Source code

Revision control

Copy as Markdown

Other Tools

/*
* srtp.c
*
* the secure real-time transport protocol
*
* David A. McGrew
* Cisco Systems, Inc.
*/
/*
*
* Copyright (c) 2001-2017, Cisco Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
// Leave this as the top level import. Ensures the existence of defines
#include "config.h"
#include "srtp_priv.h"
#include "crypto_types.h"
#include "err.h"
#include "alloc.h" /* for srtp_crypto_alloc() */
#ifdef GCM
#include "aes_gcm.h" /* for AES GCM mode */
#endif
#ifdef OPENSSL_KDF
#include <openssl/kdf.h>
#include "aes_icm_ext.h"
#endif
#include <limits.h>
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#elif defined(HAVE_WINSOCK2_H)
#include <winsock2.h>
#endif
/* the debug module for srtp */
srtp_debug_module_t mod_srtp = {
0, /* debugging is off by default */
"srtp" /* printable name for module */
};
#define octets_in_rtp_header 12
#define uint32s_in_rtp_header 3
#define octets_in_rtcp_header 8
#define uint32s_in_rtcp_header 2
#define octets_in_rtp_extn_hdr 4
static srtp_err_status_t srtp_validate_rtp_header(void *rtp_hdr,
int *pkt_octet_len)
{
srtp_hdr_t *hdr = (srtp_hdr_t *)rtp_hdr;
int rtp_header_len;
if (*pkt_octet_len < octets_in_rtp_header)
return srtp_err_status_bad_param;
/* Check RTP header length */
rtp_header_len = octets_in_rtp_header + 4 * hdr->cc;
if (hdr->x == 1)
rtp_header_len += octets_in_rtp_extn_hdr;
if (*pkt_octet_len < rtp_header_len)
return srtp_err_status_bad_param;
/* Verifing profile length. */
if (hdr->x == 1) {
srtp_hdr_xtnd_t *xtn_hdr =
(srtp_hdr_xtnd_t *)((uint32_t *)hdr + uint32s_in_rtp_header +
hdr->cc);
int profile_len = ntohs(xtn_hdr->length);
rtp_header_len += profile_len * 4;
/* profile length counts the number of 32-bit words */
if (*pkt_octet_len < rtp_header_len)
return srtp_err_status_bad_param;
}
return srtp_err_status_ok;
}
const char *srtp_get_version_string()
{
/*
* Simply return the autotools generated string
*/
return SRTP_VER_STRING;
}
unsigned int srtp_get_version()
{
unsigned int major = 0, minor = 0, micro = 0;
unsigned int rv = 0;
int parse_rv;
/*
* Parse the autotools generated version
*/
parse_rv = sscanf(SRTP_VERSION, "%u.%u.%u", &major, &minor, &micro);
if (parse_rv != 3) {
/*
* We're expected to parse all 3 version levels.
* If not, then this must not be an official release.
* Return all zeros on the version
*/
return (0);
}
/*
* We allow 8 bits for the major and minor, while
* allowing 16 bits for the micro. 16 bits for the micro
* may be beneficial for a continuous delivery model
* in the future.
