Source code

Revision control

Copy as Markdown

Other Tools

// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
use crate::grapheme::GraphemeClusterSegmenter;
use crate::provider::*;
use alloc::vec::Vec;
use core::char::{decode_utf16, REPLACEMENT_CHARACTER};
use zerovec::{maps::ZeroMapBorrowed, ule::UnvalidatedStr};
mod matrix;
use matrix::*;
// A word break iterator using LSTM model. Input string have to be same language.
struct LstmSegmenterIterator<'s> {
input: &'s str,
pos_utf8: usize,
bies: BiesIterator<'s>,
}
impl Iterator for LstmSegmenterIterator<'_> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
#[allow(clippy::indexing_slicing)] // pos_utf8 in range
loop {
let is_e = self.bies.next()?;
self.pos_utf8 += self.input[self.pos_utf8..].chars().next()?.len_utf8();
if is_e || self.bies.len() == 0 {
return Some(self.pos_utf8);
}
}
}
}
struct LstmSegmenterIteratorUtf16<'s> {
bies: BiesIterator<'s>,
pos: usize,
}
impl Iterator for LstmSegmenterIteratorUtf16<'_> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
loop {
self.pos += 1;
if self.bies.next()? || self.bies.len() == 0 {
return Some(self.pos);
}
}
}
}
pub(super) struct LstmSegmenter<'l> {
dic: ZeroMapBorrowed<'l, UnvalidatedStr, u16>,
embedding: MatrixZero<'l, 2>,
fw_w: MatrixZero<'l, 3>,
fw_u: MatrixZero<'l, 3>,
fw_b: MatrixZero<'l, 2>,
bw_w: MatrixZero<'l, 3>,
bw_u: MatrixZero<'l, 3>,
bw_b: MatrixZero<'l, 2>,
timew_fw: MatrixZero<'l, 2>,
timew_bw: MatrixZero<'l, 2>,
time_b: MatrixZero<'l, 1>,
grapheme: Option<&'l RuleBreakDataV1<'l>>,
}
impl<'l> LstmSegmenter<'l> {
/// Returns `Err` if grapheme data is required but not present
pub(super) fn new(lstm: &'l LstmDataV1<'l>, grapheme: &'l RuleBreakDataV1<'l>) -> Self {
let LstmDataV1::Float32(lstm) = lstm;
let time_w = MatrixZero::from(&lstm.time_w);
#[allow(clippy::unwrap_used)] // shape (2, 4, hunits)
let timew_fw = time_w.submatrix(0).unwrap();
#[allow(clippy::unwrap_used)] // shape (2, 4, hunits)
let timew_bw = time_w.submatrix(1).unwrap();
Self {
dic: lstm.dic.as_borrowed(),
embedding: MatrixZero::from(&lstm.embedding),
fw_w: MatrixZero::from(&lstm.fw_w),
fw_u: MatrixZero::from(&lstm.fw_u),
fw_b: MatrixZero::from(&lstm.fw_b),
bw_w: MatrixZero::from(&lstm.bw_w),
bw_u: MatrixZero::from(&lstm.bw_u),
bw_b: MatrixZero::from(&lstm.bw_b),
timew_fw,
timew_bw,
time_b: MatrixZero::from(&lstm.time_b),
grapheme: (lstm.model == ModelType::GraphemeClusters).then_some(grapheme),
}
}
/// Create an LSTM based break iterator for an `str` (a UTF-8 string).
pub(super) fn segment_str(&'l self, input: &'l str) -> impl Iterator<Item = usize> + 'l {
self.segment_str_p(input)
}
// For unit testing as we cannot inspect the opaque type's bies
fn segment_str_p(&'l self, input: &'l str) -> LstmSegmenterIterator<'l> {
let input_seq = if let Some(grapheme) = self.grapheme {
GraphemeClusterSegmenter::new_and_segment_str(input, grapheme)
.collect::<Vec<usize>>()
.windows(2)
.map(|chunk| {
let range = if let [first, second, ..] = chunk {
*first..*second
} else {
unreachable!()
};
let grapheme_cluster = if let Some(grapheme_cluster) = input.get(range) {
grapheme_cluster
} else {
return self.dic.len() as u16;
};
self.dic
.get_copied(UnvalidatedStr::from_str(grapheme_cluster))
.unwrap_or_else(|| self.dic.len() as u16)
})
.collect()
} else {
input
.chars()
.map(|c| {
self.dic
.get_copied(UnvalidatedStr::from_str(c.encode_utf8(&mut [0; 4])))
.unwrap_or_else(|| self.dic.len() as u16)
})
.collect()
};
LstmSegmenterIterator {
input,
pos_utf8: 0,
bies: BiesIterator::new(self, input_seq),
}
}
/// Create an LSTM based break iterator for a UTF-16 string.
