](ArrayVec::<A>::splice)↩
pub struct ArrayVecSplice<'p, A: Array, I: Iterator<Item = A::Item>> {↩
parent: &'p mut ArrayVec<A>,↩
removal_start: usize,↩
removal_end: usize,↩
replacement: I,↩
}↩
impl<'p, A: Array, I: Iterator<Item = A::Item>> Iterator
for ArrayVecSplice<'p, A, I>↩
{↩
type Item = A::Item;↩
#[inline]↩
fn next(&mut self) -> Option<A::Item> {↩
if self.removal_start < self.removal_end {↩
match self.replacement.next() {↩
Some(replacement) => {↩
let removed = core::mem::replace(↩
&mut self.parent[self.removal_start],↩
replacement,↩
);↩
self.removal_start += 1;↩
Some(removed)↩
}↩
None => {↩
let removed = self.parent.remove(self.removal_start);↩
self.removal_end -= 1;↩
Some(removed)↩
}↩
}↩
} else {↩
None
}↩
}↩
#[inline]↩
fn size_hint(&self) -> (usize, Option<usize>) {↩
let len = self.len();↩
(len, Some(len))↩
}↩
}↩
impl<'p, A, I> ExactSizeIterator for ArrayVecSplice<'p, A, I>↩
where
A: Array,↩
I: Iterator<Item = A::Item>,↩
{↩
#[inline]↩
fn len(&self) -> usize {↩
self.removal_end - self.removal_start
}↩
}↩
impl<'p, A, I> FusedIterator for ArrayVecSplice<'p, A, I>↩
where
A: Array,↩
I: Iterator<Item = A::Item>,↩
{↩
}↩
impl<'p, A, I> DoubleEndedIterator for ArrayVecSplice<'p, A, I>↩
where
A: Array,↩
I: Iterator<Item = A::Item> + DoubleEndedIterator,↩
{↩
#[inline]↩
fn next_back(&mut self) -> Option<A::Item> {↩
if self.removal_start < self.removal_end {↩
match self.replacement.next_back() {↩
Some(replacement) => {↩
let removed = core::mem::replace(↩
&mut self.parent[self.removal_end - 1],↩
replacement,↩
);↩
self.removal_end -= 1;↩
Some(removed)↩
}↩
None => {↩
let removed = self.parent.remove(self.removal_end - 1);↩
self.removal_end -= 1;↩
Some(removed)↩
}↩
}↩
} else {↩
None
}↩
}↩
}↩
impl<'p, A: Array, I: Iterator<Item = A::Item>> Drop
for ArrayVecSplice<'p, A, I>↩
{↩
#[inline]↩
fn drop(&mut self) {↩
for _ in self.by_ref() {}↩
// FIXME: reserve lower bound of size_hint↩
for replacement in self.replacement.by_ref() {↩
self.parent.insert(self.removal_end, replacement);↩
self.removal_end += 1;↩
}↩
}↩
}↩
impl<A: Array> AsMut<[A::Item]> for ArrayVec<A> {↩
#[inline(always)]↩
#[must_use]↩
fn as_mut(&mut self) -> &mut [A::Item] {↩
&mut *self
}↩
}↩
impl<A: Array> AsRef<[A::Item]> for ArrayVec<A> {↩
#[inline(always)]↩
#[must_use]↩
fn as_ref(&self) -> &[A::Item] {↩
&*self
}↩
}↩
impl<A: Array> Borrow<[A::Item]> for ArrayVec<A> {↩
#[inline(always)]↩
#[must_use]↩
fn borrow(&self) -> &[A::Item] {↩
&*self
}↩
}↩
impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A> {↩
#[inline(always)]↩
#[must_use]↩
fn borrow_mut(&mut self) -> &mut [A::Item] {↩
&mut *self
}↩
}↩
impl<A: Array> Extend<A::Item> for ArrayVec<A> {↩
#[inline]↩
fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) {↩
for t in iter {↩
self.push(t)↩
}↩
}↩
}↩
impl<A: Array> From<A> for ArrayVec<A> {↩
#[inline(always)]↩
#[must_use]↩
/// The output has a length equal to the full array.↩
