Source code

Revision control

Copy as Markdown

Other Tools

use std::iter::IntoIterator;
use std::os::raw::{c_int, c_void};
#[cfg(feature = "array")]
use std::rc::Rc;
use std::slice::from_raw_parts;
use std::{fmt, mem, ptr, str};
use super::ffi;
use super::{len_as_c_int, str_for_sqlite};
use super::{
AndThenRows, Connection, Error, MappedRows, Params, RawStatement, Result, Row, Rows, ValueRef,
};
use crate::types::{ToSql, ToSqlOutput};
#[cfg(feature = "array")]
use crate::vtab::array::{free_array, ARRAY_TYPE};
/// A prepared statement.
pub struct Statement<'conn> {
conn: &'conn Connection,
pub(crate) stmt: RawStatement,
}
impl Statement<'_> {
/// Execute the prepared statement.
///
/// On success, returns the number of rows that were changed or inserted or
/// deleted (via `sqlite3_changes`).
///
/// ## Example
///
/// ### Use with positional parameters
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result, params};
/// fn update_rows(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("UPDATE foo SET bar = ?1 WHERE qux = ?2")?;
/// // For a single parameter, or a parameter where all the values have
/// // the same type, just passing an array is simplest.
/// stmt.execute([2i32])?;
/// // The `rusqlite::params!` macro is mostly useful when the parameters do not
/// // all have the same type, or if there are more than 32 parameters
/// // at once, but it can be used in other cases.
/// stmt.execute(params![1i32])?;
/// // However, it's not required, many cases are fine as:
/// stmt.execute(&[&2i32])?;
/// // Or even:
/// stmt.execute([2i32])?;
/// // If you really want to, this is an option as well.
/// stmt.execute((2i32,))?;
/// Ok(())
/// }
/// ```
///
/// #### Heterogeneous positional parameters
///
/// ```
/// use rusqlite::{Connection, Result};
/// fn store_file(conn: &Connection, path: &str, data: &[u8]) -> Result<()> {
/// # // no need to do it for real.
/// # fn sha256(_: &[u8]) -> [u8; 32] { [0; 32] }
/// let query = "INSERT OR REPLACE INTO files(path, hash, data) VALUES (?1, ?2, ?3)";
/// let mut stmt = conn.prepare_cached(query)?;
/// let hash: [u8; 32] = sha256(data);
/// // The easiest way to pass positional parameters of have several
/// // different types is by using a tuple.
/// stmt.execute((path, hash, data))?;
/// // Using the `params!` macro also works, and supports longer parameter lists:
/// stmt.execute(rusqlite::params![path, hash, data])?;
/// Ok(())
/// }
/// # let c = Connection::open_in_memory().unwrap();
/// # c.execute_batch("CREATE TABLE files(path TEXT PRIMARY KEY, hash BLOB, data BLOB)").unwrap();
/// # store_file(&c, "foo/bar.txt", b"bibble").unwrap();
/// # store_file(&c, "foo/baz.txt", b"bobble").unwrap();
/// ```
///
/// ### Use with named parameters
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result, named_params};
/// fn insert(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("INSERT INTO test (key, value) VALUES (:key, :value)")?;
/// // The `rusqlite::named_params!` macro (like `params!`) is useful for heterogeneous
/// // sets of parameters (where all parameters are not the same type), or for queries
/// // with many (more than 32) statically known parameters.
/// stmt.execute(named_params! { ":key": "one", ":val": 2 })?;
/// // However, named parameters can also be passed like:
/// stmt.execute(&[(":key", "three"), (":val", "four")])?;
/// // Or even: (note that a &T is required for the value type, currently)
/// stmt.execute(&[(":key", &100), (":val", &200)])?;
/// Ok(())
/// }
/// ```
///
/// ### Use without parameters
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result, params};
/// fn delete_all(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("DELETE FROM users")?;
/// stmt.execute([])?;
/// Ok(())
/// }
/// ```
///
/// # Failure
///
/// Will return `Err` if binding parameters fails, the executed statement
/// returns rows (in which case `query` should be used instead), or the
/// underlying SQLite call fails.
#[inline]
pub fn execute<P: Params>(&mut self, params: P) -> Result<usize> {
params.__bind_in(self)?;
self.execute_with_bound_parameters()
}
/// Execute an INSERT and return the ROWID.
///
/// # Note
///
/// This function is a convenience wrapper around
/// [`execute()`](Statement::execute) intended for queries that insert a
/// single item. It is possible to misuse this function in a way that it
/// cannot detect, such as by calling it on a statement which _updates_
/// a single item rather than inserting one. Please don't do that.
///
/// # Failure
///
/// Will return `Err` if no row is inserted or many rows are inserted.
#[inline]
pub fn insert<P: Params>(&mut self, params: P) -> Result<i64> {
let changes = self.execute(params)?;
match changes {
1 => Ok(self.conn.last_insert_rowid()),
_ => Err(Error::StatementChangedRows(changes)),
}
}
/// Execute the prepared statement, returning a handle to the resulting
/// rows.
///
/// Due to lifetime restrictions, the rows handle returned by `query` does
/// not implement the `Iterator` trait. Consider using
/// [`query_map`](Statement::query_map) or
/// [`query_and_then`](Statement::query_and_then) instead, which do.