*/
rv |= (major & 0xFF) << 24;
rv |= (minor & 0xFF) << 16;
rv |= micro & 0xFF;
return rv;
}
srtp_err_status_t srtp_stream_dealloc(srtp_stream_ctx_t *stream,
const srtp_stream_ctx_t *stream_template)
{
srtp_err_status_t status;
unsigned int i = 0;
srtp_session_keys_t *session_keys = NULL;
srtp_session_keys_t *template_session_keys = NULL;
/*
* we use a conservative deallocation strategy - if any deallocation
* fails, then we report that fact without trying to deallocate
* anything else
*/
if (stream->session_keys) {
for (i = 0; i < stream->num_master_keys; i++) {
session_keys = &stream->session_keys[i];
if (stream_template &&
stream->num_master_keys == stream_template->num_master_keys) {
template_session_keys = &stream_template->session_keys[i];
} else {
template_session_keys = NULL;
}
/*
* deallocate cipher, if it is not the same as that in template
*/
if (template_session_keys &&
session_keys->rtp_cipher == template_session_keys->rtp_cipher) {
/* do nothing */
} else if (session_keys->rtp_cipher) {
status = srtp_cipher_dealloc(session_keys->rtp_cipher);
if (status)
return status;
}
/*
* deallocate auth function, if it is not the same as that in
* template
*/
if (template_session_keys &&
session_keys->rtp_auth == template_session_keys->rtp_auth) {
/* do nothing */
} else if (session_keys->rtp_auth) {
status = srtp_auth_dealloc(session_keys->rtp_auth);
if (status)
return status;
}
if (template_session_keys &&
session_keys->rtp_xtn_hdr_cipher ==
template_session_keys->rtp_xtn_hdr_cipher) {
/* do nothing */
} else if (session_keys->rtp_xtn_hdr_cipher) {
status = srtp_cipher_dealloc(session_keys->rtp_xtn_hdr_cipher);
if (status)
return status;
}
/*
* deallocate rtcp cipher, if it is not the same as that in
* template
*/
if (template_session_keys &&
session_keys->rtcp_cipher ==
template_session_keys->rtcp_cipher) {
/* do nothing */
} else if (session_keys->rtcp_cipher) {
status = srtp_cipher_dealloc(session_keys->rtcp_cipher);
if (status)
return status;
}
/*
* deallocate rtcp auth function, if it is not the same as that in
* template
*/
if (template_session_keys &&
session_keys->rtcp_auth == template_session_keys->rtcp_auth) {
/* do nothing */
} else if (session_keys->rtcp_auth) {
status = srtp_auth_dealloc(session_keys->rtcp_auth);
if (status)
return status;
}
/*
* zeroize the salt value
*/
octet_string_set_to_zero(session_keys->salt, SRTP_AEAD_SALT_LEN);
octet_string_set_to_zero(session_keys->c_salt, SRTP_AEAD_SALT_LEN);
if (session_keys->mki_id) {
octet_string_set_to_zero(session_keys->mki_id,
session_keys->mki_size);
srtp_crypto_free(session_keys->mki_id);
session_keys->mki_id = NULL;
}
/*
* deallocate key usage limit, if it is not the same as that in
* template
*/
if (template_session_keys &&
session_keys->limit == template_session_keys->limit) {
/* do nothing */
} else if (session_keys->limit) {
srtp_crypto_free(session_keys->limit);
}
}
srtp_crypto_free(stream->session_keys);
}
status = srtp_rdbx_dealloc(&stream->rtp_rdbx);
if (status)
return status;
if (stream_template &&
stream->enc_xtn_hdr == stream_template->enc_xtn_hdr) {
/* do nothing */
} else if (stream->enc_xtn_hdr) {
srtp_crypto_free(stream->enc_xtn_hdr);
}
/* deallocate srtp stream context */
srtp_crypto_free(stream);
return srtp_err_status_ok;
}
static srtp_err_status_t srtp_valid_policy(const srtp_policy_t *p)
{
if (p != NULL && p->deprecated_ekt != NULL) {
return srtp_err_status_bad_param;
}
return srtp_err_status_ok;
}
srtp_err_status_t srtp_stream_alloc(srtp_stream_ctx_t **str_ptr,
const srtp_policy_t *p)
{
srtp_stream_ctx_t *str;
srtp_err_status_t stat;
unsigned int i = 0;
srtp_session_keys_t *session_keys = NULL;
stat = srtp_valid_policy(p);
if (stat != srtp_err_status_ok) {
return stat;
}
/*
* This function allocates the stream context, rtp and rtcp ciphers
* and auth functions, and key limit structure. If there is a
* failure during allocation, we free all previously allocated
* memory and return a failure code. The code could probably
* be improved, but it works and should be clear.
