Source code

Revision control

Copy as Markdown

Other Tools

#![forbid(unsafe_code)]
#![warn(
clippy::semicolon_if_nothing_returned,
missing_copy_implementations,
missing_debug_implementations,
missing_docs,
rust_2018_idioms,
rustdoc::missing_crate_level_docs,
trivial_casts,
trivial_numeric_casts,
unused_extern_crates,
unused_import_braces,
unused_qualifications,
variant_size_differences
)]
#![doc(test(attr(forbid(unsafe_code))))]
#![doc(test(attr(deny(
missing_copy_implementations,
missing_debug_implementations,
trivial_casts,
trivial_numeric_casts,
unused_extern_crates,
unused_import_braces,
unused_qualifications,
))))]
#![doc(test(attr(warn(rust_2018_idioms))))]
// Not needed for 2018 edition and conflicts with `rust_2018_idioms`
#![doc(test(no_crate_inject))]
#![doc(html_root_url = "https://docs.rs/serde_with_macros/3.0.0/")]
// Necessary to silence the warning about clippy::unknown_clippy_lints on nightly
#![allow(renamed_and_removed_lints)]
// Necessary for nightly clippy lints
#![allow(clippy::unknown_clippy_lints)]
// Tarpaulin does not work well with proc macros and marks most of the lines as uncovered.
#![cfg(not(tarpaulin_include))]
//! proc-macro extensions for [`serde_with`].
//!
//! This crate should **NEVER** be used alone.
//! All macros **MUST** be used via the re-exports in the [`serde_with`] crate.
//!
#[allow(unused_extern_crates)]
extern crate proc_macro;
mod apply;
mod utils;
use crate::utils::{split_with_de_lifetime, DeriveOptions, IteratorExt as _};
use darling::{
ast::NestedMeta,
util::{Flag, Override},
Error as DarlingError, FromField, FromMeta,
};
use proc_macro::TokenStream;
use proc_macro2::{Span, TokenStream as TokenStream2};
use quote::quote;
use syn::{
parse::Parser,
parse_macro_input, parse_quote,
punctuated::{Pair, Punctuated},
spanned::Spanned,
DeriveInput, Error, Field, Fields, GenericArgument, ItemEnum, ItemStruct, Meta, Path,
PathArguments, ReturnType, Token, Type,
};
/// Apply function on every field of structs or enums
fn apply_function_to_struct_and_enum_fields<F>(
input: TokenStream,
function: F,
) -> Result<TokenStream2, Error>
where
F: Copy,
F: Fn(&mut Field) -> Result<(), String>,
{
/// Handle a single struct or a single enum variant
fn apply_on_fields<F>(fields: &mut Fields, function: F) -> Result<(), Error>
where
F: Fn(&mut Field) -> Result<(), String>,
{
match fields {
// simple, no fields, do nothing
Fields::Unit => Ok(()),
Fields::Named(ref mut fields) => fields
.named
.iter_mut()
.map(|field| function(field).map_err(|err| Error::new(field.span(), err)))
.collect_error(),
Fields::Unnamed(ref mut fields) => fields
.unnamed
.iter_mut()
.map(|field| function(field).map_err(|err| Error::new(field.span(), err)))
.collect_error(),
}
}
// For each field in the struct given by `input`, add the `skip_serializing_if` attribute,
// if and only if, it is of type `Option`
if let Ok(mut input) = syn::parse::<ItemStruct>(input.clone()) {
apply_on_fields(&mut input.fields, function)?;
Ok(quote!(#input))
} else if let Ok(mut input) = syn::parse::<ItemEnum>(input) {
input
.variants
.iter_mut()
.map(|variant| apply_on_fields(&mut variant.fields, function))
.collect_error()?;
Ok(quote!(#input))
} else {
Err(Error::new(
Span::call_site(),
"The attribute can only be applied to struct or enum definitions.",
))
}
}
/// Like [apply_function_to_struct_and_enum_fields] but for darling errors
fn apply_function_to_struct_and_enum_fields_darling<F>(
input: TokenStream,
serde_with_crate_path: &Path,
function: F,
) -> Result<TokenStream2, DarlingError>
where
F: Copy,
F: Fn(&mut Field) -> Result<(), DarlingError>,
{
/// Handle a single struct or a single enum variant
fn apply_on_fields<F>(fields: &mut Fields, function: F) -> Result<(), DarlingError>
where
F: Fn(&mut Field) -> Result<(), DarlingError>,
{
match fields {
// simple, no fields, do nothing
Fields::Unit => Ok(()),
Fields::Named(ref mut fields) => {
let errors: Vec<DarlingError> = fields
.named
.iter_mut()
.map(|field| function(field).map_err(|err| err.with_span(&field)))
// turn the Err variant into the Some, such that we only collect errors
.filter_map(|res| match res {
Err(e) => Some(e),
Ok(()) => None,
})
.collect();
if errors.is_empty() {
Ok(())
} else {
Err(DarlingError::multiple(errors))
}
}
Fields::Unnamed(ref mut fields) => {
let errors: Vec<DarlingError> = fields
.unnamed
.iter_mut()
.map(|field| function(field).map_err(|err| err.with_span(&field)))
// turn the Err variant into the Some, such that we only collect errors
.filter_map(|res| match res {
Err(e) => Some(e),
Ok(()) => None,
})
.collect();
if errors.is_empty() {
Ok(())
} else {
Err(DarlingError::multiple(errors))
}
}
}
}
// Add a dummy derive macro which consumes (makes inert) all field attributes
let consume_serde_as_attribute = parse_quote!(
#[derive(#serde_with_crate_path::__private_consume_serde_as_attributes)]
);
// For each field in the struct given by `input`, add the `skip_serializing_if` attribute,
// if and only if, it is of type `Option`
if let Ok(mut input) = syn::parse::<ItemStruct>(input.clone()) {
apply_on_fields(&mut input.fields, function)?;
input.attrs.push(consume_serde_as_attribute);
Ok(quote!(#input))
} else if let Ok(mut input) = syn::parse::<ItemEnum>(input) {
// Prevent serde_as on enum variants
let mut errors: Vec<DarlingError> = input
.variants
.iter()
.flat_map(|variant| {
variant.attrs.iter().filter_map(|attr| {
if attr.path().is_ident("serde_as") {
Some(
DarlingError::custom(
"serde_as attribute is not allowed on enum variants",
)
.with_span(&attr),
)
} else {
None
}
})
})
.collect();
// Process serde_as on all fields
errors.extend(
input
.variants
.iter_mut()
.map(|variant| apply_on_fields(&mut variant.fields, function))
// turn the Err variant into the Some, such that we only collect errors
.filter_map(|res| match res {
Err(e) => Some(e),
Ok(()) => None,
}),
);
if errors.is_empty() {
input.attrs.push(consume_serde_as_attribute);
Ok(quote!(#input))
} else {
Err(DarlingError::multiple(errors))
}
} else {
Err(DarlingError::custom(
"The attribute can only be applied to struct or enum definitions.",
)
.with_span(&Span::call_site()))
}
}
/// Add `skip_serializing_if` annotations to [`Option`] fields.