///
/// ## Example
///
/// ### Use without parameters
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn get_names(conn: &Connection) -> Result<Vec<String>> {
/// let mut stmt = conn.prepare("SELECT name FROM people")?;
/// let mut rows = stmt.query([])?;
///
/// let mut names = Vec::new();
/// while let Some(row) = rows.next()? {
/// names.push(row.get(0)?);
/// }
///
/// Ok(names)
/// }
/// ```
///
/// ### Use with positional parameters
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn query(conn: &Connection, name: &str) -> Result<()> {
/// let mut stmt = conn.prepare("SELECT * FROM test where name = ?1")?;
/// let mut rows = stmt.query(rusqlite::params![name])?;
/// while let Some(row) = rows.next()? {
/// // ...
/// }
/// Ok(())
/// }
/// ```
///
/// Or, equivalently (but without the [`crate::params!`] macro).
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn query(conn: &Connection, name: &str) -> Result<()> {
/// let mut stmt = conn.prepare("SELECT * FROM test where name = ?1")?;
/// let mut rows = stmt.query([name])?;
/// while let Some(row) = rows.next()? {
/// // ...
/// }
/// Ok(())
/// }
/// ```
///
/// ### Use with named parameters
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn query(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("SELECT * FROM test where name = :name")?;
/// let mut rows = stmt.query(&[(":name", "one")])?;
/// while let Some(row) = rows.next()? {
/// // ...
/// }
/// Ok(())
/// }
/// ```
///
/// Note, the `named_params!` macro is provided for syntactic convenience,
/// and so the above example could also be written as:
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result, named_params};
/// fn query(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("SELECT * FROM test where name = :name")?;
/// let mut rows = stmt.query(named_params! { ":name": "one" })?;
/// while let Some(row) = rows.next()? {
/// // ...
/// }
/// Ok(())
/// }
/// ```
///
/// ## Failure
///
/// Will return `Err` if binding parameters fails.
#[inline]
pub fn query<P: Params>(&mut self, params: P) -> Result<Rows<'_>> {
params.__bind_in(self)?;
Ok(Rows::new(self))
}
/// Executes the prepared statement and maps a function over the resulting
/// rows, returning an iterator over the mapped function results.
///
/// `f` is used to transform the _streaming_ iterator into a _standard_
/// iterator.
///
/// This is equivalent to `stmt.query(params)?.mapped(f)`.
///
/// ## Example
///
/// ### Use with positional params
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn get_names(conn: &Connection) -> Result<Vec<String>> {
/// let mut stmt = conn.prepare("SELECT name FROM people")?;
/// let rows = stmt.query_map([], |row| row.get(0))?;
///
/// let mut names = Vec::new();
/// for name_result in rows {
/// names.push(name_result?);
/// }
///
/// Ok(names)
/// }
/// ```
///
/// ### Use with named params
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn get_names(conn: &Connection) -> Result<Vec<String>> {
/// let mut stmt = conn.prepare("SELECT name FROM people WHERE id = :id")?;
/// let rows = stmt.query_map(&[(":id", &"one")], |row| row.get(0))?;
///
/// let mut names = Vec::new();
/// for name_result in rows {
/// names.push(name_result?);
/// }
///
/// Ok(names)
/// }
/// ```
/// ## Failure
///
/// Will return `Err` if binding parameters fails.
pub fn query_map<T, P, F>(&mut self, params: P, f: F) -> Result<MappedRows<'_, F>>
where
P: Params,
F: FnMut(&Row<'_>) -> Result<T>,
{
self.query(params).map(|rows| rows.mapped(f))
}
/// Executes the prepared statement and maps a function over the resulting
/// rows, where the function returns a `Result` with `Error` type
/// implementing `std::convert::From<Error>` (so errors can be unified).
///
/// This is equivalent to `stmt.query(params)?.and_then(f)`.
///
/// ## Example
///
/// ### Use with named params
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// struct Person {
/// name: String,
/// };
///
/// fn name_to_person(name: String) -> Result<Person> {
/// // ... check for valid name
/// Ok(Person { name })
/// }
///
/// fn get_names(conn: &Connection) -> Result<Vec<Person>> {
/// let mut stmt = conn.prepare("SELECT name FROM people WHERE id = :id")?;
/// let rows = stmt.query_and_then(&[(":id", "one")], |row| name_to_person(row.get(0)?))?;
///
/// let mut persons = Vec::new();
/// for person_result in rows {
/// persons.push(person_result?);
/// }
///
/// Ok(persons)
/// }
/// ```
///
/// ### Use with positional params
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn get_names(conn: &Connection) -> Result<Vec<String>> {
/// let mut stmt = conn.prepare("SELECT name FROM people WHERE id = ?1")?;
/// let rows = stmt.query_and_then(["one"], |row| row.get::<_, String>(0))?;
///
/// let mut persons = Vec::new();
/// for person_result in rows {
/// persons.push(person_result?);
/// }
///
/// Ok(persons)
/// }
/// ```
///
/// # Failure
///
/// Will return `Err` if binding parameters fails.
#[inline]
pub fn query_and_then<T, E, P, F>(&mut self, params: P, f: F) -> Result<AndThenRows<'_, F>>
where
P: Params,
E: From<Error>,
F: FnMut(&Row<'_>) -> Result<T, E>,
{
self.query(params).map(|rows| rows.and_then(f))
}
/// Return `true` if a query in the SQL statement it executes returns one
/// or more rows and `false` if the SQL returns an empty set.