///↩
/// If you want to select a length, use↩
/// [`from_array_len`](ArrayVec::from_array_len)↩
fn from(data: A) -> Self {↩
let len: u16 = data
.as_slice()↩
.len()↩
.try_into()↩
.expect("ArrayVec::from> length must be in range 0..=u16::MAX");↩
Self { len, data }↩
}↩
}↩
/// The error type returned when a conversion from a slice to an [`ArrayVec`]↩
/// fails.↩
#[derive(Debug, Copy, Clone)]↩
pub struct TryFromSliceError(());↩
impl core::fmt::Display for TryFromSliceError {↩
#[inline]↩
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {↩
f.write_str("could not convert slice to ArrayVec")↩
}↩
}↩
#[cfg(feature = "std")]↩
impl std::error::Error for TryFromSliceError {}↩
impl<T, A> TryFrom<&'_ [T]> for ArrayVec<A>↩
where
T: Clone + Default,↩
A: Array<Item = T>,↩
{↩
type Error = TryFromSliceError;↩
#[inline]↩
/// The output has a length equal to that of the slice, with the same capacity↩
/// as `A`.↩
fn try_from(slice: &[T]) -> Result<Self, Self::Error> {↩
if slice.len() > A::CAPACITY {↩
Err(TryFromSliceError(()))↩
} else {↩
let mut arr = ArrayVec::new();↩
// We do not use ArrayVec::extend_from_slice, because it looks like LLVM↩
// fails to deduplicate all the length-checking logic between the↩
// above if and the contents of that method, thus producing much↩
// slower code. Unlike many of the other optimizations in this↩
// crate, this one is worth keeping an eye on. I see no reason, for↩
// any element type, that these should produce different code. But↩
// they do. (rustc 1.51.0)↩
arr.set_len(slice.len());↩
arr.as_mut_slice().clone_from_slice(slice);↩
Ok(arr)↩
}↩
}↩
}↩
impl<A: Array> FromIterator<A::Item> for ArrayVec<A> {↩
#[inline]↩
#[must_use]↩
fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self {↩
let mut av = Self::default();↩
for i in iter {↩
av.push(i)↩
}↩
av
}↩
}↩
/// Iterator for consuming an `ArrayVec` and returning owned elements.↩
pub struct ArrayVecIterator<A: Array> {↩
base: u16,↩
tail: u16,↩
data: A,↩
}↩
impl<A: Array> ArrayVecIterator<A> {↩
/// Returns the remaining items of this iterator as a slice.↩
#[inline]↩
#[must_use]↩
pub fn as_slice(&self) -> &[A::Item] {↩
&self.data.as_slice()[self.base as usize..self.tail as usize]↩
}↩
}↩
impl<A: Array> FusedIterator for ArrayVecIterator<A> {}↩
impl<A: Array> Iterator for ArrayVecIterator<A> {↩
type Item = A::Item;↩
#[inline]↩
fn next(&mut self) -> Option<Self::Item> {↩
let slice =↩
&mut self.data.as_slice_mut()[self.base as usize..self.tail as usize];↩
let itemref = slice.first_mut()?;↩
self.base += 1;↩
return Some(core::mem::take(itemref));↩
}↩
#[inline(always)]↩
#[must_use]↩
fn size_hint(&self) -> (usize, Option<usize>) {↩
let s = self.tail - self.base;↩
let s = s as usize;↩
(s, Some(s))↩
}↩
#[inline(always)]↩
fn count(self) -> usize {↩
self.size_hint().0↩
}↩
#[inline]↩
fn last(mut self) -> Option<Self::Item> {↩
self.next_back()↩
}↩
#[inline]↩