///
/// The attribute can be added to structs and enums.
/// The `#[skip_serializing_none]` attribute must be placed *before* the `#[derive]` attribute.
///
/// # Example
///
/// JSON APIs sometimes have many optional values.
/// Missing values should not be serialized, to keep the serialized format smaller.
/// Such a data type might look like:
///
/// ```rust
/// # use serde::Serialize;
/// #
/// #[derive(Serialize)]
/// struct Data {
/// #[serde(skip_serializing_if = "Option::is_none")]
/// a: Option<String>,
/// #[serde(skip_serializing_if = "Option::is_none")]
/// b: Option<u64>,
/// #[serde(skip_serializing_if = "Option::is_none")]
/// c: Option<String>,
/// #[serde(skip_serializing_if = "Option::is_none")]
/// d: Option<bool>,
/// }
/// ```
///
/// The `skip_serializing_if` annotation is repetitive and harms readability.
/// Instead, the same struct can be written as:
///
/// ```rust
/// # use serde::Serialize;
/// # use serde_with_macros::skip_serializing_none;
/// #[skip_serializing_none]
/// #[derive(Serialize)]
/// struct Data {
/// a: Option<String>,
/// b: Option<u64>,
/// c: Option<String>,
/// // Always serialize field d even if None
/// #[serialize_always]
/// d: Option<bool>,
/// }
/// ```
///
/// Existing `skip_serializing_if` annotations will not be altered.
///
/// If some values should always be serialized, then `serialize_always` can be used.
///
/// # Limitations
///
/// The `serialize_always` cannot be used together with a manual `skip_serializing_if` annotations,
/// as these conflict in their meaning. A compile error will be generated if this occurs.
///
/// The `skip_serializing_none` only works if the type is called [`Option`],
/// [`std::option::Option`], or [`core::option::Option`]. Type aliasing an [`Option`] and giving it
/// another name, will cause this field to be ignored. This cannot be supported, as proc-macros run
/// before type checking, thus it is not possible to determine if a type alias refers to an
/// [`Option`].
///
/// ```rust
/// # use serde::Serialize;
/// # use serde_with_macros::skip_serializing_none;
/// type MyOption<T> = Option<T>;
///
/// #[skip_serializing_none]
/// #[derive(Serialize)]
/// struct Data {
/// a: MyOption<String>, // This field will not be skipped
/// }
/// ```
///
/// Likewise, if you import a type and name it `Option`, the `skip_serializing_if` attributes will
/// be added and compile errors will occur, if `Option::is_none` is not a valid function.
/// Here the function `Vec::is_none` does not exist, and therefore the example fails to compile.
///
/// ```rust,compile_fail
/// # use serde::Serialize;
/// # use serde_with_macros::skip_serializing_none;
/// use std::vec::Vec as Option;
///
/// #[skip_serializing_none]
/// #[derive(Serialize)]
/// struct Data {
/// a: Option<String>,
/// }
/// ```
#[proc_macro_attribute]
pub fn skip_serializing_none(_args: TokenStream, input: TokenStream) -> TokenStream {
let res = match apply_function_to_struct_and_enum_fields(
input,
skip_serializing_none_add_attr_to_field,
) {
Ok(res) => res,
Err(err) => err.to_compile_error(),
};
TokenStream::from(res)
}
/// Add the skip_serializing_if annotation to each field of the struct
fn skip_serializing_none_add_attr_to_field(field: &mut Field) -> Result<(), String> {
if is_std_option(&field.ty) {
let has_skip_serializing_if = field_has_attribute(field, "serde", "skip_serializing_if");
// Remove the `serialize_always` attribute
let mut has_always_attr = false;
field.attrs.retain(|attr| {
let has_attr = attr.path().is_ident("serialize_always");
has_always_attr |= has_attr;
!has_attr
});
// Error on conflicting attributes
if has_always_attr && has_skip_serializing_if {
let mut msg = r#"The attributes `serialize_always` and `serde(skip_serializing_if = "...")` cannot be used on the same field"#.to_string();
if let Some(ident) = &field.ident {
msg += ": `";
msg += &ident.to_string();
msg += "`";
}
msg += ".";
return Err(msg);
}
// Do nothing if `skip_serializing_if` or `serialize_always` is already present
if has_skip_serializing_if || has_always_attr {
return Ok(());
}
// Add the `skip_serializing_if` attribute
let attr = parse_quote!(
#[serde(skip_serializing_if = "Option::is_none")]
);
field.attrs.push(attr);
} else {
// Warn on use of `serialize_always` on non-Option fields
let has_attr = field
.attrs
.iter()
.any(|attr| attr.path().is_ident("serialize_always"));
if has_attr {
return Err("`serialize_always` may only be used on fields of type `Option`.".into());
}
}
Ok(())
}
/// Return `true`, if the type path refers to `std::option::Option`
///
/// Accepts
///
/// * `Option`
/// * `std::option::Option`, with or without leading `::`
/// * `core::option::Option`, with or without leading `::`
fn is_std_option(type_: &Type) -> bool {
match type_ {
Type::Array(_)
| Type::BareFn(_)
| Type::ImplTrait(_)
| Type::Infer(_)
| Type::Macro(_)
| Type::Never(_)
| Type::Ptr(_)
| Type::Reference(_)
| Type::Slice(_)
| Type::TraitObject(_)
| Type::Tuple(_)
| Type::Verbatim(_) => false,
Type::Group(syn::TypeGroup { elem, .. })
| Type::Paren(syn::TypeParen { elem, .. })
| Type::Path(syn::TypePath {
qself: Some(syn::QSelf { ty: elem, .. }),
..