#[inline]
pub fn exists<P: Params>(&mut self, params: P) -> Result<bool> {
let mut rows = self.query(params)?;
let exists = rows.next()?.is_some();
Ok(exists)
}
/// Convenience method to execute a query that is expected to return a
/// single row.
///
/// If the query returns more than one row, all rows except the first are
/// ignored.
///
/// Returns `Err(QueryReturnedNoRows)` if no results are returned. If the
/// query truly is optional, you can call
/// [`.optional()`](crate::OptionalExtension::optional) on the result of
/// this to get a `Result<Option<T>>` (requires that the trait
/// `rusqlite::OptionalExtension` is imported).
///
/// # Failure
///
/// Will return `Err` if the underlying SQLite call fails.
pub fn query_row<T, P, F>(&mut self, params: P, f: F) -> Result<T>
where
P: Params,
F: FnOnce(&Row<'_>) -> Result<T>,
{
let mut rows = self.query(params)?;
rows.get_expected_row().and_then(f)
}
/// Consumes the statement.
///
/// Functionally equivalent to the `Drop` implementation, but allows
/// callers to see any errors that occur.
///
/// # Failure
///
/// Will return `Err` if the underlying SQLite call fails.
#[inline]
pub fn finalize(mut self) -> Result<()> {
self.finalize_()
}
/// Return the (one-based) index of an SQL parameter given its name.
///
/// Note that the initial ":" or "$" or "@" or "?" used to specify the
/// parameter is included as part of the name.
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn example(conn: &Connection) -> Result<()> {
/// let stmt = conn.prepare("SELECT * FROM test WHERE name = :example")?;
/// let index = stmt.parameter_index(":example")?;
/// assert_eq!(index, Some(1));
/// Ok(())
/// }
/// ```
///
/// # Failure
///
/// Will return Err if `name` is invalid. Will return Ok(None) if the name
/// is valid but not a bound parameter of this statement.
#[inline]
pub fn parameter_index(&self, name: &str) -> Result<Option<usize>> {
Ok(self.stmt.bind_parameter_index(name))
}
/// Return the SQL parameter name given its (one-based) index (the inverse
/// of [`Statement::parameter_index`]).
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn example(conn: &Connection) -> Result<()> {
/// let stmt = conn.prepare("SELECT * FROM test WHERE name = :example")?;
/// let index = stmt.parameter_name(1);
/// assert_eq!(index, Some(":example"));
/// Ok(())
/// }
/// ```
///
/// # Failure
///
/// Will return `None` if the column index is out of bounds or if the
/// parameter is positional.
///
/// # Panics
///
/// Panics when parameter name is not valid UTF-8.
#[inline]
pub fn parameter_name(&self, index: usize) -> Option<&'_ str> {
self.stmt.bind_parameter_name(index as i32).map(|name| {
str::from_utf8(name.to_bytes()).expect("Invalid UTF-8 sequence in parameter name")
})
}
#[inline]
pub(crate) fn bind_parameters<P>(&mut self, params: P) -> Result<()>
where
P: IntoIterator,
P::Item: ToSql,
{
let expected = self.stmt.bind_parameter_count();
let mut index = 0;
for p in params {
index += 1; // The leftmost SQL parameter has an index of 1.
if index > expected {
break;
}
self.bind_parameter(&p, index)?;
}
if index != expected {
Err(Error::InvalidParameterCount(index, expected))
} else {
Ok(())
}
}
#[inline]
pub(crate) fn ensure_parameter_count(&self, n: usize) -> Result<()> {
let count = self.parameter_count();
if count != n {
Err(Error::InvalidParameterCount(n, count))
} else {
Ok(())
}
}
#[inline]
pub(crate) fn bind_parameters_named<T: ?Sized + ToSql>(
&mut self,
params: &[(&str, &T)],
) -> Result<()> {
for &(name, value) in params {
if let Some(i) = self.parameter_index(name)? {
let ts: &dyn ToSql = &value;
self.bind_parameter(ts, i)?;
} else {
return Err(Error::InvalidParameterName(name.into()));
}
}
Ok(())
}
/// Return the number of parameters that can be bound to this statement.
#[inline]
pub fn parameter_count(&self) -> usize {
self.stmt.bind_parameter_count()
}
/// Low level API to directly bind a parameter to a given index.
///
/// Note that the index is one-based, that is, the first parameter index is
/// 1 and not 0. This is consistent with the SQLite API and the values given
/// to parameters bound as `?NNN`.
///
/// The valid values for `one_based_col_index` begin at `1`, and end at
/// [`Statement::parameter_count`], inclusive.
///
/// # Caveats
///
/// This should not generally be used, but is available for special cases
/// such as:
///
/// - binding parameters where a gap exists.
/// - binding named and positional parameters in the same query.
/// - separating parameter binding from query execution.
///
/// In general, statements that have had *any* parameters bound this way
/// should have *all* parameters bound this way, and be queried or executed
/// by [`Statement::raw_query`] or [`Statement::raw_execute`], other usage
/// is unsupported and will likely, probably in surprising ways.
///
/// That is: Do not mix the "raw" statement functions with the rest of the
/// API, or the results may be surprising, and may even change in future
/// versions without comment.