*/
/* allocate srtp stream and set str_ptr */
str = (srtp_stream_ctx_t *)srtp_crypto_alloc(sizeof(srtp_stream_ctx_t));
if (str == NULL)
return srtp_err_status_alloc_fail;
*str_ptr = str;
/*
*To keep backwards API compatible if someone is using multiple master
* keys then key should be set to NULL
*/
if (p->key != NULL) {
str->num_master_keys = 1;
} else {
str->num_master_keys = p->num_master_keys;
}
str->session_keys = (srtp_session_keys_t *)srtp_crypto_alloc(
sizeof(srtp_session_keys_t) * str->num_master_keys);
if (str->session_keys == NULL) {
srtp_stream_dealloc(str, NULL);
return srtp_err_status_alloc_fail;
}
for (i = 0; i < str->num_master_keys; i++) {
session_keys = &str->session_keys[i];
/* allocate cipher */
stat = srtp_crypto_kernel_alloc_cipher(
p->rtp.cipher_type, &session_keys->rtp_cipher,
p->rtp.cipher_key_len, p->rtp.auth_tag_len);
if (stat) {
srtp_stream_dealloc(str, NULL);
return stat;
}
/* allocate auth function */
stat = srtp_crypto_kernel_alloc_auth(
p->rtp.auth_type, &session_keys->rtp_auth, p->rtp.auth_key_len,
p->rtp.auth_tag_len);
if (stat) {
srtp_stream_dealloc(str, NULL);
return stat;
}
/*
* ...and now the RTCP-specific initialization - first, allocate
* the cipher
*/
stat = srtp_crypto_kernel_alloc_cipher(
p->rtcp.cipher_type, &session_keys->rtcp_cipher,
p->rtcp.cipher_key_len, p->rtcp.auth_tag_len);
if (stat) {
srtp_stream_dealloc(str, NULL);
return stat;
}
/* allocate auth function */
stat = srtp_crypto_kernel_alloc_auth(
p->rtcp.auth_type, &session_keys->rtcp_auth, p->rtcp.auth_key_len,
p->rtcp.auth_tag_len);
if (stat) {
srtp_stream_dealloc(str, NULL);
return stat;
}
session_keys->mki_id = NULL;
/* allocate key limit structure */
session_keys->limit = (srtp_key_limit_ctx_t *)srtp_crypto_alloc(
sizeof(srtp_key_limit_ctx_t));
if (session_keys->limit == NULL) {
srtp_stream_dealloc(str, NULL);
return srtp_err_status_alloc_fail;
}
}
if (p->enc_xtn_hdr && p->enc_xtn_hdr_count > 0) {
srtp_cipher_type_id_t enc_xtn_hdr_cipher_type;
int enc_xtn_hdr_cipher_key_len;
str->enc_xtn_hdr = (int *)srtp_crypto_alloc(p->enc_xtn_hdr_count *
sizeof(p->enc_xtn_hdr[0]));
if (!str->enc_xtn_hdr) {
srtp_stream_dealloc(str, NULL);
return srtp_err_status_alloc_fail;
}
memcpy(str->enc_xtn_hdr, p->enc_xtn_hdr,
p->enc_xtn_hdr_count * sizeof(p->enc_xtn_hdr[0]));
str->enc_xtn_hdr_count = p->enc_xtn_hdr_count;
/*
* For GCM ciphers, the corresponding ICM cipher is used for header
* extensions encryption.
