Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/test/videoprocessor.h"
#include <string.h>
#include <algorithm>
#include <cstddef>
#include <limits>
#include <memory>
#include <utility>
#include "api/scoped_refptr.h"
#include "api/video/builtin_video_bitrate_allocator_factory.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_bitrate_allocator_factory.h"
#include "api/video/video_frame_buffer.h"
#include "api/video/video_rotation.h"
#include "api/video_codecs/video_codec.h"
#include "api/video_codecs/video_encoder.h"
#include "common_video/h264/h264_common.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "rtc_base/checks.h"
#include "rtc_base/time_utils.h"
#include "test/gtest.h"
#include "third_party/libyuv/include/libyuv/compare.h"
#include "third_party/libyuv/include/libyuv/scale.h"
namespace webrtc {
namespace test {
namespace {
const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000;
const int kMaxBufferedInputFrames = 20;
const VideoEncoder::Capabilities kCapabilities(false);
size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame,
const VideoCodecTestFixture::Config& config) {
if (config.codec_settings.codecType != kVideoCodecH264)
return 0;
std::vector<webrtc::H264::NaluIndex> nalu_indices =
webrtc::H264::FindNaluIndices(encoded_frame);
RTC_CHECK(!nalu_indices.empty());
size_t max_size = 0;
for (const webrtc::H264::NaluIndex& index : nalu_indices)
max_size = std::max(max_size, index.payload_size);
return max_size;
}
size_t GetTemporalLayerIndex(const CodecSpecificInfo& codec_specific) {
size_t temporal_idx = 0;
if (codec_specific.codecType == kVideoCodecVP8) {
temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx;
} else if (codec_specific.codecType == kVideoCodecVP9) {
temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx;
}
if (temporal_idx == kNoTemporalIdx) {
temporal_idx = 0;
}
return temporal_idx;
}
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
return static_cast<int>(diff_us);
}
void CalculateFrameQuality(const I420BufferInterface& ref_buffer,
const I420BufferInterface& dec_buffer,
VideoCodecTestStats::FrameStatistics* frame_stat,
bool calc_ssim) {
if (ref_buffer.width() != dec_buffer.width() ||
ref_buffer.height() != dec_buffer.height()) {
RTC_CHECK_GE(ref_buffer.width(), dec_buffer.width());
RTC_CHECK_GE(ref_buffer.height(), dec_buffer.height());
// Downscale reference frame.
rtc::scoped_refptr<I420Buffer> scaled_buffer =
I420Buffer::Create(dec_buffer.width(), dec_buffer.height());
I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(),
ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(),
ref_buffer.width(), ref_buffer.height(),
scaled_buffer->MutableDataY(), scaled_buffer->StrideY(),
scaled_buffer->MutableDataU(), scaled_buffer->StrideU(),
scaled_buffer->MutableDataV(), scaled_buffer->StrideV(),
scaled_buffer->width(), scaled_buffer->height(),
libyuv::kFilterBox);
CalculateFrameQuality(*scaled_buffer, dec_buffer, frame_stat, calc_ssim);
} else {
const uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(),
ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height());
const uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(),
ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2);
const uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(),
ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2);
const size_t num_y_samples = dec_buffer.width() * dec_buffer.height();
const size_t num_u_samples =
dec_buffer.width() / 2 * dec_buffer.height() / 2;
frame_stat->psnr_y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples);
frame_stat->psnr_u = libyuv::SumSquareErrorToPsnr(sse_u, num_u_samples);
frame_stat->psnr_v = libyuv::SumSquareErrorToPsnr(sse_v, num_u_samples);
frame_stat->psnr = libyuv::SumSquareErrorToPsnr(
sse_y + sse_u + sse_v, num_y_samples + 2 * num_u_samples);
if (calc_ssim) {
frame_stat->ssim = I420SSIM(ref_buffer, dec_buffer);
}
}
}
} // namespace
VideoProcessor::VideoProcessor(const Environment& env,
webrtc::VideoEncoder* encoder,
VideoDecoderList* decoders,
FrameReader* input_frame_reader,
const VideoCodecTestFixture::Config& config,
VideoCodecTestStatsImpl* stats,
IvfFileWriterMap* encoded_frame_writers,
FrameWriterList* decoded_frame_writers)
: config_(config),
num_simulcast_or_spatial_layers_(
std::max(config_.NumberOfSimulcastStreams(),
config_.NumberOfSpatialLayers())),
analyze_frame_quality_(!config_.measure_cpu),
stats_(stats),
encoder_(encoder),
decoders_(decoders),
bitrate_allocator_(CreateBuiltinVideoBitrateAllocatorFactory()->Create(
env,
config_.codec_settings)),
encode_callback_(this),
input_frame_reader_(input_frame_reader),
merged_encoded_frames_(num_simulcast_or_spatial_layers_),
encoded_frame_writers_(encoded_frame_writers),
decoded_frame_writers_(decoded_frame_writers),
last_inputed_frame_num_(0),
last_inputed_timestamp_(0),
first_encoded_frame_(num_simulcast_or_spatial_layers_, true),
last_encoded_frame_num_(num_simulcast_or_spatial_layers_),
first_decoded_frame_(num_simulcast_or_spatial_layers_, true),
last_decoded_frame_num_(num_simulcast_or_spatial_layers_),
last_decoded_frame_buffer_(num_simulcast_or_spatial_layers_),
post_encode_time_ns_(0),
is_finalized_(false) {
// Sanity checks.