///
/// # Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn query(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("SELECT * FROM test WHERE name = :name AND value > ?2")?;
/// let name_index = stmt.parameter_index(":name")?.expect("No such parameter");
/// stmt.raw_bind_parameter(name_index, "foo")?;
/// stmt.raw_bind_parameter(2, 100)?;
/// let mut rows = stmt.raw_query();
/// while let Some(row) = rows.next()? {
/// // ...
/// }
/// Ok(())
/// }
/// ```
#[inline]
pub fn raw_bind_parameter<T: ToSql>(
&mut self,
one_based_col_index: usize,
param: T,
) -> Result<()> {
// This is the same as `bind_parameter` but slightly more ergonomic and
// correctly takes `&mut self`.
self.bind_parameter(&param, one_based_col_index)
}
/// Low level API to execute a statement given that all parameters were
/// bound explicitly with the [`Statement::raw_bind_parameter`] API.
///
/// # Caveats
///
/// Any unbound parameters will have `NULL` as their value.
///
/// This should not generally be used outside of special cases, and
/// functions in the [`Statement::execute`] family should be preferred.
///
/// # Failure
///
/// Will return `Err` if the executed statement returns rows (in which case
/// `query` should be used instead), or the underlying SQLite call fails.
#[inline]
pub fn raw_execute(&mut self) -> Result<usize> {
self.execute_with_bound_parameters()
}
/// Low level API to get `Rows` for this query given that all parameters
/// were bound explicitly with the [`Statement::raw_bind_parameter`] API.
///
/// # Caveats
///
/// Any unbound parameters will have `NULL` as their value.
///
/// This should not generally be used outside of special cases, and
/// functions in the [`Statement::query`] family should be preferred.
///
/// Note that if the SQL does not return results, [`Statement::raw_execute`]
/// should be used instead.
#[inline]
pub fn raw_query(&mut self) -> Rows<'_> {
Rows::new(self)
}
// generic because many of these branches can constant fold away.
fn bind_parameter<P: ?Sized + ToSql>(&self, param: &P, col: usize) -> Result<()> {
let value = param.to_sql()?;
let ptr = unsafe { self.stmt.ptr() };
let value = match value {
ToSqlOutput::Borrowed(v) => v,
ToSqlOutput::Owned(ref v) => ValueRef::from(v),
#[cfg(feature = "blob")]
ToSqlOutput::ZeroBlob(len) => {
// TODO sqlite3_bind_zeroblob64 // 3.8.11
return self
.conn
.decode_result(unsafe { ffi::sqlite3_bind_zeroblob(ptr, col as c_int, len) });
}
#[cfg(feature = "array")]
ToSqlOutput::Array(a) => {
return self.conn.decode_result(unsafe {
ffi::sqlite3_bind_pointer(
ptr,
col as c_int,
Rc::into_raw(a) as *mut c_void,
ARRAY_TYPE,
Some(free_array),
)
});
}
};
self.conn.decode_result(match value {
ValueRef::Null => unsafe { ffi::sqlite3_bind_null(ptr, col as c_int) },
ValueRef::Integer(i) => unsafe { ffi::sqlite3_bind_int64(ptr, col as c_int, i) },
ValueRef::Real(r) => unsafe { ffi::sqlite3_bind_double(ptr, col as c_int, r) },
ValueRef::Text(s) => unsafe {
let (c_str, len, destructor) = str_for_sqlite(s)?;
// TODO sqlite3_bind_text64 // 3.8.7
ffi::sqlite3_bind_text(ptr, col as c_int, c_str, len, destructor)
},
ValueRef::Blob(b) => unsafe {
let length = len_as_c_int(b.len())?;
if length == 0 {
ffi::sqlite3_bind_zeroblob(ptr, col as c_int, 0)
} else {
// TODO sqlite3_bind_blob64 // 3.8.7
ffi::sqlite3_bind_blob(
ptr,
col as c_int,
b.as_ptr().cast::<c_void>(),
length,
ffi::SQLITE_TRANSIENT(),
)
}
},
})
}
#[inline]
fn execute_with_bound_parameters(&mut self) -> Result<usize> {
self.check_update()?;
let r = self.stmt.step();
self.stmt.reset();
match r {
ffi::SQLITE_DONE => Ok(self.conn.changes() as usize),
ffi::SQLITE_ROW => Err(Error::ExecuteReturnedResults),
_ => Err(self.conn.decode_result(r).unwrap_err()),
}
}
#[inline]
fn finalize_(&mut self) -> Result<()> {
let mut stmt = unsafe { RawStatement::new(ptr::null_mut(), 0) };
mem::swap(&mut stmt, &mut self.stmt);
self.conn.decode_result(stmt.finalize())
}
#[cfg(feature = "extra_check")]
#[inline]
fn check_update(&self) -> Result<()> {
// sqlite3_column_count works for DML but not for DDL (ie ALTER)
if self.column_count() > 0 && self.stmt.readonly() {
return Err(Error::ExecuteReturnedResults);
}
Ok(())
}
#[cfg(not(feature = "extra_check"))]
#[inline]
#[allow(clippy::unnecessary_wraps)]
fn check_update(&self) -> Result<()> {
Ok(())
}
/// Returns a string containing the SQL text of prepared statement with
/// bound parameters expanded.
pub fn expanded_sql(&self) -> Option<String> {
self.stmt
.expanded_sql()
.map(|s| s.to_string_lossy().to_string())
}
/// Get the value for one of the status counters for this statement.