*/
switch (p->rtp.cipher_type) {
case SRTP_AES_GCM_128:
enc_xtn_hdr_cipher_type = SRTP_AES_ICM_128;
enc_xtn_hdr_cipher_key_len = SRTP_AES_ICM_128_KEY_LEN_WSALT;
break;
case SRTP_AES_GCM_256:
enc_xtn_hdr_cipher_type = SRTP_AES_ICM_256;
enc_xtn_hdr_cipher_key_len = SRTP_AES_ICM_256_KEY_LEN_WSALT;
break;
default:
enc_xtn_hdr_cipher_type = p->rtp.cipher_type;
enc_xtn_hdr_cipher_key_len = p->rtp.cipher_key_len;
break;
}
for (i = 0; i < str->num_master_keys; i++) {
session_keys = &str->session_keys[i];
/* allocate cipher for extensions header encryption */
stat = srtp_crypto_kernel_alloc_cipher(
enc_xtn_hdr_cipher_type, &session_keys->rtp_xtn_hdr_cipher,
enc_xtn_hdr_cipher_key_len, 0);
if (stat) {
srtp_stream_dealloc(str, NULL);
return stat;
}
}
} else {
for (i = 0; i < str->num_master_keys; i++) {
session_keys = &str->session_keys[i];
session_keys->rtp_xtn_hdr_cipher = NULL;
}
str->enc_xtn_hdr = NULL;
str->enc_xtn_hdr_count = 0;
}
return srtp_err_status_ok;
}
/*
* srtp_stream_clone(stream_template, new) allocates a new stream and
* initializes it using the cipher and auth of the stream_template
*
* the only unique data in a cloned stream is the replay database and
* the SSRC
*/
srtp_err_status_t srtp_stream_clone(const srtp_stream_ctx_t *stream_template,
uint32_t ssrc,
srtp_stream_ctx_t **str_ptr)
{
srtp_err_status_t status;
srtp_stream_ctx_t *str;
unsigned int i = 0;
srtp_session_keys_t *session_keys = NULL;
const srtp_session_keys_t *template_session_keys = NULL;
debug_print(mod_srtp, "cloning stream (SSRC: 0x%08x)", ntohl(ssrc));
/* allocate srtp stream and set str_ptr */
str = (srtp_stream_ctx_t *)srtp_crypto_alloc(sizeof(srtp_stream_ctx_t));
if (str == NULL)
return srtp_err_status_alloc_fail;
*str_ptr = str;
str->num_master_keys = stream_template->num_master_keys;
str->session_keys = (srtp_session_keys_t *)srtp_crypto_alloc(
sizeof(srtp_session_keys_t) * str->num_master_keys);
if (str->session_keys == NULL) {
srtp_stream_dealloc(*str_ptr, stream_template);
*str_ptr = NULL;
return srtp_err_status_alloc_fail;
}
for (i = 0; i < stream_template->num_master_keys; i++) {
session_keys = &str->session_keys[i];
template_session_keys = &stream_template->session_keys[i];
/* set cipher and auth pointers to those of the template */
session_keys->rtp_cipher = template_session_keys->rtp_cipher;
session_keys->rtp_auth = template_session_keys->rtp_auth;
session_keys->rtp_xtn_hdr_cipher =
template_session_keys->rtp_xtn_hdr_cipher;
session_keys->rtcp_cipher = template_session_keys->rtcp_cipher;
session_keys->rtcp_auth = template_session_keys->rtcp_auth;
session_keys->mki_size = template_session_keys->mki_size;
if (template_session_keys->mki_size == 0) {
session_keys->mki_id = NULL;
} else {
session_keys->mki_id =
srtp_crypto_alloc(template_session_keys->mki_size);
if (session_keys->mki_id == NULL) {
srtp_stream_dealloc(*str_ptr, stream_template);
*str_ptr = NULL;
return srtp_err_status_init_fail;
}
memcpy(session_keys->mki_id, template_session_keys->mki_id,
session_keys->mki_size);
}
/* Copy the salt values */
memcpy(session_keys->salt, template_session_keys->salt,
SRTP_AEAD_SALT_LEN);
memcpy(session_keys->c_salt, template_session_keys->c_salt,
SRTP_AEAD_SALT_LEN);
/* set key limit to point to that of the template */
status = srtp_key_limit_clone(template_session_keys->limit,
&session_keys->limit);
if (status) {
srtp_stream_dealloc(*str_ptr, stream_template);
*str_ptr = NULL;
return status;
}
}
/* initialize replay databases */
status = srtp_rdbx_init(
&str->rtp_rdbx, srtp_rdbx_get_window_size(&stream_template->rtp_rdbx));
if (status) {
srtp_stream_dealloc(*str_ptr, stream_template);
*str_ptr = NULL;
return status;
}
srtp_rdb_init(&str->rtcp_rdb);
str->allow_repeat_tx = stream_template->allow_repeat_tx;
/* set ssrc to that provided */
str->ssrc = ssrc;
/* reset pending ROC */
str->pending_roc = 0;
/* set direction and security services */
str->direction = stream_template->direction;
str->rtp_services = stream_template->rtp_services;
str->rtcp_services = stream_template->rtcp_services;
/* copy information about extensions header encryption */
str->enc_xtn_hdr = stream_template->enc_xtn_hdr;
str->enc_xtn_hdr_count = stream_template->enc_xtn_hdr_count;
/* defensive coding */
str->next = NULL;
return srtp_err_status_ok;
}
/*
* key derivation functions, internal to libSRTP
*
* srtp_kdf_t is a key derivation context
*
* srtp_kdf_init(&kdf, cipher_id, k, keylen) initializes kdf to use cipher
* described by cipher_id, with the master key k with length in octets keylen.