}) => is_std_option(elem),
Type::Path(syn::TypePath { qself: None, path }) => {
(path.leading_colon.is_none()
&& path.segments.len() == 1
&& path.segments[0].ident == "Option")
|| (path.segments.len() == 3
&& (path.segments[0].ident == "std" || path.segments[0].ident == "core")
&& path.segments[1].ident == "option"
&& path.segments[2].ident == "Option")
}
_ => false,
}
}
/// Determine if the `field` has an attribute with given `namespace` and `name`
///
/// On the example of
/// `#[serde(skip_serializing_if = "Option::is_none")]`
///
/// * `serde` is the outermost path, here namespace
/// * it contains a Meta::List
/// * which contains in another Meta a Meta::NameValue
/// * with the name being `skip_serializing_if`
fn field_has_attribute(field: &Field, namespace: &str, name: &str) -> bool {
for attr in &field.attrs {
if attr.path().is_ident(namespace) {
// Ignore non parsable attributes, as these are not important for us
if let Meta::List(expr) = &attr.meta {
let nested = match Punctuated::<Meta, Token![,]>::parse_terminated
.parse2(expr.tokens.clone())
{
Ok(nested) => nested,
Err(_) => continue,
};
for expr in nested {
match expr {
Meta::NameValue(expr) => {
if let Some(ident) = expr.path.get_ident() {
if *ident == name {
return true;
}
}
}
Meta::Path(expr) => {
if let Some(ident) = expr.get_ident() {
if *ident == name {
return true;
}
}
}
_ => (),
}
}
}
}
}
false
}
/// Convenience macro to use the [`serde_as`] system.
///
/// The [`serde_as`] system is designed as a more flexible alternative to serde's with-annotation.
/// The `#[serde_as]` attribute must be placed *before* the `#[derive]` attribute.
/// Each field of a struct or enum can be annotated with `#[serde_as(...)]` to specify which
/// transformations should be applied. `serde_as` is *not* supported on enum variants.
/// This is in contrast to `#[serde(with = "...")]`.
///
/// # Example
///
/// ```rust,ignore
/// use serde_with::{serde_as, DisplayFromStr, Map};
///
/// #[serde_as]
/// #[derive(Serialize, Deserialize)]
/// struct Data {
/// /// Serialize into number
/// #[serde_as(as = "_")]
/// a: u32,
///
/// /// Serialize into String
/// #[serde_as(as = "DisplayFromStr")]
/// b: u32,
///
/// /// Serialize into a map from String to String
/// #[serde_as(as = "Map<DisplayFromStr, _>")]
/// c: Vec<(u32, String)>,
/// }
/// ```
///
/// # Alternative path to `serde_with` crate
///
/// If `serde_with` is not available at the default path, its path should be specified with the
/// `crate` argument. See [re-exporting `serde_as`] for more use case information.
///
/// ```rust,ignore
/// #[serde_as(crate = "::some_other_lib::serde_with")]
/// #[derive(Deserialize)]
/// struct Data {
/// #[serde_as(as = "_")]
/// a: u32,
/// }
/// ```
///
/// # What this macro does
///
/// The `serde_as` macro only serves a convenience function.
/// All the steps it performs, can easily be done manually, in case the cost of an attribute macro
/// is deemed too high. The functionality can best be described with an example.
///
/// ```rust,ignore
/// #[serde_as]
/// #[derive(serde::Serialize)]
/// struct Foo {
/// #[serde_as(as = "Vec<_>")]
/// bar: Vec<u32>,
///
/// #[serde_as(as = "Option<DisplayFromStr>")]
/// baz: Option<u32>,
/// }
/// ```
///
/// 1. All the placeholder type `_` will be replaced with `::serde_with::Same`.
/// The placeholder type `_` marks all the places where the type's `Serialize` implementation
/// should be used. In the example, it means that the `u32` values will serialize with the
/// `Serialize` implementation of `u32`. The `Same` type implements `SerializeAs` whenever the
/// underlying type implements `Serialize` and is used to make the two traits compatible.
///
/// If you specify a custom path for `serde_with` via the `crate` attribute, the path to the
/// `Same` type will be altered accordingly.
///
/// 2. Wrap the type from the annotation inside a `::serde_with::As`.
/// In the above example we now have something like `::serde_with::As::<Vec<::serde_with::Same>>`.
