Source code

Revision control

Copy as Markdown

Other Tools

//! **heck** is a case conversion library.
//!
//! This library exists to provide case conversion between common cases like
//! CamelCase and snake_case. It is intended to be unicode aware, internally
//! consistent, and reasonably well performing.
//!
//! ## Definition of a word boundary
//!
//! Word boundaries are defined as the "unicode words" defined in the
//! `unicode_segmentation` library, as well as within those words in this
//! manner:
//!
//! 1. All underscore characters are considered word boundaries.
//! 2. If an uppercase character is followed by lowercase letters, a word
//! boundary is considered to be just prior to that uppercase character.
//! 3. If multiple uppercase characters are consecutive, they are considered to
//! be within a single word, except that the last will be part of the next word
//! if it is followed by lowercase characters (see rule 2).
//!
//! That is, "HelloWorld" is segmented `Hello|World` whereas "XMLHttpRequest" is
//! segmented `XML|Http|Request`.
//!
//! Characters not within words (such as spaces, punctuations, and underscores)
//! are not included in the output string except as they are a part of the case
//! being converted to. Multiple adjacent word boundaries (such as a series of
//! underscores) are folded into one. ("hello__world" in snake case is therefore
//! "hello_world", not the exact same string). Leading or trailing word boundary
//! indicators are dropped, except insofar as CamelCase capitalizes the first
//! word.
//!
//! ### Cases contained in this library:
//!
//! 1. UpperCamelCase
//! 2. lowerCamelCase
//! 3. snake_case
//! 4. kebab-case
//! 5. SHOUTY_SNAKE_CASE
//! 6. Title Case
//! 7. SHOUTY-KEBAB-CASE
//! 8. Train-Case
#![deny(missing_docs)]
#![forbid(unsafe_code)]
mod kebab;
mod lower_camel;
mod shouty_kebab;
mod shouty_snake;
mod snake;
mod title;
mod train;
mod upper_camel;
pub use kebab::{AsKebabCase, ToKebabCase};
pub use lower_camel::{AsLowerCamelCase, ToLowerCamelCase};
pub use shouty_kebab::{AsShoutyKebabCase, ToShoutyKebabCase};
pub use shouty_snake::{
AsShoutySnakeCase, AsShoutySnakeCase as AsShoutySnekCase, ToShoutySnakeCase, ToShoutySnekCase,
};
pub use snake::{AsSnakeCase, AsSnakeCase as AsSnekCase, ToSnakeCase, ToSnekCase};
pub use title::{AsTitleCase, ToTitleCase};
pub use train::{AsTrainCase, ToTrainCase};
pub use upper_camel::{
AsUpperCamelCase, AsUpperCamelCase as AsPascalCase, ToPascalCase, ToUpperCamelCase,
};
use std::fmt;
#[cfg(feature = "unicode")]
fn get_iterator(s: &str) -> unicode_segmentation::UnicodeWords {
use unicode_segmentation::UnicodeSegmentation;
s.unicode_words()
}
#[cfg(not(feature = "unicode"))]
fn get_iterator(s: &str) -> impl Iterator<Item = &str> {
s.split(|letter: char| !letter.is_ascii_alphanumeric())
}
fn transform<F, G>(
s: &str,
mut with_word: F,
mut boundary: G,
f: &mut fmt::Formatter,
) -> fmt::Result
where
F: FnMut(&str, &mut fmt::Formatter) -> fmt::Result,
G: FnMut(&mut fmt::Formatter) -> fmt::Result,
{
/// Tracks the current 'mode' of the transformation algorithm as it scans
/// the input string.
///
/// The mode is a tri-state which tracks the case of the last cased
/// character of the current word. If there is no cased character
/// (either lowercase or uppercase) since the previous word boundary,
/// than the mode is `Boundary`. If the last cased character is lowercase,
/// then the mode is `Lowercase`. Othertherwise, the mode is
/// `Uppercase`.
#[derive(Clone, Copy, PartialEq)]
enum WordMode {
/// There have been no lowercase or uppercase characters in the current
/// word.
Boundary,
/// The previous cased character in the current word is lowercase.
Lowercase,
/// The previous cased character in the current word is uppercase.
Uppercase,
}
let mut first_word = true;
for word in get_iterator(s) {
let mut char_indices = word.char_indices().peekable();
let mut init = 0;
let mut mode = WordMode::Boundary;
while let Some((i, c)) = char_indices.next() {
// Skip underscore characters
if c == '_' {
if init == i {
init += 1;
}
continue;
}
if let Some(&(next_i, next)) = char_indices.peek() {
// The mode including the current character, assuming the
// current character does not result in a word boundary.
let next_mode = if c.is_lowercase() {
WordMode::Lowercase
} else if c.is_uppercase() {
WordMode::Uppercase
} else {
mode
};
// Word boundary after if next is underscore or current is
// not uppercase and next is uppercase
if next == '_' || (next_mode == WordMode::Lowercase && next.is_uppercase()) {
if !first_word {
boundary(f)?;
}
with_word(&word[init..next_i], f)?;
first_word = false;
init = next_i;
mode = WordMode::Boundary;
// Otherwise if current and previous are uppercase and next
// is lowercase, word boundary before
} else if mode == WordMode::Uppercase && c.is_uppercase() && next.is_lowercase() {
if !first_word {
boundary(f)?;
} else {
first_word = false;
}
with_word(&word[init..i], f)?;
init = i;
mode = WordMode::Boundary;
// Otherwise no word boundary, just update the mode
} else {
mode = next_mode;
}
} else {
// Collect trailing characters as a word
if !first_word {
boundary(f)?;
} else {
first_word = false;
}
with_word(&word[init..], f)?;
break;
}
}
}
Ok(())
}
fn lowercase(s: &str, f: &mut fmt::Formatter) -> fmt::Result {
let mut chars = s.chars().peekable();
while let Some(c) = chars.next() {
if c == 'Σ' && chars.peek().is_none() {
write!(f, "ς")?;
} else {
write!(f, "{}", c.to_lowercase())?;
}
}
Ok(())
}
fn uppercase(s: &str, f: &mut fmt::Formatter) -> fmt::Result {
for c in s.chars() {
write!(f, "{}", c.to_uppercase())?;
}
Ok(())
}
fn capitalize(s: &str, f: &mut fmt::Formatter) -> fmt::Result {
let mut char_indices = s.char_indices();
if let Some((_, c)) = char_indices.next() {
write!(f, "{}", c.to_uppercase())?;
if let Some((i, _)) = char_indices.next() {
lowercase(&s[i..], f)?;
}
}
Ok(())
}