*
* srtp_kdf_generate(&kdf, l, kl, keylen) derives the key
* corresponding to label l and puts it into kl; the length
* of the key in octets is provided as keylen. this function
* should be called once for each subkey that is derived.
*
* srtp_kdf_clear(&kdf) zeroizes and deallocates the kdf state
*/
typedef enum {
label_rtp_encryption = 0x00,
label_rtp_msg_auth = 0x01,
label_rtp_salt = 0x02,
label_rtcp_encryption = 0x03,
label_rtcp_msg_auth = 0x04,
label_rtcp_salt = 0x05,
label_rtp_header_encryption = 0x06,
label_rtp_header_salt = 0x07
} srtp_prf_label;
#define MAX_SRTP_KEY_LEN 256
#if defined(OPENSSL) && defined(OPENSSL_KDF)
#define MAX_SRTP_AESKEY_LEN 32
#define MAX_SRTP_SALT_LEN 14
/*
* srtp_kdf_t represents a key derivation function. The SRTP
* default KDF is the only one implemented at present.
*/
typedef struct {
uint8_t master_key[MAX_SRTP_AESKEY_LEN];
uint8_t master_salt[MAX_SRTP_SALT_LEN];
const EVP_CIPHER *evp;
} srtp_kdf_t;
static srtp_err_status_t srtp_kdf_init(srtp_kdf_t *kdf,
const uint8_t *key,
int key_len,
int salt_len)
{
memset(kdf, 0x0, sizeof(srtp_kdf_t));
/* The NULL cipher has zero key length */
if (key_len == 0)
return srtp_err_status_ok;
if ((key_len > MAX_SRTP_AESKEY_LEN) || (salt_len > MAX_SRTP_SALT_LEN)) {
return srtp_err_status_bad_param;
}
switch (key_len) {
case SRTP_AES_256_KEYSIZE:
kdf->evp = EVP_aes_256_ctr();
break;
case SRTP_AES_192_KEYSIZE:
kdf->evp = EVP_aes_192_ctr();
break;
case SRTP_AES_128_KEYSIZE:
kdf->evp = EVP_aes_128_ctr();
break;
default:
return srtp_err_status_bad_param;
break;
}
memcpy(kdf->master_key, key, key_len);
memcpy(kdf->master_salt, key + key_len, salt_len);
return srtp_err_status_ok;
}
static srtp_err_status_t srtp_kdf_generate(srtp_kdf_t *kdf,
srtp_prf_label label,
uint8_t *key,
unsigned int length)
{
int ret;
/* The NULL cipher will not have an EVP */
if (!kdf->evp)
return srtp_err_status_ok;
octet_string_set_to_zero(key, length);
/*
* Invoke the OpenSSL SRTP KDF function
* This is useful if OpenSSL is in FIPS mode and FIP
* compliance is required for SRTP.