/// The `As` type acts as the opposite of the `Same` type.
/// It allows using a `SerializeAs` type whenever a `Serialize` is required.
///
/// 3. Translate the `*as` attributes into the serde equivalent ones.
/// `#[serde_as(as = ...)]` will become `#[serde(with = ...)]`.
/// Similarly, `serialize_as` is translated to `serialize_with`.
///
/// The field attributes will be kept on the struct/enum such that other macros can use them
/// too.
///
/// 4. It searches `#[serde_as(as = ...)]` if there is a type named `BorrowCow` under any path.
/// If `BorrowCow` is found, the attribute `#[serde(borrow)]` is added to the field.
/// If `#[serde(borrow)]` or `#[serde(borrow = "...")]` is already present, this step will be
/// skipped.
///
/// 5. Restore the ability of accepting missing fields if both the field and the
/// transformation are `Option`.
///
/// An `Option` is detected by an exact text match.
/// Renaming an import or type aliases can cause confusion here.
/// The following variants are supported.
/// * `Option`
/// * `std::option::Option`, with or without leading `::`
/// * `core::option::Option`, with or without leading `::`
///
/// If the field is of type `Option<T>` and the attribute `#[serde_as(as = "Option<S>")]` (also
/// `deserialize_as`; for any `T`/`S`) then `#[serde(default)]` is applied to the field.
///
/// This restores the ability of accepting missing fields, which otherwise often leads to confusing [serde_with#185](https://github.com/jonasbb/serde_with/issues/185).
/// `#[serde(default)]` is not applied, if it already exists.
/// It only triggers if both field and transformation are `Option`s.
/// For example, using `#[serde_as(as = "NoneAsEmptyString")]` on `Option<String>` will not see
/// any change.
///
/// If the automatically applied attribute is undesired, the behavior can be supressed by adding
/// `#[serde_as(no_default)]`.
/// This can be combined like `#[serde_as(as = "Option<S>", no_default)]`.
///
/// After all these steps, the code snippet will have transformed into roughly this.
///
/// ```rust,ignore
/// #[derive(serde::Serialize)]
/// struct Foo {
/// #[serde_as(as = "Vec<_>")]
/// #[serde(with = "::serde_with::As::<Vec<::serde_with::Same>>")]
/// bar: Vec<u32>,
///
/// #[serde_as(as = "Option<DisplayFromStr>")]
/// #[serde(default)]
/// #[serde(with = "::serde_with::As::<Option<DisplayFromStr>>")]
/// baz: Option<u32>,
/// }
/// ```
///
#[proc_macro_attribute]
pub fn serde_as(args: TokenStream, input: TokenStream) -> TokenStream {
#[derive(FromMeta)]
struct SerdeContainerOptions {
#[darling(rename = "crate")]
alt_crate_path: Option<Path>,
}
match NestedMeta::parse_meta_list(args.into()) {
Ok(list) => {
let container_options = match SerdeContainerOptions::from_list(&list) {
Ok(v) => v,
Err(e) => {
return TokenStream::from(e.write_errors());
}
};
let serde_with_crate_path = container_options
.alt_crate_path
.unwrap_or_else(|| syn::parse_quote!(::serde_with));
// Convert any error message into a nice compiler error
let res = match apply_function_to_struct_and_enum_fields_darling(
input,
&serde_with_crate_path,
|field| serde_as_add_attr_to_field(field, &serde_with_crate_path),
) {
Ok(res) => res,
Err(err) => err.write_errors(),
};
TokenStream::from(res)
}
Err(e) => TokenStream::from(DarlingError::from(e).write_errors()),
}
}
/// Inspect the field and convert the `serde_as` attribute into the classical `serde`
fn serde_as_add_attr_to_field(
field: &mut Field,
serde_with_crate_path: &Path,
) -> Result<(), DarlingError> {
#[derive(FromField)]
#[darling(attributes(serde_as))]
struct SerdeAsOptions {
r#as: Option<Type>,
deserialize_as: Option<Type>,
serialize_as: Option<Type>,
no_default: Flag,
}
impl SerdeAsOptions {
fn has_any_set(&self) -> bool {
self.r#as.is_some() || self.deserialize_as.is_some() || self.serialize_as.is_some()
}
}
#[derive(FromField)]
#[darling(attributes(serde), allow_unknown_fields)]
struct SerdeOptions {
with: Option<String>,
deserialize_with: Option<String>,
serialize_with: Option<String>,
borrow: Option<Override<String>>,
default: Option<Override<String>>,
}
impl SerdeOptions {
fn has_any_set(&self) -> bool {
self.with.is_some() || self.deserialize_with.is_some() || self.serialize_with.is_some()
}
}
/// Emit a `borrow` annotation, if the replacement type requires borrowing.
fn emit_borrow_annotation(serde_options: &SerdeOptions, as_type: &Type, field: &mut Field) {
let type_borrowcow = &syn::parse_quote!(BorrowCow);
// If the field is not borrowed yet, check if we need to borrow it.
if serde_options.borrow.is_none() && has_type_embedded(as_type, type_borrowcow) {
let attr_borrow = parse_quote!(#[serde(borrow)]);
field.attrs.push(attr_borrow);
}
}
/// Emit a `default` annotation, if `as_type` and `field` are both `Option`.
fn emit_default_annotation(
serde_as_options: &SerdeAsOptions,
serde_options: &SerdeOptions,
as_type: &Type,
field: &mut Field,
) {
if !serde_as_options.no_default.is_present()
&& serde_options.default.is_none()
&& is_std_option(as_type)
&& is_std_option(&field.ty)
{
let attr_borrow = parse_quote!(#[serde(default)]);
field.attrs.push(attr_borrow);
}
}
// syn v2 no longer supports keywords in the path position of an attribute.
