Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/adaptation/overuse_frame_detector.h"
#include <math.h>
#include <stdio.h>
#include <algorithm>
#include <list>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include "api/environment/environment.h"
#include "api/field_trials_view.h"
#include "api/video/video_frame.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/exp_filter.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
#include <mach/mach.h>
#endif // defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
namespace webrtc {
namespace {
const int64_t kCheckForOveruseIntervalMs = 5000;
const int64_t kTimeToFirstCheckForOveruseMs = 100;
// Delay between consecutive rampups. (Used for quick recovery.)
const int kQuickRampUpDelayMs = 10 * 1000;
// Delay between rampup attempts. Initially uses standard, scales up to max.
const int kStandardRampUpDelayMs = 40 * 1000;
const int kMaxRampUpDelayMs = 240 * 1000;
// Expontential back-off factor, to prevent annoying up-down behaviour.
const double kRampUpBackoffFactor = 2.0;
// Max number of overuses detected before always applying the rampup delay.
const int kMaxOverusesBeforeApplyRampupDelay = 4;
// The maximum exponent to use in VCMExpFilter.
const float kMaxExp = 7.0f;
// Default value used before first reconfiguration.
const int kDefaultFrameRate = 30;
// Default sample diff, default frame rate.
const float kDefaultSampleDiffMs = 1000.0f / kDefaultFrameRate;
// A factor applied to the sample diff on OnTargetFramerateUpdated to determine
// a max limit for the sample diff. For instance, with a framerate of 30fps,
// the sample diff is capped to (1000 / 30) * 1.35 = 45ms. This prevents
// triggering too soon if there are individual very large outliers.
const float kMaxSampleDiffMarginFactor = 1.35f;
// Minimum framerate allowed for usage calculation. This prevents crazy long
// encode times from being accepted if the frame rate happens to be low.
const int kMinFramerate = 7;
const int kMaxFramerate = 30;
// Class for calculating the processing usage on the send-side (the average
// processing time of a frame divided by the average time difference between
// captured frames).
class SendProcessingUsage1 : public OveruseFrameDetector::ProcessingUsage {
public:
explicit SendProcessingUsage1(const CpuOveruseOptions& options)
: kWeightFactorFrameDiff(0.998f),
kWeightFactorProcessing(0.995f),
kInitialSampleDiffMs(40.0f),
options_(options),
count_(0),
last_processed_capture_time_us_(-1),
max_sample_diff_ms_(kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor),
filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)),
filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) {
Reset();
}
~SendProcessingUsage1() override {}
void Reset() override {
frame_timing_.clear();
count_ = 0;
last_processed_capture_time_us_ = -1;
max_sample_diff_ms_ = kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor;
filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
filtered_processing_ms_->Reset(kWeightFactorProcessing);
filtered_processing_ms_->Apply(1.0f, InitialProcessingMs());
}
void SetMaxSampleDiffMs(float diff_ms) override {
max_sample_diff_ms_ = diff_ms;
}
void FrameCaptured(const VideoFrame& frame,
int64_t time_when_first_seen_us,
int64_t last_capture_time_us) override {
if (last_capture_time_us != -1)
AddCaptureSample(1e-3 * (time_when_first_seen_us - last_capture_time_us));
frame_timing_.push_back(FrameTiming(
frame.timestamp_us(), frame.rtp_timestamp(), time_when_first_seen_us));
}
std::optional<int> FrameSent(
uint32_t timestamp,
int64_t time_sent_in_us,
int64_t /* capture_time_us */,
std::optional<int> /* encode_duration_us */) override {
std::optional<int> encode_duration_us;
// Delay before reporting actual encoding time, used to have the ability to
// detect total encoding time when encoding more than one layer. Encoding is
// here assumed to finish within a second (or that we get enough long-time
// samples before one second to trigger an overuse even when this is not the
// case).
static const int64_t kEncodingTimeMeasureWindowMs = 1000;
for (auto& it : frame_timing_) {
if (it.timestamp == timestamp) {
it.last_send_us = time_sent_in_us;
break;
}
}
// TODO(pbos): Handle the case/log errors when not finding the corresponding
// frame (either very slow encoding or incorrect wrong timestamps returned
// from the encoder).