*/
ret = kdf_srtp(kdf->evp, (char *)&kdf->master_key,
(char *)&kdf->master_salt, NULL, NULL, label, (char *)key);
if (ret == -1) {
return (srtp_err_status_algo_fail);
}
return srtp_err_status_ok;
}
static srtp_err_status_t srtp_kdf_clear(srtp_kdf_t *kdf)
{
octet_string_set_to_zero(kdf->master_key, MAX_SRTP_AESKEY_LEN);
octet_string_set_to_zero(kdf->master_salt, MAX_SRTP_SALT_LEN);
kdf->evp = NULL;
return srtp_err_status_ok;
}
#else /* if OPENSSL_KDF */
/*
* srtp_kdf_t represents a key derivation function. The SRTP
* default KDF is the only one implemented at present.
*/
typedef struct {
srtp_cipher_t *cipher; /* cipher used for key derivation */
} srtp_kdf_t;
static srtp_err_status_t srtp_kdf_init(srtp_kdf_t *kdf,
const uint8_t *key,
int key_len)
{
srtp_cipher_type_id_t cipher_id;
srtp_err_status_t stat;
switch (key_len) {
case SRTP_AES_ICM_256_KEY_LEN_WSALT:
cipher_id = SRTP_AES_ICM_256;
break;
case SRTP_AES_ICM_192_KEY_LEN_WSALT:
cipher_id = SRTP_AES_ICM_192;
break;
case SRTP_AES_ICM_128_KEY_LEN_WSALT:
cipher_id = SRTP_AES_ICM_128;
break;
default:
return srtp_err_status_bad_param;
break;
}
stat = srtp_crypto_kernel_alloc_cipher(cipher_id, &kdf->cipher, key_len, 0);
if (stat)
return stat;
stat = srtp_cipher_init(kdf->cipher, key);
if (stat) {
srtp_cipher_dealloc(kdf->cipher);
return stat;
}
return srtp_err_status_ok;
}
static srtp_err_status_t srtp_kdf_generate(srtp_kdf_t *kdf,
srtp_prf_label label,
uint8_t *key,
unsigned int length)
{
srtp_err_status_t status;
v128_t nonce;
/* set eigth octet of nonce to <label>, set the rest of it to zero */
v128_set_to_zero(&nonce);
nonce.v8[7] = label;
status = srtp_cipher_set_iv(kdf->cipher, (uint8_t *)&nonce,
srtp_direction_encrypt);
if (status)
return status;
/* generate keystream output */
octet_string_set_to_zero(key, length);
status = srtp_cipher_encrypt(kdf->cipher, key, &length);
if (status)
return status;
return srtp_err_status_ok;
}
static srtp_err_status_t srtp_kdf_clear(srtp_kdf_t *kdf)
{
srtp_err_status_t status;
status = srtp_cipher_dealloc(kdf->cipher);
if (status)
return status;
kdf->cipher = NULL;
return srtp_err_status_ok;
}
#endif /* else OPENSSL_KDF */
/*
* end of key derivation functions
*/
/* Get the base key length corresponding to a given combined key+salt
* length for the given cipher.