// That breaks #[serde_as(as = "FooBar")], since `as` is a keyword.
// For each attribute, that is named `serde_as`, we replace the `as` keyword with `r#as`.
let mut has_serde_as = false;
field.attrs.iter_mut().for_each(|attr| {
if attr.path().is_ident("serde_as") {
// We found a `serde_as` attribute.
// Remember that such that we can quick exit otherwise
has_serde_as = true;
if let Meta::List(metalist) = &mut attr.meta {
metalist.tokens = std::mem::take(&mut metalist.tokens)
.into_iter()
.map(|token| {
use proc_macro2::{Ident, TokenTree};
// Replace `as` with `r#as`.
match token {
TokenTree::Ident(ident) if ident == "as" => {
TokenTree::Ident(Ident::new_raw("as", ident.span()))
}
_ => token,
}
})
.collect();
}
}
});
// If there is no `serde_as` attribute, we can exit early.
if !has_serde_as {
return Ok(());
}
let serde_as_options = SerdeAsOptions::from_field(field)?;
let serde_options = SerdeOptions::from_field(field)?;
let mut errors = Vec::new();
if !serde_as_options.has_any_set() {
errors.push(DarlingError::custom("An empty `serde_as` attribute on a field has no effect. You are missing an `as`, `serialize_as`, or `deserialize_as` parameter."));
}
// Check if there are any conflicting attributes
if serde_as_options.has_any_set() && serde_options.has_any_set() {
errors.push(DarlingError::custom("Cannot combine `serde_as` with serde's `with`, `deserialize_with`, or `serialize_with`."));
}
if serde_as_options.r#as.is_some() && serde_as_options.deserialize_as.is_some() {
errors.push(DarlingError::custom("Cannot combine `as` with `deserialize_as`. Use `serialize_as` to specify different serialization code."));
} else if serde_as_options.r#as.is_some() && serde_as_options.serialize_as.is_some() {
errors.push(DarlingError::custom("Cannot combine `as` with `serialize_as`. Use `deserialize_as` to specify different deserialization code."));
}
if !errors.is_empty() {
return Err(DarlingError::multiple(errors));
}
let type_same = &syn::parse_quote!(#serde_with_crate_path::Same);
if let Some(type_) = &serde_as_options.r#as {
emit_borrow_annotation(&serde_options, type_, field);
emit_default_annotation(&serde_as_options, &serde_options, type_, field);
let replacement_type = replace_infer_type_with_type(type_.clone(), type_same);
let attr_inner_tokens = quote!(#serde_with_crate_path::As::<#replacement_type>).to_string();
let attr = parse_quote!(#[serde(with = #attr_inner_tokens)]);
field.attrs.push(attr);
}
if let Some(type_) = &serde_as_options.deserialize_as {
emit_borrow_annotation(&serde_options, type_, field);
emit_default_annotation(&serde_as_options, &serde_options, type_, field);
let replacement_type = replace_infer_type_with_type(type_.clone(), type_same);
let attr_inner_tokens =
quote!(#serde_with_crate_path::As::<#replacement_type>::deserialize).to_string();
let attr = parse_quote!(#[serde(deserialize_with = #attr_inner_tokens)]);
field.attrs.push(attr);
}
if let Some(type_) = serde_as_options.serialize_as {
let replacement_type = replace_infer_type_with_type(type_, type_same);
let attr_inner_tokens =
quote!(#serde_with_crate_path::As::<#replacement_type>::serialize).to_string();
let attr = parse_quote!(#[serde(serialize_with = #attr_inner_tokens)]);
field.attrs.push(attr);
}
Ok(())
}
/// Recursively replace all occurrences of `_` with `replacement` in a [Type][]
///
/// The [serde_as][macro@serde_as] macro allows to use the infer type, i.e., `_`, as shortcut for
/// `serde_with::As`. This function replaces all occurrences of the infer type with another type.
fn replace_infer_type_with_type(to_replace: Type, replacement: &Type) -> Type {
match to_replace {
// Base case
// Replace the infer type with the actual replacement type
Type::Infer(_) => replacement.clone(),
// Recursive cases
// Iterate through all positions where a type could occur and recursively call this function
Type::Array(mut inner) => {
*inner.elem = replace_infer_type_with_type(*inner.elem, replacement);
Type::Array(inner)
}
Type::Group(mut inner) => {
*inner.elem = replace_infer_type_with_type(*inner.elem, replacement);
Type::Group(inner)
}
Type::Never(inner) => Type::Never(inner),
Type::Paren(mut inner) => {
*inner.elem = replace_infer_type_with_type(*inner.elem, replacement);
Type::Paren(inner)
}
Type::Path(mut inner) => {
match inner.path.segments.pop() {
Some(Pair::End(mut t)) | Some(Pair::Punctuated(mut t, _)) => {
t.arguments = match t.arguments {
PathArguments::None => PathArguments::None,
PathArguments::AngleBracketed(mut inner) => {
// Iterate over the args between the angle brackets
inner.args = inner
.args
.into_iter()
.map(|generic_argument| match generic_argument {
// replace types within the generics list, but leave other stuff
// like lifetimes untouched
GenericArgument::Type(type_) => GenericArgument::Type(
replace_infer_type_with_type(type_, replacement),
),
ga => ga,
})
.collect();
PathArguments::AngleBracketed(inner)
}
PathArguments::Parenthesized(mut inner) => {
inner.inputs = inner
.inputs
.into_iter()
.map(|type_| replace_infer_type_with_type(type_, replacement))
.collect();
inner.output = match inner.output {
ReturnType::Type(arrow, mut type_) => {
*type_ = replace_infer_type_with_type(*type_, replacement);
ReturnType::Type(arrow, type_)
}
default => default,
};
PathArguments::Parenthesized(inner)
}
};
inner.path.segments.push(t);
}
None => {}
}
Type::Path(inner)
}
Type::Ptr(mut inner) => {
*inner.elem = replace_infer_type_with_type(*inner.elem, replacement);
Type::Ptr(inner)
}
Type::Reference(mut inner) => {
*inner.elem = replace_infer_type_with_type(*inner.elem, replacement);
Type::Reference(inner)
}
Type::Slice(mut inner) => {
*inner.elem = replace_infer_type_with_type(*inner.elem, replacement);
Type::Slice(inner)
}
Type::Tuple(mut inner) => {
inner.elems = inner
.elems
.into_pairs()
.map(|pair| match pair {
Pair::Punctuated(type_, p) => {
Pair::Punctuated(replace_infer_type_with_type(type_, replacement), p)
}
Pair::End(type_) => Pair::End(replace_infer_type_with_type(type_, replacement)),
})
.collect();
Type::Tuple(inner)
}
// Pass unknown types or non-handleable types (e.g., bare Fn) without performing any
// replacements
type_ => type_,
}
}
/// Check if a type ending in the `syn::Ident` `embedded_type` is contained in `type_`.