// This is currently the case for all frames on ChromeOS, so logging them
// would be spammy, and triggering overuse would be wrong.
while (!frame_timing_.empty()) {
FrameTiming timing = frame_timing_.front();
if (time_sent_in_us - timing.capture_us <
kEncodingTimeMeasureWindowMs * rtc::kNumMicrosecsPerMillisec) {
break;
}
if (timing.last_send_us != -1) {
encode_duration_us.emplace(
static_cast<int>(timing.last_send_us - timing.capture_us));
if (last_processed_capture_time_us_ != -1) {
int64_t diff_us = timing.capture_us - last_processed_capture_time_us_;
AddSample(1e-3 * (*encode_duration_us), 1e-3 * diff_us);
}
last_processed_capture_time_us_ = timing.capture_us;
}
frame_timing_.pop_front();
}
return encode_duration_us;
}
int Value() override {
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
return static_cast<int>(InitialUsageInPercent() + 0.5f);
}
float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f);
frame_diff_ms = std::min(frame_diff_ms, max_sample_diff_ms_);
float encode_usage_percent =
100.0f * filtered_processing_ms_->filtered() / frame_diff_ms;
return static_cast<int>(encode_usage_percent + 0.5);
}
private:
struct FrameTiming {
FrameTiming(int64_t capture_time_us, uint32_t timestamp, int64_t now)
: capture_time_us(capture_time_us),
timestamp(timestamp),
capture_us(now),
last_send_us(-1) {}
int64_t capture_time_us;
uint32_t timestamp;
int64_t capture_us;
int64_t last_send_us;
};
void AddCaptureSample(float sample_ms) {
float exp = sample_ms / kDefaultSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_frame_diff_ms_->Apply(exp, sample_ms);
}
void AddSample(float processing_ms, int64_t diff_last_sample_ms) {
++count_;
float exp = diff_last_sample_ms / kDefaultSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_processing_ms_->Apply(exp, processing_ms);
}
float InitialUsageInPercent() const {
// Start in between the underuse and overuse threshold.
return (options_.low_encode_usage_threshold_percent +
options_.high_encode_usage_threshold_percent) /
2.0f;
}
float InitialProcessingMs() const {
return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
}
const float kWeightFactorFrameDiff;
const float kWeightFactorProcessing;
const float kInitialSampleDiffMs;
const CpuOveruseOptions options_;
std::list<FrameTiming> frame_timing_;
uint64_t count_;
int64_t last_processed_capture_time_us_;
float max_sample_diff_ms_;
std::unique_ptr<rtc::ExpFilter> filtered_processing_ms_;
std::unique_ptr<rtc::ExpFilter> filtered_frame_diff_ms_;
};
// New cpu load estimator.
// TODO(bugs.webrtc.org/8504): For some period of time, we need to
// switch between the two versions of the estimator for experiments.
// When problems are sorted out, the old estimator should be deleted.
class SendProcessingUsage2 : public OveruseFrameDetector::ProcessingUsage {
public:
explicit SendProcessingUsage2(const CpuOveruseOptions& options)
: options_(options) {
Reset();
}
~SendProcessingUsage2() override = default;
void Reset() override {
prev_time_us_ = -1;
// Start in between the underuse and overuse threshold.
load_estimate_ = (options_.low_encode_usage_threshold_percent +
options_.high_encode_usage_threshold_percent) /
200.0;
}
void SetMaxSampleDiffMs(float /* diff_ms */) override {}
void FrameCaptured(const VideoFrame& frame,
int64_t time_when_first_seen_us,
int64_t last_capture_time_us) override {}
std::optional<int> FrameSent(uint32_t /* timestamp */,
int64_t /* time_sent_in_us */,
int64_t capture_time_us,
std::optional<int> encode_duration_us) override {
if (encode_duration_us) {
int duration_per_frame_us =
DurationPerInputFrame(capture_time_us, *encode_duration_us);
if (prev_time_us_ != -1) {
if (capture_time_us < prev_time_us_) {
// The weighting in AddSample assumes that samples are processed with
// non-decreasing measurement timestamps. We could implement
// appropriate weights for samples arriving late, but since it is a
// rare case, keep things simple, by just pushing those measurements a
// bit forward in time.
capture_time_us = prev_time_us_;
}
AddSample(1e-6 * duration_per_frame_us,
1e-6 * (capture_time_us - prev_time_us_));
}
}
prev_time_us_ = capture_time_us;
return encode_duration_us;
}
private:
void AddSample(double encode_time, double diff_time) {
RTC_CHECK_GE(diff_time, 0.0);
// Use the filter update
//
// load <-- x/d (1-exp (-d/T)) + exp (-d/T) load
//
// where we must take care for small d, using the proper limit
// (1 - exp(-d/tau)) / d = 1/tau - d/2tau^2 + O(d^2)
double tau = (1e-3 * options_.filter_time_ms);
double e = diff_time / tau;
double c;
if (e < 0.0001) {
c = (1 - e / 2) / tau;
} else {
c = -expm1(-e) / diff_time;
}
load_estimate_ = c * encode_time + exp(-e) * load_estimate_;
}
int64_t DurationPerInputFrame(int64_t capture_time_us,
int64_t encode_time_us) {
// Discard data on old frames; limit 2 seconds.