fn nth(&mut self, n: usize) -> Option<A::Item> {↩
let slice = &mut self.data.as_slice_mut();↩
let slice = &mut slice[self.base as usize..self.tail as usize];↩
if let Some(x) = slice.get_mut(n) {↩
/* n is in range [0 .. self.tail - self.base) so in u16 range */
self.base += n as u16 + 1;↩
return Some(core::mem::take(x));↩
}↩
self.base = self.tail;↩
return None;↩
}↩
}↩
impl<A: Array> DoubleEndedIterator for ArrayVecIterator<A> {↩
#[inline]↩
fn next_back(&mut self) -> Option<Self::Item> {↩
let slice =↩
&mut self.data.as_slice_mut()[self.base as usize..self.tail as usize];↩
let item = slice.last_mut()?;↩
self.tail -= 1;↩
return Some(core::mem::take(item));↩
}↩
#[inline]↩
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {↩
let base = self.base as usize;↩
let tail = self.tail as usize;↩
let slice = &mut self.data.as_slice_mut()[base..tail];↩
let n = n.saturating_add(1);↩
if let Some(n) = slice.len().checked_sub(n) {↩
let item = &mut slice[n];↩
/* n is in [0..self.tail - self.base] range, so in u16 range */
self.tail = self.base + n as u16;↩
return Some(core::mem::take(item));↩
}↩
self.tail = self.base;↩
return None;↩
}↩
}↩
impl<A: Array> ExactSizeIterator for ArrayVecIterator<A> {↩
#[inline]↩
fn len(&self) -> usize {↩
self.size_hint().0↩
}↩
}↩
impl<A: Array> Debug for ArrayVecIterator<A>↩
where
A::Item: Debug,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {↩
f.debug_tuple("ArrayVecIterator").field(&self.as_slice()).finish()↩
}↩
}↩
impl<A: Array> IntoIterator for ArrayVec<A> {↩
type Item = A::Item;↩
type IntoIter = ArrayVecIterator<A>;↩
#[inline(always)]↩
#[must_use]↩
fn into_iter(self) -> Self::IntoIter {↩
ArrayVecIterator { base: 0, tail: self.len, data: self.data }↩
}↩
}↩
impl<'a, A: Array> IntoIterator for &'a mut ArrayVec<A> {↩
type Item = &'a mut A::Item;↩
type IntoIter = core::slice::IterMut<'a, A::Item>;↩
#[inline(always)]↩
#[must_use]↩
fn into_iter(self) -> Self::IntoIter {↩
self.iter_mut()↩
}↩
}↩
impl<'a, A: Array> IntoIterator for &'a ArrayVec<A> {↩
type Item = &'a A::Item;↩
type IntoIter = core::slice::Iter<'a, A::Item>;↩
#[inline(always)]↩
#[must_use]↩
fn into_iter(self) -> Self::IntoIter {↩
self.iter()↩
}↩
}↩
impl<A: Array> PartialEq for ArrayVec<A>↩
where
A::Item: PartialEq,↩
{↩
#[inline]↩
#[must_use]↩
fn eq(&self, other: &Self) -> bool {↩
self.as_slice().eq(other.as_slice())↩
}↩
}↩
impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq {}↩
impl<A: Array> PartialOrd for ArrayVec<A>↩
where
A::Item: PartialOrd,↩
{↩
#[inline]↩
#[must_use]↩
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {↩
self.as_slice().partial_cmp(other.as_slice())↩
}↩
}↩
impl<A: Array> Ord for ArrayVec<A>↩
where
A::Item: Ord,↩
{↩
#[inline]↩
#[must_use]↩
fn cmp(&self, other: &Self) -> core::cmp::Ordering {↩
self.as_slice().cmp(other.as_slice())↩
}↩
}↩
impl<A: Array> PartialEq<&A> for ArrayVec<A>↩
where
A::Item: PartialEq,↩
{↩
#[inline]↩
#[must_use]↩