fn has_type_embedded(type_: &Type, embedded_type: &syn::Ident) -> bool {
match type_ {
// Base cases
Type::Infer(_) => false,
Type::Never(_inner) => false,
// Recursive cases
// Iterate through all positions where a type could occur and recursively call this function
Type::Array(inner) => has_type_embedded(&inner.elem, embedded_type),
Type::Group(inner) => has_type_embedded(&inner.elem, embedded_type),
Type::Paren(inner) => has_type_embedded(&inner.elem, embedded_type),
Type::Path(inner) => {
match inner.path.segments.last() {
Some(t) => {
if t.ident == *embedded_type {
return true;
}
match &t.arguments {
PathArguments::None => false,
PathArguments::AngleBracketed(inner) => {
// Iterate over the args between the angle brackets
inner
.args
.iter()
.any(|generic_argument| match generic_argument {
// replace types within the generics list, but leave other stuff
// like lifetimes untouched
GenericArgument::Type(type_) => {
has_type_embedded(type_, embedded_type)
}
_ga => false,
})
}
PathArguments::Parenthesized(inner) => {
inner
.inputs
.iter()
.any(|type_| has_type_embedded(type_, embedded_type))
|| match &inner.output {
ReturnType::Type(_arrow, type_) => {
has_type_embedded(type_, embedded_type)
}
_default => false,
}
}
}
}
None => false,
}
}
Type::Ptr(inner) => has_type_embedded(&inner.elem, embedded_type),
Type::Reference(inner) => has_type_embedded(&inner.elem, embedded_type),
Type::Slice(inner) => has_type_embedded(&inner.elem, embedded_type),
Type::Tuple(inner) => inner.elems.pairs().any(|pair| match pair {
Pair::Punctuated(type_, _) | Pair::End(type_) => {
has_type_embedded(type_, embedded_type)
}
}),
// Pass unknown types or non-handleable types (e.g., bare Fn) without performing any
// replacements
_type_ => false,
}
}
/// Deserialize value by using its [`FromStr`] implementation
///
/// This is an alternative way to implement `Deserialize` for types, which also implement
/// [`FromStr`] by deserializing the type from string. Ensure that the struct/enum also implements
/// [`FromStr`]. If the implementation is missing, you will get an error message like
/// ```text
/// error[E0277]: the trait bound `Struct: std::str::FromStr` is not satisfied
/// ```
/// Additionally, `FromStr::Err` **must** implement [`Display`] as otherwise you will see a rather
/// unhelpful error message
///
/// Serialization with [`Display`] is available with the matching [`SerializeDisplay`] derive.
///
/// # Attributes
///
/// Attributes for the derive can be specified via the `#[serde_with(...)]` attribute on the struct
/// or enum. Currently, these arguments to the attribute are possible:
///
/// * **`#[serde_with(crate = "...")]`**: This allows using `DeserializeFromStr` when `serde_with`
/// is not available from the crate root. This happens while [renaming dependencies in
/// Cargo.toml][cargo-toml-rename] or when re-exporting the macro from a different crate.
///
/// This argument is analogue to [serde's crate argument][serde-crate] and the [crate argument
/// to `serde_as`][serde-as-crate].
///
/// # Example
///
/// ```rust,ignore
/// use std::str::FromStr;
///
/// #[derive(DeserializeFromStr)]
/// struct A {
/// a: u32,
/// b: bool,
/// }
///
/// impl FromStr for A {
/// type Err = String;
///
/// /// Parse a value like `123<>true`
/// fn from_str(s: &str) -> Result<Self, Self::Err> {
/// let mut parts = s.split("<>");
/// let number = parts
/// .next()
/// .ok_or_else(|| "Missing first value".to_string())?
/// .parse()
/// .map_err(|err: ParseIntError| err.to_string())?;
/// let bool = parts
/// .next()
/// .ok_or_else(|| "Missing second value".to_string())?