RTC_CHECK(TaskQueueBase::Current())
<< "VideoProcessor must be run on a task queue.";
RTC_CHECK(stats_);
RTC_CHECK(encoder_);
RTC_CHECK(decoders_);
RTC_CHECK_EQ(decoders_->size(), num_simulcast_or_spatial_layers_);
RTC_CHECK(input_frame_reader_);
RTC_CHECK(encoded_frame_writers_);
RTC_CHECK(!decoded_frame_writers ||
decoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
// Setup required callbacks for the encoder and decoder and initialize them.
RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_),
WEBRTC_VIDEO_CODEC_OK);
// Initialize codecs so that they are ready to receive frames.
RTC_CHECK_EQ(encoder_->InitEncode(
&config_.codec_settings,
VideoEncoder::Settings(
kCapabilities, static_cast<int>(config_.NumberOfCores()),
config_.max_payload_size_bytes)),
WEBRTC_VIDEO_CODEC_OK);
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
decode_callback_.push_back(
std::make_unique<VideoProcessorDecodeCompleteCallback>(this, i));
VideoDecoder::Settings decoder_settings;
decoder_settings.set_max_render_resolution(
{config_.codec_settings.width, config_.codec_settings.height});
decoder_settings.set_codec_type(config_.codec_settings.codecType);
decoder_settings.set_number_of_cores(config_.NumberOfCores());
RTC_CHECK(decoders_->at(i)->Configure(decoder_settings));
RTC_CHECK_EQ(decoders_->at(i)->RegisterDecodeCompleteCallback(
decode_callback_.at(i).get()),
WEBRTC_VIDEO_CODEC_OK);
}
}
VideoProcessor::~VideoProcessor() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
if (!is_finalized_) {
Finalize();
}
// Explicitly reset codecs, in case they don't do that themselves when they
// go out of scope.
RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
encoder_->RegisterEncodeCompleteCallback(nullptr);
for (auto& decoder : *decoders_) {
RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK);
decoder->RegisterDecodeCompleteCallback(nullptr);
}
// Sanity check.
RTC_CHECK_LE(input_frames_.size(), kMaxBufferedInputFrames);
}
void VideoProcessor::ProcessFrame() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(!is_finalized_);
RTC_DCHECK_GT(target_rates_.size(), 0u);
RTC_DCHECK_EQ(target_rates_.begin()->first, 0u);
RateProfile target_rate =
std::prev(target_rates_.upper_bound(last_inputed_frame_num_))->second;
const size_t frame_number = last_inputed_frame_num_++;
// Get input frame and store for future quality calculation.
Resolution resolution = Resolution({.width = config_.codec_settings.width,
.height = config_.codec_settings.height});
FrameReader::Ratio framerate_scale = FrameReader::Ratio(
{.num = config_.clip_fps.value_or(config_.codec_settings.maxFramerate),
.den = static_cast<int>(config_.codec_settings.maxFramerate)});
rtc::scoped_refptr<I420BufferInterface> buffer =
input_frame_reader_->PullFrame(
/*frame_num*/ nullptr, resolution, framerate_scale);
RTC_CHECK(buffer) << "Tried to read too many frames from the file.";
const size_t timestamp =
last_inputed_timestamp_ +
static_cast<size_t>(kVideoPayloadTypeFrequency / target_rate.input_fps);
VideoFrame input_frame =
VideoFrame::Builder()
.set_video_frame_buffer(buffer)
.set_rtp_timestamp(static_cast<uint32_t>(timestamp))
.set_timestamp_ms(static_cast<int64_t>(timestamp / kMsToRtpTimestamp))
.set_rotation(webrtc::kVideoRotation_0)
.build();
// Store input frame as a reference for quality calculations.
