Source code
Revision control
Copy as Markdown
Other Tools
//! Implementations that just need to read from a file
use crate::Error;
use core::{
ffi::c_void,
mem::MaybeUninit,
sync::atomic::{AtomicI32, Ordering},
};
#[cfg(not(any(target_os = "android", target_os = "linux")))]
pub use crate::util::{inner_u32, inner_u64};
#[path = "../util_libc.rs"]
pub(super) mod util_libc;
/// For all platforms, we use `/dev/urandom` rather than `/dev/random`.
/// For more information see the linked man pages in lib.rs.
/// - On Linux, "/dev/urandom is preferred and sufficient in all use cases".
/// - On Redox, only /dev/urandom is provided.
/// - On AIX, /dev/urandom will "provide cryptographically secure output".
/// - On Haiku and QNX Neutrino they are identical.
const FILE_PATH: &[u8] = b"/dev/urandom\0";
// File descriptor is a "nonnegative integer", so we can safely use negative sentinel values.
const FD_UNINIT: libc::c_int = -1;
const FD_ONGOING_INIT: libc::c_int = -2;
// In theory `libc::c_int` could be something other than `i32`, but for the
// targets we currently support that use `use_file`, it is always `i32`.
// If/when we add support for a target where that isn't the case, we may
// need to use a different atomic type or make other accomodations. The
// compiler will let us know if/when that is the case, because the
// `FD.store(fd)` would fail to compile.
//
// The opening of the file, by libc/libstd/etc. may write some unknown
// state into in-process memory. (Such state may include some sanitizer
// bookkeeping, or we might be operating in a unikernal-like environment
// where all the "kernel" file descriptor bookkeeping is done in our
// process.) `get_fd_locked` stores into FD using `Ordering::Release` to
// ensure any such state is synchronized. `get_fd` loads from `FD` with
// `Ordering::Acquire` to synchronize with it.
static FD: AtomicI32 = AtomicI32::new(FD_UNINIT);
pub fn fill_inner(dest: &mut [MaybeUninit<u8>]) -> Result<(), Error> {
let mut fd = FD.load(Ordering::Acquire);
if fd == FD_UNINIT || fd == FD_ONGOING_INIT {
fd = open_or_wait()?;
}
util_libc::sys_fill_exact(dest, |buf| unsafe {
libc::read(fd, buf.as_mut_ptr().cast::<c_void>(), buf.len())
})
}
/// Open a file in read-only mode.
///
/// # Panics
/// If `path` does not contain any zeros.
// TODO: Move `path` to `CStr` and use `CStr::from_bytes_until_nul` (MSRV 1.69)
// or C-string literals (MSRV 1.77) for statics
fn open_readonly(path: &[u8]) -> Result<libc::c_int, Error> {
assert!(path.iter().any(|&b| b == 0));
loop {
let fd = unsafe {
libc::open(
path.as_ptr().cast::<libc::c_char>(),
libc::O_RDONLY | libc::O_CLOEXEC,
)
};
if fd >= 0 {
return Ok(fd);
}
let err = util_libc::last_os_error();
// We should try again if open() was interrupted.
if err.raw_os_error() != Some(libc::EINTR) {
return Err(err);
}
}
}
#[cold]
fn open_or_wait() -> Result<libc::c_int, Error> {
loop {
match FD.load(Ordering::Acquire) {
FD_UNINIT => {
let res = FD.compare_exchange_weak(
FD_UNINIT,
FD_ONGOING_INIT,
Ordering::AcqRel,
Ordering::Relaxed,
);
if res.is_ok() {
break;
}
}
FD_ONGOING_INIT => sync::wait(),
fd => return Ok(fd),
}
}
let res = open_fd();
let val = match res {
Ok(fd) => fd,
Err(_) => FD_UNINIT,
};
FD.store(val, Ordering::Release);
// On non-Linux targets `wait` is just 1 ms sleep,
// so we don't need any explicit wake up in addition
// to updating value of `FD`.
#[cfg(any(target_os = "android", target_os = "linux"))]
sync::wake();
res
}
fn open_fd() -> Result<libc::c_int, Error> {
#[cfg(any(target_os = "android", target_os = "linux"))]
sync::wait_until_rng_ready()?;
let fd = open_readonly(FILE_PATH)?;
debug_assert!(fd >= 0);
Ok(fd)
}
#[cfg(not(any(target_os = "android", target_os = "linux")))]
mod sync {
/// Sleep 1 ms before checking `FD` again.