fn eq(&self, other: &&A) -> bool {↩
self.as_slice().eq(other.as_slice())↩
}↩
}↩
impl<A: Array> PartialEq<&[A::Item]> for ArrayVec<A>↩
where
A::Item: PartialEq,↩
{↩
#[inline]↩
#[must_use]↩
fn eq(&self, other: &&[A::Item]) -> bool {↩
self.as_slice().eq(*other)↩
}↩
}↩
impl<A: Array> Hash for ArrayVec<A>↩
where
A::Item: Hash,↩
{↩
#[inline]↩
fn hash<H: Hasher>(&self, state: &mut H) {↩
self.as_slice().hash(state)↩
}↩
}↩
#[cfg(feature = "experimental_write_impl")]↩
impl<A: Array<Item = u8>> core::fmt::Write for ArrayVec<A> {↩
fn write_str(&mut self, s: &str) -> core::fmt::Result {↩
let my_len = self.len();↩
let str_len = s.as_bytes().len();↩
if my_len + str_len <= A::CAPACITY {↩
let remainder = &mut self.data.as_slice_mut()[my_len..];↩
let target = &mut remainder[..str_len];↩
target.copy_from_slice(s.as_bytes());↩
Ok(())↩
} else {↩
Err(core::fmt::Error)↩
}↩
}↩
}↩
// // // // // // // //↩
// Formatting impls↩
// // // // // // // //↩
impl<A: Array> Binary for ArrayVec<A>↩
where
A::Item: Binary,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {↩
write!(f, "[")?;↩
if f.alternate() {↩
write!(f, "\n ")?;↩
}↩
for (i, elem) in self.iter().enumerate() {↩
if i > 0 {↩
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;↩
}↩
Binary::fmt(elem, f)?;↩
}↩
if f.alternate() {↩
write!(f, ",\n")?;↩
}↩
write!(f, "]")↩
}↩
}↩
impl<A: Array> Debug for ArrayVec<A>↩
where
A::Item: Debug,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {↩
write!(f, "[")?;↩
if f.alternate() && !self.is_empty() {↩
write!(f, "\n ")?;↩
}↩
for (i, elem) in self.iter().enumerate() {↩
if i > 0 {↩
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;↩
}↩
Debug::fmt(elem, f)?;↩
}↩
if f.alternate() && !self.is_empty() {↩
write!(f, ",\n")?;↩
}↩
write!(f, "]")↩
}↩
}↩
impl<A: Array> Display for ArrayVec<A>↩
where
A::Item: Display,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {↩
write!(f, "[")?;↩
if f.alternate() {↩
write!(f, "\n ")?;↩
}↩
for (i, elem) in self.iter().enumerate() {↩
if i > 0 {↩
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;↩
}↩
Display::fmt(elem, f)?;↩
}↩
if f.alternate() {↩
write!(f, ",\n")?;↩
}↩
write!(f, "]")↩
}↩
}↩
impl<A: Array> LowerExp for ArrayVec<A>↩
where
A::Item: LowerExp,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {↩
write!(f, "[")?;↩
if f.alternate() {↩
write!(f, "\n ")?;↩
}↩
for (i, elem) in self.iter().enumerate() {↩
if i > 0 {↩
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;↩
}↩
LowerExp::fmt(elem, f)?;↩
}↩
if f.alternate() {↩
write!(f, ",\n")?;↩
}↩
write!(f, "]")↩
}↩
}↩
impl<A: Array> LowerHex for ArrayVec<A>↩
where
A::Item: LowerHex,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {↩
write!(f, "[")?;↩
if f.alternate() {↩
write!(f, "\n ")?;↩
}↩
for (i, elem) in self.iter().enumerate() {↩
if i > 0 {↩
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;↩
}↩
LowerHex::fmt(elem, f)?;↩
}↩
if f.alternate() {↩
write!(f, ",\n")?;↩