if (config_.decode && !config_.measure_cpu) {
if (input_frames_.size() == kMaxBufferedInputFrames) {
input_frames_.erase(input_frames_.begin());
}
if (config_.reference_width != -1 && config_.reference_height != -1 &&
(input_frame.width() != config_.reference_width ||
input_frame.height() != config_.reference_height)) {
rtc::scoped_refptr<I420Buffer> scaled_buffer = I420Buffer::Create(
config_.codec_settings.width, config_.codec_settings.height);
scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420());
VideoFrame scaled_reference_frame = input_frame;
scaled_reference_frame.set_video_frame_buffer(scaled_buffer);
input_frames_.emplace(frame_number, scaled_reference_frame);
if (config_.reference_width == config_.codec_settings.width &&
config_.reference_height == config_.codec_settings.height) {
// Both encoding and comparison uses the same down-scale factor, reuse
// it for encoder below.
input_frame = scaled_reference_frame;
}
} else {
input_frames_.emplace(frame_number, input_frame);
}
}
last_inputed_timestamp_ = timestamp;
post_encode_time_ns_ = 0;
// Create frame statistics object for all simulcast/spatial layers.
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
FrameStatistics frame_stat(frame_number, timestamp, i);
stats_->AddFrame(frame_stat);
}
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
const int64_t encode_start_ns = rtc::TimeNanos();
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
frame_stat->encode_start_ns = encode_start_ns;
}
if (input_frame.width() != config_.codec_settings.width ||
input_frame.height() != config_.codec_settings.height) {
rtc::scoped_refptr<I420Buffer> scaled_buffer = I420Buffer::Create(
config_.codec_settings.width, config_.codec_settings.height);
scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420());
input_frame.set_video_frame_buffer(scaled_buffer);
}
// Encode.
const std::vector<VideoFrameType> frame_types =
(frame_number == 0)
? std::vector<VideoFrameType>(num_simulcast_or_spatial_layers_,
VideoFrameType::kVideoFrameKey)
: std::vector<VideoFrameType>(num_simulcast_or_spatial_layers_,
VideoFrameType::kVideoFrameDelta);
const int encode_return_code = encoder_->Encode(input_frame, &frame_types);
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
frame_stat->encode_return_code = encode_return_code;
}
}
void VideoProcessor::SetRates(size_t bitrate_kbps, double framerate_fps) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(!is_finalized_);
target_rates_[last_inputed_frame_num_] =
RateProfile({.target_kbps = bitrate_kbps, .input_fps = framerate_fps});
auto bitrate_allocation =
bitrate_allocator_->Allocate(VideoBitrateAllocationParameters(
static_cast<uint32_t>(bitrate_kbps * 1000), framerate_fps));
encoder_->SetRates(
VideoEncoder::RateControlParameters(bitrate_allocation, framerate_fps));
}
int32_t VideoProcessor::VideoProcessorDecodeCompleteCallback::Decoded(
VideoFrame& image) {
// Post the callback to the right task queue, if needed.
if (!task_queue_->IsCurrent()) {
// There might be a limited amount of output buffers, make a copy to make
// sure we don't block the decoder.
VideoFrame copy = VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Copy(
*image.video_frame_buffer()->ToI420()))
.set_rotation(image.rotation())
.set_timestamp_us(image.timestamp_us())
.set_id(image.id())
.build();
copy.set_rtp_timestamp(image.rtp_timestamp());
task_queue_->PostTask([this, copy]() {
video_processor_->FrameDecoded(copy, simulcast_svc_idx_);
});
return 0;
}
video_processor_->FrameDecoded(image, simulcast_svc_idx_);
return 0;
}
void VideoProcessor::FrameEncoded(
const webrtc::EncodedImage& encoded_image,
const webrtc::CodecSpecificInfo& codec_specific) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
const int64_t encode_stop_ns = rtc::TimeNanos();
const VideoCodecType codec_type = codec_specific.codecType;
if (config_.encoded_frame_checker) {
config_.encoded_frame_checker->CheckEncodedFrame(codec_type, encoded_image);
}
// Layer metadata.
// We could either have simulcast layers or spatial layers.