pub(super) fn segment_utf16(&'l self, input: &[u16]) -> impl Iterator<Item = usize> + 'l {
let input_seq = if let Some(grapheme) = self.grapheme {
GraphemeClusterSegmenter::new_and_segment_utf16(input, grapheme)
.collect::<Vec<usize>>()
.windows(2)
.map(|chunk| {
let range = if let [first, second, ..] = chunk {
*first..*second
} else {
unreachable!()
};
let grapheme_cluster = if let Some(grapheme_cluster) = input.get(range) {
grapheme_cluster
} else {
return self.dic.len() as u16;
};
self.dic
.get_copied_by(|key| {
key.as_bytes().iter().copied().cmp(
decode_utf16(grapheme_cluster.iter().copied()).flat_map(|c| {
let mut buf = [0; 4];
let len = c
.unwrap_or(REPLACEMENT_CHARACTER)
.encode_utf8(&mut buf)
.len();
buf.into_iter().take(len)
}),
)
})
.unwrap_or_else(|| self.dic.len() as u16)
})
.collect()
} else {
decode_utf16(input.iter().copied())
.map(|c| c.unwrap_or(REPLACEMENT_CHARACTER))
.map(|c| {
self.dic
.get_copied(UnvalidatedStr::from_str(c.encode_utf8(&mut [0; 4])))
.unwrap_or_else(|| self.dic.len() as u16)
})
.collect()
};
LstmSegmenterIteratorUtf16 {
bies: BiesIterator::new(self, input_seq),
pos: 0,
}
}
}
struct BiesIterator<'l> {
segmenter: &'l LstmSegmenter<'l>,
input_seq: core::iter::Enumerate<alloc::vec::IntoIter<u16>>,
h_bw: MatrixOwned<2>,
curr_fw: MatrixOwned<1>,
c_fw: MatrixOwned<1>,
}
impl<'l> BiesIterator<'l> {
// input_seq is a sequence of id numbers that represents grapheme clusters or code points in the input line. These ids are used later
// in the embedding layer of the model.
fn new(segmenter: &'l LstmSegmenter<'l>, input_seq: Vec<u16>) -> Self {
let hunits = segmenter.fw_u.dim().1;
// Backward LSTM
let mut c_bw = MatrixOwned::<1>::new_zero([hunits]);
let mut h_bw = MatrixOwned::<2>::new_zero([input_seq.len(), hunits]);
for (i, &g_id) in input_seq.iter().enumerate().rev() {
if i + 1 < input_seq.len() {
h_bw.as_mut().copy_submatrix::<1>(i + 1, i);
}
#[allow(clippy::unwrap_used)]
compute_hc(
segmenter.embedding.submatrix::<1>(g_id as usize).unwrap(), /* shape (dict.len() + 1, hunit), g_id is at most dict.len() */
h_bw.submatrix_mut(i).unwrap(), // shape (input_seq.len(), hunits)
c_bw.as_mut(),
segmenter.bw_w,
segmenter.bw_u,
segmenter.bw_b,
);
}
Self {
input_seq: input_seq.into_iter().enumerate(),
h_bw,
c_fw: MatrixOwned::<1>::new_zero([hunits]),
curr_fw: MatrixOwned::<1>::new_zero([hunits]),
segmenter,
}
}
}
impl ExactSizeIterator for BiesIterator<'_> {
fn len(&self) -> usize {
self.input_seq.len()
}
}
impl Iterator for BiesIterator<'_> {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
let (i, g_id) = self.input_seq.next()?;
#[allow(clippy::unwrap_used)]
compute_hc(
self.segmenter
.embedding
.submatrix::<1>(g_id as usize)
.unwrap(), // shape (dict.len() + 1, hunit), g_id is at most dict.len()
self.curr_fw.as_mut(),
self.c_fw.as_mut(),
self.segmenter.fw_w,
self.segmenter.fw_u,
self.segmenter.fw_b,
);
#[allow(clippy::unwrap_used)] // shape (input_seq.len(), hunits)
let curr_bw = self.h_bw.submatrix::<1>(i).unwrap();
let mut weights = [0.0; 4];
let mut curr_est = MatrixBorrowedMut {
data: &mut weights,
dims: [4],
};
curr_est.add_dot_2d(self.curr_fw.as_borrowed(), self.segmenter.timew_fw);
curr_est.add_dot_2d(curr_bw, self.segmenter.timew_bw);
#[allow(clippy::unwrap_used)] // both shape (4)
curr_est.add(self.segmenter.time_b).unwrap();
// For correct BIES weight calculation we'd now have to apply softmax, however
// we're only doing a naive argmax, so a monotonic function doesn't make a difference.