}↩
write!(f, "]")↩
}↩
}↩
impl<A: Array> Octal for ArrayVec<A>↩
where
A::Item: Octal,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {↩
write!(f, "[")?;↩
if f.alternate() {↩
write!(f, "\n ")?;↩
}↩
for (i, elem) in self.iter().enumerate() {↩
if i > 0 {↩
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;↩
}↩
Octal::fmt(elem, f)?;↩
}↩
if f.alternate() {↩
write!(f, ",\n")?;↩
}↩
write!(f, "]")↩
}↩
}↩
impl<A: Array> Pointer for ArrayVec<A>↩
where
A::Item: Pointer,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {↩
write!(f, "[")?;↩
if f.alternate() {↩
write!(f, "\n ")?;↩
}↩
for (i, elem) in self.iter().enumerate() {↩
if i > 0 {↩
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;↩
}↩
Pointer::fmt(elem, f)?;↩
}↩
if f.alternate() {↩
write!(f, ",\n")?;↩
}↩
write!(f, "]")↩
}↩
}↩
impl<A: Array> UpperExp for ArrayVec<A>↩
where
A::Item: UpperExp,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {↩
write!(f, "[")?;↩
if f.alternate() {↩
write!(f, "\n ")?;↩
}↩
for (i, elem) in self.iter().enumerate() {↩
if i > 0 {↩
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;↩
}↩
UpperExp::fmt(elem, f)?;↩
}↩
if f.alternate() {↩
write!(f, ",\n")?;↩
}↩
write!(f, "]")↩
}↩
}↩
impl<A: Array> UpperHex for ArrayVec<A>↩
where
A::Item: UpperHex,↩
{↩
#[allow(clippy::missing_inline_in_public_items)]↩
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {↩
write!(f, "[")?;↩
if f.alternate() {↩
write!(f, "\n ")?;↩
}↩
for (i, elem) in self.iter().enumerate() {↩
if i > 0 {↩
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;↩
}↩
UpperHex::fmt(elem, f)?;↩
}↩
if f.alternate() {↩
write!(f, ",\n")?;↩
}↩
write!(f, "]")↩
}↩
}↩
#[cfg(feature = "alloc")]↩
use alloc::vec::Vec;↩
#[cfg(all(feature = "alloc", feature = "rustc_1_57"))]↩
use alloc::collections::TryReserveError;↩
#[cfg(feature = "alloc")]↩
impl<A: Array> ArrayVec<A> {↩
/// Drains all elements to a Vec, but reserves additional space↩
/// ```↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);↩
/// let v = av.drain_to_vec_and_reserve(10);↩
/// assert_eq!(v, &[1, 2, 3]);↩
/// assert_eq!(v.capacity(), 13);↩
/// ```↩
#[inline]↩
pub fn drain_to_vec_and_reserve(&mut self, n: usize) -> Vec<A::Item> {↩
let cap = n + self.len();↩
let mut v = Vec::with_capacity(cap);↩
let iter = self.iter_mut().map(core::mem::take);↩
v.extend(iter);↩
self.set_len(0);↩
return v;↩
}↩
/// Tries to drain all elements to a Vec, but reserves additional space.↩
///↩
/// # Errors↩
///↩
/// If the allocator reports a failure, then an error is returned.↩
///↩
/// ```↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);↩
/// let v = av.try_drain_to_vec_and_reserve(10);↩
/// assert!(matches!(v, Ok(_)));↩
/// let v = v.unwrap();↩
/// assert_eq!(v, &[1, 2, 3]);↩
/// assert_eq!(v.capacity(), 13);↩
/// ```↩
#[inline]↩
#[cfg(feature = "rustc_1_57")]↩
pub fn try_drain_to_vec_and_reserve(↩
&mut self, n: usize,↩