* TODO: key and salt lengths should be separate fields in the policy. */
static inline int base_key_length(const srtp_cipher_type_t *cipher,
int key_length)
{
switch (cipher->id) {
case SRTP_NULL_CIPHER:
return 0;
case SRTP_AES_ICM_128:
case SRTP_AES_ICM_192:
case SRTP_AES_ICM_256:
/* The legacy modes are derived from
* the configured key length on the policy */
return key_length - SRTP_SALT_LEN;
case SRTP_AES_GCM_128:
return key_length - SRTP_AEAD_SALT_LEN;
case SRTP_AES_GCM_256:
return key_length - SRTP_AEAD_SALT_LEN;
default:
return key_length;
}
}
/* Get the key length that the application should supply for the given cipher */
static inline int full_key_length(const srtp_cipher_type_t *cipher)
{
switch (cipher->id) {
case SRTP_NULL_CIPHER:
case SRTP_AES_ICM_128:
return SRTP_AES_ICM_128_KEY_LEN_WSALT;
case SRTP_AES_ICM_192:
return SRTP_AES_ICM_192_KEY_LEN_WSALT;
case SRTP_AES_ICM_256:
return SRTP_AES_ICM_256_KEY_LEN_WSALT;
case SRTP_AES_GCM_128:
return SRTP_AES_GCM_128_KEY_LEN_WSALT;
case SRTP_AES_GCM_256:
return SRTP_AES_GCM_256_KEY_LEN_WSALT;
default:
return 0;
}
}
unsigned int srtp_validate_policy_master_keys(const srtp_policy_t *policy)
{
unsigned long i = 0;
if (policy->key == NULL) {
if (policy->num_master_keys <= 0)
return 0;
if (policy->num_master_keys > SRTP_MAX_NUM_MASTER_KEYS)
return 0;
for (i = 0; i < policy->num_master_keys; i++) {
if (policy->keys[i]->key == NULL)
return 0;
if (policy->keys[i]->mki_size > SRTP_MAX_MKI_LEN)
return 0;
}
}
return 1;
}
srtp_session_keys_t *srtp_get_session_keys_with_mki_index(
srtp_stream_ctx_t *stream,
unsigned int use_mki,
unsigned int mki_index)
{
if (use_mki) {
if (mki_index >= stream->num_master_keys) {
return NULL;
}
return &stream->session_keys[mki_index];
}
return &stream->session_keys[0];
}
unsigned int srtp_inject_mki(uint8_t *mki_tag_location,
srtp_session_keys_t *session_keys,
unsigned int use_mki)
{
unsigned int mki_size = 0;
if (use_mki) {
mki_size = session_keys->mki_size;
if (mki_size != 0) {
// Write MKI into memory
memcpy(mki_tag_location, session_keys->mki_id, mki_size);
}
}
return mki_size;
}
srtp_err_status_t srtp_stream_init_all_master_keys(
srtp_stream_ctx_t *srtp,
unsigned char *key,
srtp_master_key_t **keys,
const unsigned int max_master_keys)
{
unsigned int i = 0;
srtp_err_status_t status = srtp_err_status_ok;
srtp_master_key_t single_master_key;
if (key != NULL) {
srtp->num_master_keys = 1;
single_master_key.key = key;
single_master_key.mki_id = NULL;
single_master_key.mki_size = 0;
status = srtp_stream_init_keys(srtp, &single_master_key, 0);
} else {
srtp->num_master_keys = max_master_keys;
for (i = 0; i < srtp->num_master_keys && i < SRTP_MAX_NUM_MASTER_KEYS;
i++) {
status = srtp_stream_init_keys(srtp, keys[i], i);
if (status) {
return status;
}
}
}
return status;
}
srtp_err_status_t srtp_stream_init_keys(srtp_stream_ctx_t *srtp,
srtp_master_key_t *master_key,
const unsigned int current_mki_index)
{
srtp_err_status_t stat;
srtp_kdf_t kdf;
uint8_t tmp_key[MAX_SRTP_KEY_LEN];
int input_keylen, input_keylen_rtcp;
int kdf_keylen = 30, rtp_keylen, rtcp_keylen;
int rtp_base_key_len, rtp_salt_len;
int rtcp_base_key_len, rtcp_salt_len;
srtp_session_keys_t *session_keys = NULL;
unsigned char *key = master_key->key;
/* If RTP or RTCP have a key length > AES-128, assume matching kdf. */
/* TODO: kdf algorithm, master key length, and master salt length should
* be part of srtp_policy_t.