Some(weights[2] > weights[0] && weights[2] > weights[1] && weights[2] > weights[3])
}
}
/// `compute_hc1` implemens the evaluation of one LSTM layer.
fn compute_hc<'a>(
x_t: MatrixZero<'a, 1>,
mut h_tm1: MatrixBorrowedMut<'a, 1>,
mut c_tm1: MatrixBorrowedMut<'a, 1>,
w: MatrixZero<'a, 3>,
u: MatrixZero<'a, 3>,
b: MatrixZero<'a, 2>,
) {
#[cfg(debug_assertions)]
{
let hunits = h_tm1.dim();
let embedd_dim = x_t.dim();
c_tm1.as_borrowed().debug_assert_dims([hunits]);
w.debug_assert_dims([4, hunits, embedd_dim]);
u.debug_assert_dims([4, hunits, hunits]);
b.debug_assert_dims([4, hunits]);
}
let mut s_t = b.to_owned();
s_t.as_mut().add_dot_3d_2(x_t, w);
s_t.as_mut().add_dot_3d_1(h_tm1.as_borrowed(), u);
#[allow(clippy::unwrap_used)] // first dimension is 4
s_t.submatrix_mut::<1>(0).unwrap().sigmoid_transform();
#[allow(clippy::unwrap_used)] // first dimension is 4
s_t.submatrix_mut::<1>(1).unwrap().sigmoid_transform();
#[allow(clippy::unwrap_used)] // first dimension is 4
s_t.submatrix_mut::<1>(2).unwrap().tanh_transform();
#[allow(clippy::unwrap_used)] // first dimension is 4
s_t.submatrix_mut::<1>(3).unwrap().sigmoid_transform();
#[allow(clippy::unwrap_used)] // first dimension is 4
c_tm1.convolve(
s_t.as_borrowed().submatrix(0).unwrap(),
s_t.as_borrowed().submatrix(2).unwrap(),
s_t.as_borrowed().submatrix(1).unwrap(),
);
#[allow(clippy::unwrap_used)] // first dimension is 4
h_tm1.mul_tanh(s_t.as_borrowed().submatrix(3).unwrap(), c_tm1.as_borrowed());
}
#[cfg(test)]
mod tests {
use super::*;
use icu_locid::langid;
use icu_provider::prelude::*;
use serde::Deserialize;
/// `TestCase` is a struct used to store a single test case.
/// Each test case has two attributes: `unseg` which denotes the unsegmented line, and `true_bies` which indicates the Bies
/// sequence representing the true segmentation.
#[derive(PartialEq, Debug, Deserialize)]
struct TestCase {
unseg: String,
expected_bies: String,
true_bies: String,
}
/// `TestTextData` is a struct to store a vector of `TestCase` that represents a test text.
#[derive(PartialEq, Debug, Deserialize)]
struct TestTextData {
testcases: Vec<TestCase>,
}
#[derive(Debug)]
struct TestText {
data: TestTextData,
}
#[test]
fn segment_file_by_lstm() {
let lstm: DataPayload<LstmForWordLineAutoV1Marker> = crate::provider::Baked
.load(DataRequest {
locale: &langid!("th").into(),
metadata: Default::default(),
})
.unwrap()
.take_payload()
.unwrap();
let lstm = LstmSegmenter::new(
lstm.get(),
crate::provider::Baked::SINGLETON_SEGMENTER_GRAPHEME_V1,
);
// Importing the test data
let test_text_data = serde_json::from_str(if lstm.grapheme.is_some() {
include_str!("../../../tests/testdata/test_text_graphclust.json")
} else {
include_str!("../../../tests/testdata/test_text_codepoints.json")
})
.expect("JSON syntax error");
let test_text = TestText {
data: test_text_data,
};
// Testing
for test_case in &test_text.data.testcases {
let lstm_output = lstm
.segment_str_p(&test_case.unseg)
.bies
.map(|is_e| if is_e { 'e' } else { '?' })
.collect::<String>();
println!("Test case : {}", test_case.unseg);
println!("Expected bies : {}", test_case.expected_bies);
println!("Estimated bies : {lstm_output}");
println!("True bies : {}", test_case.true_bies);
println!("****************************************************");
assert_eq!(
test_case.expected_bies.replace(['b', 'i', 's'], "?"),
lstm_output
);
}
}
}