static constexpr int64_t kMaxAge = 2 * rtc::kNumMicrosecsPerSec;
for (auto it = max_encode_time_per_input_frame_.begin();
it != max_encode_time_per_input_frame_.end() &&
it->first < capture_time_us - kMaxAge;) {
it = max_encode_time_per_input_frame_.erase(it);
}
std::map<int64_t, int>::iterator it;
bool inserted;
std::tie(it, inserted) = max_encode_time_per_input_frame_.emplace(
capture_time_us, encode_time_us);
if (inserted) {
// First encoded frame for this input frame.
return encode_time_us;
}
if (encode_time_us <= it->second) {
// Shorter encode time than previous frame (unlikely). Count it as being
// done in parallel.
return 0;
}
// Record new maximum encode time, and return increase from previous max.
int increase = encode_time_us - it->second;
it->second = encode_time_us;
return increase;
}
int Value() override {
return static_cast<int>(100.0 * load_estimate_ + 0.5);
}
const CpuOveruseOptions options_;
// Indexed by the capture timestamp, used as frame id.
std::map<int64_t, int> max_encode_time_per_input_frame_;
int64_t prev_time_us_ = -1;
double load_estimate_;
};
// Class used for manual testing of overuse, enabled via field trial flag.
class OverdoseInjector : public OveruseFrameDetector::ProcessingUsage {
public:
OverdoseInjector(std::unique_ptr<OveruseFrameDetector::ProcessingUsage> usage,
int64_t normal_period_ms,
int64_t overuse_period_ms,
int64_t underuse_period_ms)
: usage_(std::move(usage)),
normal_period_ms_(normal_period_ms),
overuse_period_ms_(overuse_period_ms),
underuse_period_ms_(underuse_period_ms),
state_(State::kNormal),
last_toggling_ms_(-1) {
RTC_DCHECK_GT(overuse_period_ms, 0);
RTC_DCHECK_GT(normal_period_ms, 0);
RTC_LOG(LS_INFO) << "Simulating overuse with intervals " << normal_period_ms
<< "ms normal mode, " << overuse_period_ms
<< "ms overuse mode.";
}
~OverdoseInjector() override {}
void Reset() override { usage_->Reset(); }
void SetMaxSampleDiffMs(float diff_ms) override {
usage_->SetMaxSampleDiffMs(diff_ms);
}
void FrameCaptured(const VideoFrame& frame,
int64_t time_when_first_seen_us,
int64_t last_capture_time_us) override {
usage_->FrameCaptured(frame, time_when_first_seen_us, last_capture_time_us);
}
std::optional<int> FrameSent(
// These two argument used by old estimator.
uint32_t timestamp,
int64_t time_sent_in_us,
// And these two by the new estimator.
int64_t capture_time_us,
std::optional<int> encode_duration_us) override {
return usage_->FrameSent(timestamp, time_sent_in_us, capture_time_us,
encode_duration_us);
}
int Value() override {
int64_t now_ms = rtc::TimeMillis();
if (last_toggling_ms_ == -1) {
last_toggling_ms_ = now_ms;
} else {
switch (state_) {
case State::kNormal:
if (now_ms > last_toggling_ms_ + normal_period_ms_) {
state_ = State::kOveruse;
last_toggling_ms_ = now_ms;
RTC_LOG(LS_INFO) << "Simulating CPU overuse.";
}
break;
case State::kOveruse:
if (now_ms > last_toggling_ms_ + overuse_period_ms_) {
state_ = State::kUnderuse;
last_toggling_ms_ = now_ms;
RTC_LOG(LS_INFO) << "Simulating CPU underuse.";
}
break;
case State::kUnderuse:
if (now_ms > last_toggling_ms_ + underuse_period_ms_) {
state_ = State::kNormal;
last_toggling_ms_ = now_ms;
RTC_LOG(LS_INFO) << "Actual CPU overuse measurements in effect.";
}
break;
}
}
std::optional<int> overried_usage_value;
switch (state_) {
case State::kNormal:
break;
case State::kOveruse:
overried_usage_value.emplace(250);
break;
case State::kUnderuse:
overried_usage_value.emplace(5);
break;
}
return overried_usage_value.value_or(usage_->Value());
}
private:
const std::unique_ptr<OveruseFrameDetector::ProcessingUsage> usage_;