// TODO(https://crbug.com/webrtc/14891): If we want to support a mix of
// simulcast and SVC we'll also need to consider the case where we have both
// simulcast and spatial indices.
size_t stream_idx = encoded_image.SpatialIndex().value_or(
encoded_image.SimulcastIndex().value_or(0));
size_t temporal_idx = GetTemporalLayerIndex(codec_specific);
FrameStatistics* frame_stat =
stats_->GetFrameWithTimestamp(encoded_image.RtpTimestamp(), stream_idx);
const size_t frame_number = frame_stat->frame_number;
// Ensure that the encode order is monotonically increasing, within this
// simulcast/spatial layer.
RTC_CHECK(first_encoded_frame_[stream_idx] ||
last_encoded_frame_num_[stream_idx] < frame_number);
// Ensure SVC spatial layers are delivered in ascending order.
const size_t num_spatial_layers = config_.NumberOfSpatialLayers();
if (!first_encoded_frame_[stream_idx] && num_spatial_layers > 1) {
for (size_t i = 0; i < stream_idx; ++i) {
RTC_CHECK_LE(last_encoded_frame_num_[i], frame_number);
}
for (size_t i = stream_idx + 1; i < num_simulcast_or_spatial_layers_; ++i) {
RTC_CHECK_GT(frame_number, last_encoded_frame_num_[i]);
}
}
first_encoded_frame_[stream_idx] = false;
last_encoded_frame_num_[stream_idx] = frame_number;
RateProfile target_rate =
std::prev(target_rates_.upper_bound(frame_number))->second;
auto bitrate_allocation =
bitrate_allocator_->Allocate(VideoBitrateAllocationParameters(
static_cast<uint32_t>(target_rate.target_kbps * 1000),
target_rate.input_fps));
// Update frame statistics.
frame_stat->encoding_successful = true;
frame_stat->encode_time_us = GetElapsedTimeMicroseconds(
frame_stat->encode_start_ns, encode_stop_ns - post_encode_time_ns_);
frame_stat->target_bitrate_kbps =
bitrate_allocation.GetTemporalLayerSum(stream_idx, temporal_idx) / 1000;
frame_stat->target_framerate_fps = target_rate.input_fps;
frame_stat->length_bytes = encoded_image.size();
frame_stat->frame_type = encoded_image._frameType;
frame_stat->temporal_idx = temporal_idx;
frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_);
frame_stat->qp = encoded_image.qp_;
if (codec_type == kVideoCodecVP9) {
const CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9;
frame_stat->inter_layer_predicted = vp9_info.inter_layer_predicted;
frame_stat->non_ref_for_inter_layer_pred =
vp9_info.non_ref_for_inter_layer_pred;
} else {
frame_stat->inter_layer_predicted = false;
frame_stat->non_ref_for_inter_layer_pred = true;
}
const webrtc::EncodedImage* encoded_image_for_decode = &encoded_image;
if (config_.decode || !encoded_frame_writers_->empty()) {
if (num_spatial_layers > 1) {
encoded_image_for_decode = BuildAndStoreSuperframe(
encoded_image, codec_type, frame_number, stream_idx,
frame_stat->inter_layer_predicted);
}
}
if (config_.decode) {
DecodeFrame(*encoded_image_for_decode, stream_idx);
if (codec_specific.end_of_picture && num_spatial_layers > 1) {
// If inter-layer prediction is enabled and upper layer was dropped then
// base layer should be passed to upper layer decoder. Otherwise decoder
// won't be able to decode next superframe.
const EncodedImage* base_image = nullptr;
const FrameStatistics* base_stat = nullptr;
for (size_t i = 0; i < num_spatial_layers; ++i) {
const bool layer_dropped = (first_decoded_frame_[i] ||
last_decoded_frame_num_[i] < frame_number);
// Ensure current layer was decoded.
RTC_CHECK(layer_dropped == false || i != stream_idx);
if (!layer_dropped) {
base_image = &merged_encoded_frames_[i];
base_stat =
stats_->GetFrameWithTimestamp(encoded_image.RtpTimestamp(), i);
} else if (base_image && !base_stat->non_ref_for_inter_layer_pred) {
DecodeFrame(*base_image, i);
}
}
}
} else {
frame_stat->decode_return_code = WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
// Since frames in higher TLs typically depend on frames in lower TLs,
// write out frames in lower TLs to bitstream dumps of higher TLs.