) -> Result<Vec<A::Item>, TryReserveError> {↩
let cap = n + self.len();↩
let mut v = Vec::new();↩
v.try_reserve(cap)?;↩
let iter = self.iter_mut().map(core::mem::take);↩
v.extend(iter);↩
self.set_len(0);↩
return Ok(v);↩
}↩
/// Drains all elements to a Vec↩
/// ```↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);↩
/// let v = av.drain_to_vec();↩
/// assert_eq!(v, &[1, 2, 3]);↩
/// assert_eq!(v.capacity(), 3);↩
/// ```↩
#[inline]↩
pub fn drain_to_vec(&mut self) -> Vec<A::Item> {↩
self.drain_to_vec_and_reserve(0)↩
}↩
/// Tries to drain all elements to a Vec.↩
///↩
/// # Errors↩
///↩
/// If the allocator reports a failure, then an error is returned.↩
///↩
/// ```↩
/// # use tinyvec::*;↩
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);↩
/// let v = av.try_drain_to_vec();↩
/// assert!(matches!(v, Ok(_)));↩
/// let v = v.unwrap();↩
/// assert_eq!(v, &[1, 2, 3]);↩
/// // Vec may reserve more than necessary in order to prevent more future allocations.↩
/// assert!(v.capacity() >= 3);↩
/// ```↩
#[inline]↩
#[cfg(feature = "rustc_1_57")]↩
pub fn try_drain_to_vec(&mut self) -> Result<Vec<A::Item>, TryReserveError> {↩
self.try_drain_to_vec_and_reserve(0)↩
}↩
}↩
#[cfg(feature = "serde")]↩
struct ArrayVecVisitor<A: Array>(PhantomData<A>);↩
#[cfg(feature = "serde")]↩
impl<'de, A: Array> Visitor<'de> for ArrayVecVisitor<A>↩
where
A::Item: Deserialize<'de>,↩
{↩
type Value = ArrayVec<A>;↩
fn expecting(↩
&self, formatter: &mut core::fmt::Formatter,↩
) -> core::fmt::Result {↩
formatter.write_str("a sequence")↩
}↩
fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error>↩
where
S: SeqAccess<'de>,↩
{↩
let mut new_arrayvec: ArrayVec<A> = Default::default();↩
let mut idx = 0usize;↩
while let Some(value) = seq.next_element()? {↩
if new_arrayvec.len() >= new_arrayvec.capacity() {↩
return Err(DeserializeError::invalid_length(idx, &self));↩
}↩
new_arrayvec.push(value);↩
idx = idx + 1;↩
}↩
Ok(new_arrayvec)↩
}↩
}↩
#[cfg(test)]↩
mod test {↩
use super::*;↩
#[test]↩
fn retain_mut_empty_vec() {↩
let mut av: ArrayVec<[i32; 4]> = ArrayVec::new();↩
av.retain_mut(|&mut x| x % 2 == 0);↩
assert_eq!(av.len(), 0);↩
}↩
#[test]↩
fn retain_mut_all_elements() {↩
let mut av: ArrayVec<[i32; 4]> = array_vec!([i32; 4] => 2, 4, 6, 8);↩
av.retain_mut(|&mut x| x % 2 == 0);↩
assert_eq!(av.len(), 4);↩
assert_eq!(av.as_slice(), &[2, 4, 6, 8]);↩
}↩
#[test]↩
fn retain_mut_some_elements() {↩
let mut av: ArrayVec<[i32; 4]> = array_vec!([i32; 4] => 1, 2, 3, 4);↩
av.retain_mut(|&mut x| x % 2 == 0);↩
assert_eq!(av.len(), 2);↩
assert_eq!(av.as_slice(), &[2, 4]);↩
}↩
#[test]↩
fn retain_mut_no_elements() {↩
let mut av: ArrayVec<[i32; 4]> = array_vec!([i32; 4] => 1, 3, 5, 7);↩
av.retain_mut(|&mut x| x % 2 == 0);↩
assert_eq!(av.len(), 0);↩
}↩
#[test]↩
fn retain_mut_zero_capacity() {↩
let mut av: ArrayVec<[i32; 0]> = ArrayVec::new();↩
av.retain_mut(|&mut x| x % 2 == 0);↩
assert_eq!(av.len(), 0);↩
}↩
}↩