#[inline]
pub fn get_status(&self, status: StatementStatus) -> i32 {
self.stmt.get_status(status, false)
}
/// Reset the value of one of the status counters for this statement,
#[inline]
/// returning the value it had before resetting.
pub fn reset_status(&self, status: StatementStatus) -> i32 {
self.stmt.get_status(status, true)
}
/// Returns 1 if the prepared statement is an EXPLAIN statement,
/// or 2 if the statement is an EXPLAIN QUERY PLAN,
/// or 0 if it is an ordinary statement or a NULL pointer.
#[inline]
#[cfg(feature = "modern_sqlite")] // 3.28.0
#[cfg_attr(docsrs, doc(cfg(feature = "modern_sqlite")))]
pub fn is_explain(&self) -> i32 {
self.stmt.is_explain()
}
/// Returns true if the statement is read only.
#[inline]
pub fn readonly(&self) -> bool {
self.stmt.readonly()
}
#[cfg(feature = "extra_check")]
#[inline]
pub(crate) fn check_no_tail(&self) -> Result<()> {
if self.stmt.has_tail() {
Err(Error::MultipleStatement)
} else {
Ok(())
}
}
#[cfg(not(feature = "extra_check"))]
#[inline]
#[allow(clippy::unnecessary_wraps)]
pub(crate) fn check_no_tail(&self) -> Result<()> {
Ok(())
}
/// Safety: This is unsafe, because using `sqlite3_stmt` after the
/// connection has closed is illegal, but `RawStatement` does not enforce
/// this, as it loses our protective `'conn` lifetime bound.
#[inline]
pub(crate) unsafe fn into_raw(mut self) -> RawStatement {
let mut stmt = RawStatement::new(ptr::null_mut(), 0);
mem::swap(&mut stmt, &mut self.stmt);
stmt
}
/// Reset all bindings
pub fn clear_bindings(&mut self) {
self.stmt.clear_bindings();
}
}
impl fmt::Debug for Statement<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let sql = if self.stmt.is_null() {
Ok("")
} else {
str::from_utf8(self.stmt.sql().unwrap().to_bytes())
};
f.debug_struct("Statement")
.field("conn", self.conn)
.field("stmt", &self.stmt)
.field("sql", &sql)
.finish()
}
}
impl Drop for Statement<'_> {
#[allow(unused_must_use)]
#[inline]
fn drop(&mut self) {
self.finalize_();
}
}
impl Statement<'_> {
#[inline]
pub(super) fn new(conn: &Connection, stmt: RawStatement) -> Statement<'_> {
Statement { conn, stmt }
}
pub(super) fn value_ref(&self, col: usize) -> ValueRef<'_> {
let raw = unsafe { self.stmt.ptr() };
match self.stmt.column_type(col) {
ffi::SQLITE_NULL => ValueRef::Null,
ffi::SQLITE_INTEGER => {
ValueRef::Integer(unsafe { ffi::sqlite3_column_int64(raw, col as c_int) })
}
ffi::SQLITE_FLOAT => {
ValueRef::Real(unsafe { ffi::sqlite3_column_double(raw, col as c_int) })
}
ffi::SQLITE_TEXT => {
let s = unsafe {
// Quoting from "Using SQLite" book:
// To avoid problems, an application should first extract the desired type using
// a sqlite3_column_xxx() function, and then call the
// appropriate sqlite3_column_bytes() function.
let text = ffi::sqlite3_column_text(raw, col as c_int);
let len = ffi::sqlite3_column_bytes(raw, col as c_int);
assert!(
!text.is_null(),
"unexpected SQLITE_TEXT column type with NULL data"
);
from_raw_parts(text.cast::<u8>(), len as usize)
};
ValueRef::Text(s)
}
ffi::SQLITE_BLOB => {
let (blob, len) = unsafe {
(
ffi::sqlite3_column_blob(raw, col as c_int),
ffi::sqlite3_column_bytes(raw, col as c_int),
)
};
assert!(
len >= 0,
"unexpected negative return from sqlite3_column_bytes"
);
if len > 0 {
assert!(
!blob.is_null(),
"unexpected SQLITE_BLOB column type with NULL data"
);
ValueRef::Blob(unsafe { from_raw_parts(blob.cast::<u8>(), len as usize) })
} else {
// The return value from sqlite3_column_blob() for a zero-length BLOB
// is a NULL pointer.
ValueRef::Blob(&[])
}
}
_ => unreachable!("sqlite3_column_type returned invalid value"),
}
}
#[inline]
pub(super) fn step(&self) -> Result<bool> {
match self.stmt.step() {
ffi::SQLITE_ROW => Ok(true),
ffi::SQLITE_DONE => Ok(false),
code => Err(self.conn.decode_result(code).unwrap_err()),
}
}
#[inline]
pub(super) fn reset(&self) -> c_int {
self.stmt.reset()
}
}
/// Prepared statement status counters.
///
/// for explanations of each.
///
/// Note that depending on your version of SQLite, all of these
/// may not be available.