const int64_t normal_period_ms_;
const int64_t overuse_period_ms_;
const int64_t underuse_period_ms_;
enum class State { kNormal, kOveruse, kUnderuse } state_;
int64_t last_toggling_ms_;
};
} // namespace
std::unique_ptr<OveruseFrameDetector::ProcessingUsage>
OveruseFrameDetector::CreateProcessingUsage(const FieldTrialsView& field_trials,
const CpuOveruseOptions& options) {
std::unique_ptr<ProcessingUsage> instance;
if (options.filter_time_ms > 0) {
instance = std::make_unique<SendProcessingUsage2>(options);
} else {
instance = std::make_unique<SendProcessingUsage1>(options);
}
std::string toggling_interval =
field_trials.Lookup("WebRTC-ForceSimulatedOveruseIntervalMs");
if (!toggling_interval.empty()) {
int normal_period_ms = 0;
int overuse_period_ms = 0;
int underuse_period_ms = 0;
if (sscanf(toggling_interval.c_str(), "%d-%d-%d", &normal_period_ms,
&overuse_period_ms, &underuse_period_ms) == 3) {
if (normal_period_ms > 0 && overuse_period_ms > 0 &&
underuse_period_ms > 0) {
instance = std::make_unique<OverdoseInjector>(
std::move(instance), normal_period_ms, overuse_period_ms,
underuse_period_ms);
} else {
RTC_LOG(LS_WARNING)
<< "Invalid (non-positive) normal/overuse/underuse periods: "
<< normal_period_ms << " / " << overuse_period_ms << " / "
<< underuse_period_ms;
}
} else {
RTC_LOG(LS_WARNING) << "Malformed toggling interval: "
<< toggling_interval;
}
}
return instance;
}
OveruseFrameDetector::OveruseFrameDetector(
const Environment& env,
CpuOveruseMetricsObserver* metrics_observer)
: env_(env),
metrics_observer_(metrics_observer),
num_process_times_(0),
// TODO(bugs.webrtc.org/9078): Use std::optional
last_capture_time_us_(-1),
num_pixels_(0),
max_framerate_(kDefaultFrameRate),
last_overuse_time_ms_(-1),
checks_above_threshold_(0),
num_overuse_detections_(0),
last_rampup_time_ms_(-1),
in_quick_rampup_(false),
current_rampup_delay_ms_(kStandardRampUpDelayMs) {
task_checker_.Detach();
ParseFieldTrial({&filter_time_constant_},
env_.field_trials().Lookup("WebRTC-CpuLoadEstimator"));
}
OveruseFrameDetector::~OveruseFrameDetector() {}
void OveruseFrameDetector::StartCheckForOveruse(
TaskQueueBase* task_queue_base,
const CpuOveruseOptions& options,
OveruseFrameDetectorObserverInterface* overuse_observer) {
RTC_DCHECK_RUN_ON(&task_checker_);
RTC_DCHECK(!check_overuse_task_.Running());
RTC_DCHECK(overuse_observer != nullptr);
SetOptions(options);
check_overuse_task_ = RepeatingTaskHandle::DelayedStart(
task_queue_base, TimeDelta::Millis(kTimeToFirstCheckForOveruseMs),
[this, overuse_observer] {
CheckForOveruse(overuse_observer);
return TimeDelta::Millis(kCheckForOveruseIntervalMs);
});
}
void OveruseFrameDetector::StopCheckForOveruse() {
RTC_DCHECK_RUN_ON(&task_checker_);
check_overuse_task_.Stop();
}
void OveruseFrameDetector::EncodedFrameTimeMeasured(int encode_duration_ms) {
RTC_DCHECK_RUN_ON(&task_checker_);
encode_usage_percent_ = usage_->Value();
metrics_observer_->OnEncodedFrameTimeMeasured(encode_duration_ms,
*encode_usage_percent_);
}
bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
RTC_DCHECK_RUN_ON(&task_checker_);
if (num_pixels != num_pixels_) {
return true;
}
return false;
}
bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now_us) const {
RTC_DCHECK_RUN_ON(&task_checker_);
if (last_capture_time_us_ == -1)
return false;
return (now_us - last_capture_time_us_) >
options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec;
}
void OveruseFrameDetector::ResetAll(int num_pixels) {
// Reset state, as a result resolution being changed. Do not however change
// the current frame rate back to the default.