///
/// On non-Linux targets the critical section only opens file,
/// which should not block, so in the unlikely contended case,
/// we can sleep-wait for the opening operation to finish.
pub(super) fn wait() {
let rqtp = libc::timespec {
tv_sec: 0,
tv_nsec: 1_000_000,
};
let mut rmtp = libc::timespec {
tv_sec: 0,
tv_nsec: 0,
};
// We do not care if sleep gets interrupted, so the return value is ignored
unsafe {
libc::nanosleep(&rqtp, &mut rmtp);
}
}
}
#[cfg(any(target_os = "android", target_os = "linux"))]
mod sync {
use super::{open_readonly, util_libc::last_os_error, Error, FD, FD_ONGOING_INIT};
/// Wait for atomic `FD` to change value from `FD_ONGOING_INIT` to something else.
///
/// Futex syscall with `FUTEX_WAIT` op puts the current thread to sleep
/// until futex syscall with `FUTEX_WAKE` op gets executed for `FD`.
///
pub(super) fn wait() {
let op = libc::FUTEX_WAIT | libc::FUTEX_PRIVATE_FLAG;
let timeout_ptr = core::ptr::null::<libc::timespec>();
let ret = unsafe { libc::syscall(libc::SYS_futex, &FD, op, FD_ONGOING_INIT, timeout_ptr) };
// FUTEX_WAIT should return either 0 or EAGAIN error
debug_assert!({
match ret {
0 => true,
-1 => last_os_error().raw_os_error() == Some(libc::EAGAIN),
_ => false,
}
});
}
/// Wake up all threads which wait for value of atomic `FD` to change.
pub(super) fn wake() {
let op = libc::FUTEX_WAKE | libc::FUTEX_PRIVATE_FLAG;
let ret = unsafe { libc::syscall(libc::SYS_futex, &FD, op, libc::INT_MAX) };
debug_assert!(ret >= 0);
}
// Polls /dev/random to make sure it is ok to read from /dev/urandom.
//
// Polling avoids draining the estimated entropy from /dev/random;
// short-lived processes reading even a single byte from /dev/random could
// be problematic if they are being executed faster than entropy is being
// collected.
//
// OTOH, reading a byte instead of polling is more compatible with
// sandboxes that disallow `poll()` but which allow reading /dev/random,
// e.g. sandboxes that assume that `poll()` is for network I/O. This way,
// fewer applications will have to insert pre-sandbox-initialization logic.
// Often (blocking) file I/O is not allowed in such early phases of an
// application for performance and/or security reasons.
//
// It is hard to write a sandbox policy to support `libc::poll()` because
// it may invoke the `poll`, `ppoll`, `ppoll_time64` (since Linux 5.1, with
// newer versions of glibc), and/or (rarely, and probably only on ancient
// systems) `select`. depending on the libc implementation (e.g. glibc vs
// musl), libc version, potentially the kernel version at runtime, and/or
// the target architecture.
//
// BoringSSL and libstd don't try to protect against insecure output from
// `/dev/urandom'; they don't open `/dev/random` at all.
//
// OpenSSL uses `libc::select()` unless the `dev/random` file descriptor
// is too large; if it is too large then it does what we do here.
//
// libsodium uses `libc::poll` similarly to this.
pub(super) fn wait_until_rng_ready() -> Result<(), Error> {
let fd = open_readonly(b"/dev/random\0")?;
let mut pfd = libc::pollfd {
fd,
events: libc::POLLIN,
revents: 0,
};
let res = loop {
// A negative timeout means an infinite timeout.
let res = unsafe { libc::poll(&mut pfd, 1, -1) };
if res >= 0 {
// We only used one fd, and cannot timeout.
debug_assert_eq!(res, 1);
break Ok(());
}
let err = last_os_error();
// Assuming that `poll` is called correctly,
// on Linux it can return only EINTR and ENOMEM errors.
match err.raw_os_error() {
Some(libc::EINTR) => continue,
_ => break Err(err),
}
};
unsafe { libc::close(fd) };
res
}
}