for (size_t write_temporal_idx = temporal_idx;
write_temporal_idx < config_.NumberOfTemporalLayers();
++write_temporal_idx) {
const VideoProcessor::LayerKey layer_key(stream_idx, write_temporal_idx);
auto it = encoded_frame_writers_->find(layer_key);
if (it != encoded_frame_writers_->cend()) {
RTC_CHECK(it->second->WriteFrame(*encoded_image_for_decode,
config_.codec_settings.codecType));
}
}
if (!config_.encode_in_real_time) {
// To get pure encode time for next layers, measure time spent in encode
// callback and subtract it from encode time of next layers.
post_encode_time_ns_ += rtc::TimeNanos() - encode_stop_ns;
}
}
void VideoProcessor::CalcFrameQuality(const I420BufferInterface& decoded_frame,
FrameStatistics* frame_stat) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
const auto reference_frame = input_frames_.find(frame_stat->frame_number);
RTC_CHECK(reference_frame != input_frames_.cend())
<< "The codecs are either buffering too much, dropping too much, or "
"being too slow relative to the input frame rate.";
// SSIM calculation is not optimized. Skip it in real-time mode.
const bool calc_ssim = !config_.encode_in_real_time;
CalculateFrameQuality(*reference_frame->second.video_frame_buffer()->ToI420(),
decoded_frame, frame_stat, calc_ssim);
frame_stat->quality_analysis_successful = true;
}
void VideoProcessor::WriteDecodedFrame(const I420BufferInterface& decoded_frame,
FrameWriter& frame_writer) {
int input_video_width = config_.codec_settings.width;
int input_video_height = config_.codec_settings.height;
rtc::scoped_refptr<I420Buffer> scaled_buffer;
const I420BufferInterface* scaled_frame;
if (decoded_frame.width() == input_video_width &&
decoded_frame.height() == input_video_height) {
scaled_frame = &decoded_frame;
} else {
EXPECT_DOUBLE_EQ(
static_cast<double>(input_video_width) / input_video_height,
static_cast<double>(decoded_frame.width()) / decoded_frame.height());
scaled_buffer = I420Buffer::Create(input_video_width, input_video_height);
scaled_buffer->ScaleFrom(decoded_frame);
scaled_frame = scaled_buffer.get();
}
// Ensure there is no padding.
RTC_CHECK_EQ(scaled_frame->StrideY(), input_video_width);
RTC_CHECK_EQ(scaled_frame->StrideU(), input_video_width / 2);
RTC_CHECK_EQ(scaled_frame->StrideV(), input_video_width / 2);
RTC_CHECK_EQ(3 * input_video_width * input_video_height / 2,
frame_writer.FrameLength());
RTC_CHECK(frame_writer.WriteFrame(scaled_frame->DataY()));
}
void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame,
size_t spatial_idx) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
const int64_t decode_stop_ns = rtc::TimeNanos();
FrameStatistics* frame_stat =
stats_->GetFrameWithTimestamp(decoded_frame.rtp_timestamp(), spatial_idx);
const size_t frame_number = frame_stat->frame_number;
if (!first_decoded_frame_[spatial_idx]) {
for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1;
dropped_frame_number < frame_number; ++dropped_frame_number) {
FrameStatistics* dropped_frame_stat =
stats_->GetFrame(dropped_frame_number, spatial_idx);
if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) {
// Calculate frame quality comparing input frame with last decoded one.
CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx],
dropped_frame_stat);
}
if (decoded_frame_writers_ != nullptr) {
// Fill drops with last decoded frame to make them look like freeze at
// playback and to keep decoded layers in sync.
WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx],
*decoded_frame_writers_->at(spatial_idx));
}
}
}
// Ensure that the decode order is monotonically increasing, within this
// simulcast/spatial layer.
RTC_CHECK(first_decoded_frame_[spatial_idx] ||
last_decoded_frame_num_[spatial_idx] < frame_number);
first_decoded_frame_[spatial_idx] = false;
last_decoded_frame_num_[spatial_idx] = frame_number;
// Update frame statistics.
frame_stat->decoding_successful = true;
frame_stat->decode_time_us =
GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns);
frame_stat->decoded_width = decoded_frame.width();
frame_stat->decoded_height = decoded_frame.height();
// Skip quality metrics calculation to not affect CPU usage.
if (analyze_frame_quality_ || decoded_frame_writers_) {
// Save last decoded frame to handle possible future drops.
rtc::scoped_refptr<I420BufferInterface> i420buffer =
decoded_frame.video_frame_buffer()->ToI420();
// Copy decoded frame to a buffer without padding/stride such that we can
// dump Y, U and V planes into a file in one shot.