#[repr(i32)]
#[derive(Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub enum StatementStatus {
/// Equivalent to SQLITE_STMTSTATUS_FULLSCAN_STEP
FullscanStep = 1,
/// Equivalent to SQLITE_STMTSTATUS_SORT
Sort = 2,
/// Equivalent to SQLITE_STMTSTATUS_AUTOINDEX
AutoIndex = 3,
/// Equivalent to SQLITE_STMTSTATUS_VM_STEP
VmStep = 4,
/// Equivalent to SQLITE_STMTSTATUS_REPREPARE (3.20.0)
RePrepare = 5,
/// Equivalent to SQLITE_STMTSTATUS_RUN (3.20.0)
Run = 6,
/// Equivalent to SQLITE_STMTSTATUS_FILTER_MISS
FilterMiss = 7,
/// Equivalent to SQLITE_STMTSTATUS_FILTER_HIT
FilterHit = 8,
/// Equivalent to SQLITE_STMTSTATUS_MEMUSED (3.20.0)
MemUsed = 99,
}
#[cfg(test)]
mod test {
use crate::types::ToSql;
use crate::{params_from_iter, Connection, Error, Result};
#[test]
fn test_execute_named() -> Result<()> {
let db = Connection::open_in_memory()?;
db.execute_batch("CREATE TABLE foo(x INTEGER)")?;
assert_eq!(
db.execute("INSERT INTO foo(x) VALUES (:x)", &[(":x", &1i32)])?,
1
);
assert_eq!(
db.execute("INSERT INTO foo(x) VALUES (:x)", &[(":x", &2i32)])?,
1
);
assert_eq!(
db.execute(
"INSERT INTO foo(x) VALUES (:x)",
crate::named_params! {":x": 3i32}
)?,
1
);
assert_eq!(
6i32,
db.query_row::<i32, _, _>(
"SELECT SUM(x) FROM foo WHERE x > :x",
&[(":x", &0i32)],
|r| r.get(0)
)?
);
assert_eq!(
5i32,
db.query_row::<i32, _, _>(
"SELECT SUM(x) FROM foo WHERE x > :x",
&[(":x", &1i32)],
|r| r.get(0)
)?
);
Ok(())
}
#[test]
fn test_stmt_execute_named() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = "CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag \
INTEGER)";
db.execute_batch(sql)?;
let mut stmt = db.prepare("INSERT INTO test (name) VALUES (:name)")?;
stmt.execute(&[(":name", &"one")])?;
let mut stmt = db.prepare("SELECT COUNT(*) FROM test WHERE name = :name")?;
assert_eq!(
1i32,
stmt.query_row::<i32, _, _>(&[(":name", "one")], |r| r.get(0))?
);
Ok(())
}
#[test]
fn test_query_named() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = r#"
CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER);
INSERT INTO test(id, name) VALUES (1, "one");
"#;
db.execute_batch(sql)?;
let mut stmt = db.prepare("SELECT id FROM test where name = :name")?;
let mut rows = stmt.query(&[(":name", "one")])?;
let id: Result<i32> = rows.next()?.unwrap().get(0);
assert_eq!(Ok(1), id);
Ok(())
}
#[test]
fn test_query_map_named() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = r#"
CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER);
INSERT INTO test(id, name) VALUES (1, "one");
"#;
db.execute_batch(sql)?;
let mut stmt = db.prepare("SELECT id FROM test where name = :name")?;
let mut rows = stmt.query_map(&[(":name", "one")], |row| {
let id: Result<i32> = row.get(0);
id.map(|i| 2 * i)
})?;
let doubled_id: i32 = rows.next().unwrap()?;
assert_eq!(2, doubled_id);
Ok(())
}
#[test]
fn test_query_and_then_by_name() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = r#"
CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER);
INSERT INTO test(id, name) VALUES (1, "one");
INSERT INTO test(id, name) VALUES (2, "one");
"#;
db.execute_batch(sql)?;
let mut stmt = db.prepare("SELECT id FROM test where name = :name ORDER BY id ASC")?;
let mut rows = stmt.query_and_then(&[(":name", "one")], |row| {
let id: i32 = row.get(0)?;
if id == 1 {
Ok(id)
} else {
Err(Error::SqliteSingleThreadedMode)
}
})?;
// first row should be Ok
let doubled_id: i32 = rows.next().unwrap()?;
assert_eq!(1, doubled_id);
// second row should be Err
#[allow(clippy::match_wild_err_arm)]
match rows.next().unwrap() {
Ok(_) => panic!("invalid Ok"),
Err(Error::SqliteSingleThreadedMode) => (),
Err(_) => panic!("invalid Err"),
}
Ok(())
}
#[test]
fn test_unbound_parameters_are_null() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = "CREATE TABLE test (x TEXT, y TEXT)";
db.execute_batch(sql)?;
let mut stmt = db.prepare("INSERT INTO test (x, y) VALUES (:x, :y)")?;
stmt.execute(&[(":x", &"one")])?;
let result: Option<String> = db.one_column("SELECT y FROM test WHERE x = 'one'")?;
assert!(result.is_none());
Ok(())
}
#[test]
fn test_raw_binding() -> Result<()> {
let db = Connection::open_in_memory()?;