RTC_DCHECK_RUN_ON(&task_checker_);
num_pixels_ = num_pixels;
usage_->Reset();
last_capture_time_us_ = -1;
num_process_times_ = 0;
encode_usage_percent_ = std::nullopt;
OnTargetFramerateUpdated(max_framerate_);
}
void OveruseFrameDetector::OnTargetFramerateUpdated(int framerate_fps) {
RTC_DCHECK_RUN_ON(&task_checker_);
RTC_DCHECK_GE(framerate_fps, 0);
max_framerate_ = std::min(kMaxFramerate, framerate_fps);
usage_->SetMaxSampleDiffMs((1000 / std::max(kMinFramerate, max_framerate_)) *
kMaxSampleDiffMarginFactor);
}
void OveruseFrameDetector::FrameCaptured(const VideoFrame& frame,
int64_t time_when_first_seen_us) {
RTC_DCHECK_RUN_ON(&task_checker_);
if (FrameSizeChanged(frame.width() * frame.height()) ||
FrameTimeoutDetected(time_when_first_seen_us)) {
ResetAll(frame.width() * frame.height());
}
usage_->FrameCaptured(frame, time_when_first_seen_us, last_capture_time_us_);
last_capture_time_us_ = time_when_first_seen_us;
}
void OveruseFrameDetector::FrameSent(uint32_t timestamp,
int64_t time_sent_in_us,
int64_t capture_time_us,
std::optional<int> encode_duration_us) {
RTC_DCHECK_RUN_ON(&task_checker_);
encode_duration_us = usage_->FrameSent(timestamp, time_sent_in_us,
capture_time_us, encode_duration_us);
if (encode_duration_us) {
EncodedFrameTimeMeasured(*encode_duration_us /
rtc::kNumMicrosecsPerMillisec);
}
}
void OveruseFrameDetector::CheckForOveruse(
OveruseFrameDetectorObserverInterface* observer) {
RTC_DCHECK_RUN_ON(&task_checker_);
RTC_DCHECK(observer);
++num_process_times_;
if (num_process_times_ <= options_.min_process_count ||
!encode_usage_percent_)
return;
int64_t now_ms = rtc::TimeMillis();
const char* action = "NoAction";
if (IsOverusing(*encode_usage_percent_)) {
// If the last thing we did was going up, and now have to back down, we need
// to check if this peak was short. If so we should back off to avoid going
// back and forth between this load, the system doesn't seem to handle it.
bool check_for_backoff = last_rampup_time_ms_ > last_overuse_time_ms_;
if (check_for_backoff) {
if (now_ms - last_rampup_time_ms_ < kStandardRampUpDelayMs ||
num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) {
// Going up was not ok for very long, back off.
current_rampup_delay_ms_ *= kRampUpBackoffFactor;
if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
current_rampup_delay_ms_ = kMaxRampUpDelayMs;
} else {
// Not currently backing off, reset rampup delay.
current_rampup_delay_ms_ = kStandardRampUpDelayMs;
}
}
last_overuse_time_ms_ = now_ms;
in_quick_rampup_ = false;
checks_above_threshold_ = 0;
++num_overuse_detections_;
observer->AdaptDown();
action = "AdaptDown";
} else if (IsUnderusing(*encode_usage_percent_, now_ms)) {
last_rampup_time_ms_ = now_ms;
in_quick_rampup_ = true;
observer->AdaptUp();
action = "AdaptUp";
}
TRACE_EVENT2("webrtc", "OveruseFrameDetector::CheckForOveruse",
"encode_usage_percent", *encode_usage_percent_, "action",
TRACE_STR_COPY(action));
int rampup_delay =
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
RTC_LOG(LS_INFO) << "CheckForOveruse: encode usage " << *encode_usage_percent_
<< " overuse detections " << num_overuse_detections_
<< " rampup delay " << rampup_delay << " action " << action;
}
void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) {
RTC_DCHECK_RUN_ON(&task_checker_);
options_ = options;
// Time constant config overridable by field trial.
if (filter_time_constant_) {
options_.filter_time_ms = filter_time_constant_->ms();
}
// Force reset with next frame.
num_pixels_ = 0;
usage_ = CreateProcessingUsage(env_.field_trials(), options);
}
bool OveruseFrameDetector::IsOverusing(int usage_percent) {
RTC_DCHECK_RUN_ON(&task_checker_);
if (usage_percent >= options_.high_encode_usage_threshold_percent) {
++checks_above_threshold_;
} else {
checks_above_threshold_ = 0;
}
return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
}
bool OveruseFrameDetector::IsUnderusing(int usage_percent, int64_t time_now) {
RTC_DCHECK_RUN_ON(&task_checker_);
int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
if (time_now < last_rampup_time_ms_ + delay)
return false;
return usage_percent < options_.low_encode_usage_threshold_percent;
}
} // namespace webrtc