last_decoded_frame_buffer_[spatial_idx] = I420Buffer::Copy(
i420buffer->width(), i420buffer->height(), i420buffer->DataY(),
i420buffer->StrideY(), i420buffer->DataU(), i420buffer->StrideU(),
i420buffer->DataV(), i420buffer->StrideV());
}
if (analyze_frame_quality_) {
CalcFrameQuality(*decoded_frame.video_frame_buffer()->ToI420(), frame_stat);
}
if (decoded_frame_writers_ != nullptr) {
WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx],
*decoded_frame_writers_->at(spatial_idx));
}
// Erase all buffered input frames that we have moved past for all
// simulcast/spatial layers. Never buffer more than
// `kMaxBufferedInputFrames` frames, to protect against long runs of
// consecutive frame drops for a particular layer.
const auto min_last_decoded_frame_num = std::min_element(
last_decoded_frame_num_.cbegin(), last_decoded_frame_num_.cend());
const size_t min_buffered_frame_num =
std::max(0, static_cast<int>(frame_number) - kMaxBufferedInputFrames + 1);
RTC_CHECK(min_last_decoded_frame_num != last_decoded_frame_num_.cend());
const auto input_frames_erase_before = input_frames_.lower_bound(
std::max(*min_last_decoded_frame_num, min_buffered_frame_num));
input_frames_.erase(input_frames_.cbegin(), input_frames_erase_before);
}
void VideoProcessor::DecodeFrame(const EncodedImage& encoded_image,
size_t spatial_idx) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
FrameStatistics* frame_stat =
stats_->GetFrameWithTimestamp(encoded_image.RtpTimestamp(), spatial_idx);
frame_stat->decode_start_ns = rtc::TimeNanos();
frame_stat->decode_return_code =
decoders_->at(spatial_idx)->Decode(encoded_image, 0);
}
const webrtc::EncodedImage* VideoProcessor::BuildAndStoreSuperframe(
const EncodedImage& encoded_image,
const VideoCodecType codec,
size_t frame_number,
size_t spatial_idx,
bool inter_layer_predicted) {
// Should only be called for SVC.
RTC_CHECK_GT(config_.NumberOfSpatialLayers(), 1);
EncodedImage base_image;
RTC_CHECK_EQ(base_image.size(), 0);
// Each SVC layer is decoded with dedicated decoder. Find the nearest
// non-dropped base frame and merge it and current frame into superframe.
if (inter_layer_predicted) {
for (int base_idx = static_cast<int>(spatial_idx) - 1; base_idx >= 0;
--base_idx) {
EncodedImage lower_layer = merged_encoded_frames_.at(base_idx);
if (lower_layer.RtpTimestamp() == encoded_image.RtpTimestamp()) {
base_image = lower_layer;
break;
}
}
}
const size_t payload_size_bytes = base_image.size() + encoded_image.size();
auto buffer = EncodedImageBuffer::Create(payload_size_bytes);
if (base_image.size()) {
RTC_CHECK(base_image.data());
memcpy(buffer->data(), base_image.data(), base_image.size());
}
memcpy(buffer->data() + base_image.size(), encoded_image.data(),
encoded_image.size());
EncodedImage copied_image = encoded_image;
copied_image.SetEncodedData(buffer);
if (base_image.size())
copied_image._frameType = base_image._frameType;
// Replace previous EncodedImage for this spatial layer.
merged_encoded_frames_.at(spatial_idx) = std::move(copied_image);
return &merged_encoded_frames_.at(spatial_idx);
}
void VideoProcessor::Finalize() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(!is_finalized_);
is_finalized_ = true;
if (!(analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) &&
decoded_frame_writers_ == nullptr) {
return;
}
for (size_t spatial_idx = 0; spatial_idx < num_simulcast_or_spatial_layers_;
++spatial_idx) {
if (first_decoded_frame_[spatial_idx]) {
continue; // No decoded frames on this spatial layer.
}
for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1;
dropped_frame_number < last_inputed_frame_num_;
++dropped_frame_number) {
FrameStatistics* frame_stat =
stats_->GetFrame(dropped_frame_number, spatial_idx);
RTC_DCHECK(!frame_stat->decoding_successful);
if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) {
CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx], frame_stat);
}
if (decoded_frame_writers_ != nullptr) {
WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx],
*decoded_frame_writers_->at(spatial_idx));
}
}
}
}
} // namespace test
} // namespace webrtc