db.execute_batch("CREATE TABLE test (name TEXT, value INTEGER)")?;
{
let mut stmt = db.prepare("INSERT INTO test (name, value) VALUES (:name, ?3)")?;
let name_idx = stmt.parameter_index(":name")?.unwrap();
stmt.raw_bind_parameter(name_idx, "example")?;
stmt.raw_bind_parameter(3, 50i32)?;
let n = stmt.raw_execute()?;
assert_eq!(n, 1);
}
{
let mut stmt = db.prepare("SELECT name, value FROM test WHERE value = ?2")?;
stmt.raw_bind_parameter(2, 50)?;
let mut rows = stmt.raw_query();
{
let row = rows.next()?.unwrap();
let name: String = row.get(0)?;
assert_eq!(name, "example");
let value: i32 = row.get(1)?;
assert_eq!(value, 50);
}
assert!(rows.next()?.is_none());
}
Ok(())
}
#[test]
fn test_unbound_parameters_are_reused() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = "CREATE TABLE test (x TEXT, y TEXT)";
db.execute_batch(sql)?;
let mut stmt = db.prepare("INSERT INTO test (x, y) VALUES (:x, :y)")?;
stmt.execute(&[(":x", "one")])?;
stmt.execute(&[(":y", "two")])?;
let result: String = db.one_column("SELECT x FROM test WHERE y = 'two'")?;
assert_eq!(result, "one");
Ok(())
}
#[test]
fn test_insert() -> Result<()> {
let db = Connection::open_in_memory()?;
db.execute_batch("CREATE TABLE foo(x INTEGER UNIQUE)")?;
let mut stmt = db.prepare("INSERT OR IGNORE INTO foo (x) VALUES (?1)")?;
assert_eq!(stmt.insert([1i32])?, 1);
assert_eq!(stmt.insert([2i32])?, 2);
match stmt.insert([1i32]).unwrap_err() {
Error::StatementChangedRows(0) => (),
err => panic!("Unexpected error {err}"),
}
let mut multi = db.prepare("INSERT INTO foo (x) SELECT 3 UNION ALL SELECT 4")?;
match multi.insert([]).unwrap_err() {
Error::StatementChangedRows(2) => (),
err => panic!("Unexpected error {err}"),
}
Ok(())
}
#[test]
fn test_insert_different_tables() -> Result<()> {
let db = Connection::open_in_memory()?;
db.execute_batch(
r"
CREATE TABLE foo(x INTEGER);
CREATE TABLE bar(x INTEGER);
",
)?;
assert_eq!(db.prepare("INSERT INTO foo VALUES (10)")?.insert([])?, 1);
assert_eq!(db.prepare("INSERT INTO bar VALUES (10)")?.insert([])?, 1);
Ok(())
}
#[test]
fn test_exists() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = "BEGIN;
CREATE TABLE foo(x INTEGER);
INSERT INTO foo VALUES(1);
INSERT INTO foo VALUES(2);
END;";
db.execute_batch(sql)?;
let mut stmt = db.prepare("SELECT 1 FROM foo WHERE x = ?1")?;
assert!(stmt.exists([1i32])?);
assert!(stmt.exists([2i32])?);
assert!(!stmt.exists([0i32])?);
Ok(())
}
#[test]
fn test_tuple_params() -> Result<()> {
let db = Connection::open_in_memory()?;
let s = db.query_row("SELECT printf('[%s]', ?1)", ("abc",), |r| {
r.get::<_, String>(0)
})?;
assert_eq!(s, "[abc]");
let s = db.query_row(
"SELECT printf('%d %s %d', ?1, ?2, ?3)",
(1i32, "abc", 2i32),
|r| r.get::<_, String>(0),
)?;
assert_eq!(s, "1 abc 2");
let s = db.query_row(
"SELECT printf('%d %s %d %d', ?1, ?2, ?3, ?4)",
(1, "abc", 2i32, 4i64),
|r| r.get::<_, String>(0),
)?;
assert_eq!(s, "1 abc 2 4");
#[rustfmt::skip]
let bigtup = (
0, "a", 1, "b", 2, "c", 3, "d",
4, "e", 5, "f", 6, "g", 7, "h",
);
let query = "SELECT printf(
'%d %s | %d %s | %d %s | %d %s || %d %s | %d %s | %d %s | %d %s',
?1, ?2, ?3, ?4,
?5, ?6, ?7, ?8,
?9, ?10, ?11, ?12,
?13, ?14, ?15, ?16
)";
let s = db.query_row(query, bigtup, |r| r.get::<_, String>(0))?;
assert_eq!(s, "0 a | 1 b | 2 c | 3 d || 4 e | 5 f | 6 g | 7 h");
Ok(())
}
#[test]
fn test_query_row() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = "BEGIN;
CREATE TABLE foo(x INTEGER, y INTEGER);
INSERT INTO foo VALUES(1, 3);
INSERT INTO foo VALUES(2, 4);
END;";
db.execute_batch(sql)?;
let mut stmt = db.prepare("SELECT y FROM foo WHERE x = ?1")?;
let y: Result<i64> = stmt.query_row([1i32], |r| r.get(0));
assert_eq!(3i64, y?);
Ok(())
}
#[test]
fn test_query_by_column_name() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = "BEGIN;
CREATE TABLE foo(x INTEGER, y INTEGER);
INSERT INTO foo VALUES(1, 3);
END;";
db.execute_batch(sql)?;
let mut stmt = db.prepare("SELECT y FROM foo")?;
let y: Result<i64> = stmt.query_row([], |r| r.get("y"));
assert_eq!(3i64, y?);
Ok(())
}
#[test]
fn test_query_by_column_name_ignore_case() -> Result<()> {
let db = Connection::open_in_memory()?;