/// .parse()
/// .map_err(|err: ParseBoolError| err.to_string())?;
/// Ok(Self { a: number, b: bool })
/// }
/// }
///
/// let a: A = serde_json::from_str("\"159<>true\"").unwrap();
/// assert_eq!(A { a: 159, b: true }, a);
/// ```
///
/// [`Display`]: std::fmt::Display
/// [`FromStr`]: std::str::FromStr
#[proc_macro_derive(DeserializeFromStr, attributes(serde_with))]
pub fn derive_deserialize_fromstr(item: TokenStream) -> TokenStream {
let input: DeriveInput = parse_macro_input!(item);
let derive_options = match DeriveOptions::from_derive_input(&input) {
Ok(opt) => opt,
Err(err) => {
return err;
}
};
TokenStream::from(deserialize_fromstr(
input,
derive_options.get_serde_with_path(),
))
}
fn deserialize_fromstr(mut input: DeriveInput, serde_with_crate_path: Path) -> TokenStream2 {
let ident = input.ident;
let where_clause = &mut input.generics.make_where_clause().predicates;
where_clause.push(parse_quote!(Self: #serde_with_crate_path::__private__::FromStr));
where_clause.push(parse_quote!(
<Self as #serde_with_crate_path::__private__::FromStr>::Err: #serde_with_crate_path::__private__::Display
));
let (de_impl_generics, ty_generics, where_clause) = split_with_de_lifetime(&input.generics);
quote! {
#[automatically_derived]
impl #de_impl_generics #serde_with_crate_path::serde::Deserialize<'de> for #ident #ty_generics #where_clause {
fn deserialize<__D>(deserializer: __D) -> #serde_with_crate_path::__private__::Result<Self, __D::Error>
where
__D: #serde_with_crate_path::serde::Deserializer<'de>,
{
struct Helper<__S>(#serde_with_crate_path::__private__::PhantomData<__S>);
impl<'de, __S> #serde_with_crate_path::serde::de::Visitor<'de> for Helper<__S>
where
__S: #serde_with_crate_path::__private__::FromStr,
<__S as #serde_with_crate_path::__private__::FromStr>::Err: #serde_with_crate_path::__private__::Display,
{
type Value = __S;
fn expecting(&self, formatter: &mut #serde_with_crate_path::core::fmt::Formatter<'_>) -> #serde_with_crate_path::core::fmt::Result {
#serde_with_crate_path::__private__::Display::fmt("a string", formatter)
}
fn visit_str<__E>(
self,
value: &str
) -> #serde_with_crate_path::__private__::Result<Self::Value, __E>
where
__E: #serde_with_crate_path::serde::de::Error,
{
value.parse::<Self::Value>().map_err(#serde_with_crate_path::serde::de::Error::custom)
}
fn visit_bytes<__E>(
self,
value: &[u8]
) -> #serde_with_crate_path::__private__::Result<Self::Value, __E>
where
__E: #serde_with_crate_path::serde::de::Error,
{
let utf8 = #serde_with_crate_path::core::str::from_utf8(value).map_err(#serde_with_crate_path::serde::de::Error::custom)?;
self.visit_str(utf8)
}
}
deserializer.deserialize_str(Helper(#serde_with_crate_path::__private__::PhantomData))
}
}
}
}
/// Serialize value by using it's [`Display`] implementation
///
/// This is an alternative way to implement `Serialize` for types, which also implement [`Display`]
/// by serializing the type as string. Ensure that the struct/enum also implements [`Display`].
/// If the implementation is missing, you will get an error message like
/// ```text
/// error[E0277]: `Struct` doesn't implement `std::fmt::Display`
/// ```
///
/// Deserialization with [`FromStr`] is available with the matching [`DeserializeFromStr`] derive.
///
/// # Attributes
///
/// Attributes for the derive can be specified via the `#[serde_with(...)]` attribute on the struct
/// or enum. Currently, these arguments to the attribute are possible:
///
/// * **`#[serde_with(crate = "...")]`**: This allows using `SerializeDisplay` when `serde_with` is
/// not available from the crate root. This happens while [renaming dependencies in
/// Cargo.toml][cargo-toml-rename] or when re-exporting the macro from a different crate.
///
/// This argument is analogue to [serde's crate argument][serde-crate] and the [crate argument
/// to `serde_as`][serde-as-crate].
///
/// # Example
///
/// ```rust,ignore
/// use std::fmt;
///
/// #[derive(SerializeDisplay)]
/// struct A {
/// a: u32,
/// b: bool,
/// }
///
/// impl fmt::Display for A {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// write!(f, "{}<>{}", self.a, self.b)
/// }
/// }
///
/// let a = A { a: 123, b: false };
/// assert_eq!(r#""123<>false""#, serde_json::to_string(&a).unwrap());
/// ```
///
/// [`Display`]: std::fmt::Display
/// [`FromStr`]: std::str::FromStr
#[proc_macro_derive(SerializeDisplay, attributes(serde_with))]
pub fn derive_serialize_display(item: TokenStream) -> TokenStream {
let input: DeriveInput = parse_macro_input!(item);
let derive_options = match DeriveOptions::from_derive_input(&input) {
Ok(opt) => opt,
Err(err) => {
return err;
}
};
TokenStream::from(serialize_display(
input,
derive_options.get_serde_with_path(),
))
}
fn serialize_display(mut input: DeriveInput, serde_with_crate_path: Path) -> TokenStream2 {
let ident = input.ident;
input
.generics
.make_where_clause()
.predicates
.push(parse_quote!(Self: #serde_with_crate_path::__private__::Display));
let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();
quote! {
#[automatically_derived]
impl #impl_generics #serde_with_crate_path::serde::Serialize for #ident #ty_generics #where_clause {
fn serialize<__S>(
&self,
serializer: __S
) -> #serde_with_crate_path::__private__::Result<__S::Ok, __S::Error>
where
__S: #serde_with_crate_path::serde::Serializer,
{
serializer.collect_str(&self)
}
}
}
}
#[doc(hidden)]
/// Private function. Not part of the public API
///
/// The only task of this derive macro is to consume any `serde_as` attributes and turn them into
/// inert attributes. This allows the serde_as macro to keep the field attributes without causing
/// compiler errors. The intend is that keeping the field attributes allows downstream crates to
/// consume and act on them without causing an ordering dependency to the serde_as macro.
///
/// Otherwise, downstream proc-macros would need to be placed *in front of* the main `#[serde_as]`
/// attribute, since otherwise the field attributes would already be stripped off.
///
/// More details about the use-cases in the GitHub discussion: <https://github.com/jonasbb/serde_with/discussions/260>.
#[proc_macro_derive(
__private_consume_serde_as_attributes,
attributes(serde_as, serde_with)
)]
pub fn __private_consume_serde_as_attributes(_: TokenStream) -> TokenStream {
TokenStream::new()
}
/// Apply attributes to all fields with matching types
///
/// Whenever you experience the need to apply the same attributes to multiple fields, you can use
/// this macro. It allows you to specify a list of types and a list of attributes.
/// Each field with a "matching" type will then get the attributes applied.
/// The `apply` attribute must be place *before* any consuming attributes, such as `derive`, because
/// Rust expands all attributes in order.
///
/// For example, if your struct or enum contains many `Option<T>` fields, but you do not want to
/// serialize `None` values, you can use this macro to apply the `#[serde(skip_serializing_if =
/// "Option::is_none")]` attribute to all fields of type `Option<T>`.
///
/// ```rust
/// # use serde_with_macros as serde_with;
/// #[serde_with::apply(
/// # crate="serde_with",
/// Option => #[serde(skip_serializing_if = "Option::is_none")],
/// )]
/// #[derive(serde::Serialize)]
/// # #[derive(Default)]
/// struct Data {
/// a: Option<String>,
/// b: Option<u64>,
/// c: Option<String>,
/// d: Option<bool>,
/// }
/// #
/// # assert_eq!("{}", serde_json::to_string(&Data::default()).unwrap());
/// ```
///
/// Each rule starts with a type pattern, specifying which fields to match and a list of attributes
/// to apply. Multiple rules can be provided in a single `apply` attribute.
///
/// ```rust
/// # use serde_with_macros as serde_with;
/// #[serde_with::apply(
/// # crate="serde_with",
/// Option => #[serde(default)] #[serde(skip_serializing_if = "Option::is_none")],
/// Option<bool> => #[serde(rename = "bool")],
/// )]
/// # #[derive(serde::Serialize)]
/// # #[derive(Default)]
/// # struct Data {
/// # a: Option<String>,
/// # b: Option<u64>,
/// # c: Option<String>,
/// # d: Option<bool>,
/// # }
/// #
/// # assert_eq!("{}", serde_json::to_string(&Data::default()).unwrap());
/// ```
///
/// ## Type Patterns
///
/// The type pattern left of the `=>` specifies which fields to match.
///
/// | Type Pattern | Matching Types | Notes |
/// | :---------------------- | ---------------------------------------------------: | :------------------------------------------------------------------------------ |
/// | `_` | `Option<bool>`<br>`BTreeMap<&'static str, Vec<u32>>` | `_` matches all fields. |
/// | `Option` | `Option<bool>`<br>`Option<String>` | A missing generic is compatible with any generic arguments. |
/// | `Option<bool>` | `Option<bool>` | A fully specified type only matches exactly. |
/// | `BTreeMap<String, u32>` | `BTreeMap<String, u32>` | A fully specified type only matches exactly. |
/// | `BTreeMap<String, _>` | `BTreeMap<String, u32>`<br>`BTreeMap<String, bool>` | Any `String` key `BTreeMap` matches, as the value is using the `_` placeholder. |
/// | `[u8; _]` | `[u8; 1]`<br>`[u8; N]` | `_` also works as a placeholder for any array length. |
///
/// ## Opt-out for Individual Fields
///
/// The `apply` attribute will find all fields with a compatible type.
/// This can be overly eager and a different set of attributes might be required for a specific
/// field. You can opt-out of the `apply` attribute by adding the `#[serde_with(skip_apply)]`
/// attribute to the field. This will prevent any `apply` to apply to this field.
/// If two rules apply to the same field, it is impossible to opt-out of only a single one.
/// In this case the attributes must be applied to the field manually.
///
/// ```rust
/// # use serde_json::json;
/// # use serde_with_macros as serde_with;
/// #[serde_with::apply(
/// # crate="serde_with",
/// Option => #[serde(skip_serializing_if = "Option::is_none")],
/// )]
/// #[derive(serde::Serialize)]
/// struct Data {
/// a: Option<String>,
/// #[serde_with(skip_apply)]
/// always_serialize_this_field: Option<u64>,
/// c: Option<String>,
/// d: Option<bool>,
/// }
///
/// let data = Data {
/// a: None,
/// always_serialize_this_field: None,
/// c: None,
/// d: None,
/// };
///
/// // serializes into this JSON:
/// # assert_eq!(json!(
/// {
/// "always_serialize_this_field": null
/// }
/// # ), serde_json::to_value(&data).unwrap());
/// ```
///
/// # Alternative path to `serde_with` crate
///
/// If `serde_with` is not available at the default path, its path should be specified with the
/// `crate` argument. See [re-exporting `serde_as`] for more use case information.
///
/// ```rust,ignore
/// #[serde_with::apply(
/// crate = "::some_other_lib::serde_with"
/// Option => #[serde(skip_serializing_if = "Option::is_none")],
/// )]
/// #[derive(serde::Serialize)]
/// struct Data {
/// a: Option<String>,
/// b: Option<u64>,
/// c: Option<String>,
/// d: Option<bool>,
/// }
/// ```
#[proc_macro_attribute]
pub fn apply(args: TokenStream, input: TokenStream) -> TokenStream {
apply::apply(args, input)
}