let sql = "BEGIN;
CREATE TABLE foo(x INTEGER, y INTEGER);
INSERT INTO foo VALUES(1, 3);
END;";
db.execute_batch(sql)?;
let mut stmt = db.prepare("SELECT y as Y FROM foo")?;
let y: Result<i64> = stmt.query_row([], |r| r.get("y"));
assert_eq!(3i64, y?);
Ok(())
}
#[test]
fn test_expanded_sql() -> Result<()> {
let db = Connection::open_in_memory()?;
let stmt = db.prepare("SELECT ?1")?;
stmt.bind_parameter(&1, 1)?;
assert_eq!(Some("SELECT 1".to_owned()), stmt.expanded_sql());
Ok(())
}
#[test]
fn test_bind_parameters() -> Result<()> {
let db = Connection::open_in_memory()?;
// dynamic slice:
db.query_row(
"SELECT ?1, ?2, ?3",
[&1u8 as &dyn ToSql, &"one", &Some("one")],
|row| row.get::<_, u8>(0),
)?;
// existing collection:
let data = vec![1, 2, 3];
db.query_row("SELECT ?1, ?2, ?3", params_from_iter(&data), |row| {
row.get::<_, u8>(0)
})?;
db.query_row(
"SELECT ?1, ?2, ?3",
params_from_iter(data.as_slice()),
|row| row.get::<_, u8>(0),
)?;
db.query_row("SELECT ?1, ?2, ?3", params_from_iter(data), |row| {
row.get::<_, u8>(0)
})?;
use std::collections::BTreeSet;
let data: BTreeSet<String> = ["one", "two", "three"]
.iter()
.map(|s| (*s).to_string())
.collect();
db.query_row("SELECT ?1, ?2, ?3", params_from_iter(&data), |row| {
row.get::<_, String>(0)
})?;
let data = [0; 3];
db.query_row("SELECT ?1, ?2, ?3", params_from_iter(&data), |row| {
row.get::<_, u8>(0)
})?;
db.query_row("SELECT ?1, ?2, ?3", params_from_iter(data.iter()), |row| {
row.get::<_, u8>(0)
})?;
Ok(())
}
#[test]
fn test_parameter_name() -> Result<()> {
let db = Connection::open_in_memory()?;
db.execute_batch("CREATE TABLE test (name TEXT, value INTEGER)")?;
let stmt = db.prepare("INSERT INTO test (name, value) VALUES (:name, ?3)")?;
assert_eq!(stmt.parameter_name(0), None);
assert_eq!(stmt.parameter_name(1), Some(":name"));
assert_eq!(stmt.parameter_name(2), None);
Ok(())
}
#[test]
fn test_empty_stmt() -> Result<()> {
let conn = Connection::open_in_memory()?;
let mut stmt = conn.prepare("")?;
assert_eq!(0, stmt.column_count());
stmt.parameter_index("test").unwrap();
stmt.step().unwrap_err();
stmt.reset();
stmt.execute([]).unwrap_err();
Ok(())
}
#[test]
fn test_comment_stmt() -> Result<()> {
let conn = Connection::open_in_memory()?;
conn.prepare("/*SELECT 1;*/")?;
Ok(())
}
#[test]
fn test_comment_and_sql_stmt() -> Result<()> {
let conn = Connection::open_in_memory()?;
let stmt = conn.prepare("/*...*/ SELECT 1;")?;
assert_eq!(1, stmt.column_count());
Ok(())
}
#[test]
fn test_semi_colon_stmt() -> Result<()> {
let conn = Connection::open_in_memory()?;
let stmt = conn.prepare(";")?;
assert_eq!(0, stmt.column_count());
Ok(())
}
#[test]
fn test_utf16_conversion() -> Result<()> {
let db = Connection::open_in_memory()?;
db.pragma_update(None, "encoding", "UTF-16le")?;
let encoding: String = db.pragma_query_value(None, "encoding", |row| row.get(0))?;
assert_eq!("UTF-16le", encoding);
db.execute_batch("CREATE TABLE foo(x TEXT)")?;
let expected = "ใƒ†ใ‚นใƒˆ";
db.execute("INSERT INTO foo(x) VALUES (?1)", [&expected])?;
let actual: String = db.one_column("SELECT x FROM foo")?;
assert_eq!(expected, actual);
Ok(())
}
#[test]
fn test_nul_byte() -> Result<()> {
let db = Connection::open_in_memory()?;
let expected = "a\x00b";
let actual: String = db.query_row("SELECT ?1", [expected], |row| row.get(0))?;
assert_eq!(expected, actual);
Ok(())
}
#[test]
#[cfg(feature = "modern_sqlite")]
fn is_explain() -> Result<()> {
let db = Connection::open_in_memory()?;
let stmt = db.prepare("SELECT 1;")?;
assert_eq!(0, stmt.is_explain());
Ok(())
}
#[test]
fn readonly() -> Result<()> {
let db = Connection::open_in_memory()?;
let stmt = db.prepare("SELECT 1;")?;
assert!(stmt.readonly());
Ok(())
}
#[test]
#[cfg(feature = "modern_sqlite")] // SQLite >= 3.38.0
fn test_error_offset() -> Result<()> {
use crate::ffi::ErrorCode;
let db = Connection::open_in_memory()?;
let r = db.execute_batch("SELECT CURRENT_TIMESTANP;");
match r.unwrap_err() {
Error::SqlInputError { error, offset, .. } => {
assert_eq!(error.code, ErrorCode::Unknown);
assert_eq!(offset, 7);
}
err => panic!("Unexpected error {err}"),
}
Ok(())
}
}