*/
session_keys = &srtp->session_keys[current_mki_index];
/* initialize key limit to maximum value */
#ifdef NO_64BIT_MATH
{
uint64_t temp;
temp = make64(UINT_MAX, UINT_MAX);
srtp_key_limit_set(session_keys->limit, temp);
}
#else
srtp_key_limit_set(session_keys->limit, 0xffffffffffffLL);
#endif
if (master_key->mki_size != 0) {
session_keys->mki_id = srtp_crypto_alloc(master_key->mki_size);
if (session_keys->mki_id == NULL) {
return srtp_err_status_init_fail;
}
memcpy(session_keys->mki_id, master_key->mki_id, master_key->mki_size);
} else {
session_keys->mki_id = NULL;
}
session_keys->mki_size = master_key->mki_size;
input_keylen = full_key_length(session_keys->rtp_cipher->type);
input_keylen_rtcp = full_key_length(session_keys->rtcp_cipher->type);
if (input_keylen_rtcp > input_keylen) {
input_keylen = input_keylen_rtcp;
}
rtp_keylen = srtp_cipher_get_key_length(session_keys->rtp_cipher);
rtcp_keylen = srtp_cipher_get_key_length(session_keys->rtcp_cipher);
rtp_base_key_len =
base_key_length(session_keys->rtp_cipher->type, rtp_keylen);
rtp_salt_len = rtp_keylen - rtp_base_key_len;
if (rtp_keylen > kdf_keylen) {
kdf_keylen = 46; /* AES-CTR mode is always used for KDF */
}
if (rtcp_keylen > kdf_keylen) {
kdf_keylen = 46; /* AES-CTR mode is always used for KDF */
}
if (input_keylen > kdf_keylen) {
kdf_keylen = 46; /* AES-CTR mode is always used for KDF */
}
debug_print(mod_srtp, "input key len: %d", input_keylen);
debug_print(mod_srtp, "srtp key len: %d", rtp_keylen);
debug_print(mod_srtp, "srtcp key len: %d", rtcp_keylen);
debug_print(mod_srtp, "base key len: %d", rtp_base_key_len);
debug_print(mod_srtp, "kdf key len: %d", kdf_keylen);
debug_print(mod_srtp, "rtp salt len: %d", rtp_salt_len);
/*
* Make sure the key given to us is 'zero' appended. GCM
* mode uses a shorter master SALT (96 bits), but still relies on
* the legacy CTR mode KDF, which uses a 112 bit master SALT.
*/
memset(tmp_key, 0x0, MAX_SRTP_KEY_LEN);
memcpy(tmp_key, key, input_keylen);
/* initialize KDF state */
#if defined(OPENSSL) && defined(OPENSSL_KDF)
stat = srtp_kdf_init(&kdf, (const uint8_t *)tmp_key, rtp_base_key_len,
rtp_salt_len);
#else
stat = srtp_kdf_init(&kdf, (const uint8_t *)tmp_key, kdf_keylen);
#endif
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
/* generate encryption key */
stat = srtp_kdf_generate(&kdf, label_rtp_encryption, tmp_key,
rtp_base_key_len);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
debug_print(mod_srtp, "cipher key: %s",
srtp_octet_string_hex_string(tmp_key, rtp_base_key_len));
/*
* if the cipher in the srtp context uses a salt, then we need
* to generate the salt value
*/
if (rtp_salt_len > 0) {
debug_print0(mod_srtp, "found rtp_salt_len > 0, generating salt");
/* generate encryption salt, put after encryption key */
stat = srtp_kdf_generate(&kdf, label_rtp_salt,
tmp_key + rtp_base_key_len, rtp_salt_len);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
memcpy(session_keys->salt, tmp_key + rtp_base_key_len,
SRTP_AEAD_SALT_LEN);
}
if (rtp_salt_len > 0) {
debug_print(mod_srtp, "cipher salt: %s",
srtp_octet_string_hex_string(tmp_key + rtp_base_key_len,
rtp_salt_len));
}
/* initialize cipher */
stat = srtp_cipher_init(session_keys->rtp_cipher, tmp_key);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
if (session_keys->rtp_xtn_hdr_cipher) {
/* generate extensions header encryption key */
int rtp_xtn_hdr_keylen;
int rtp_xtn_hdr_base_key_len;
int rtp_xtn_hdr_salt_len;
srtp_kdf_t tmp_kdf;
srtp_kdf_t *xtn_hdr_kdf;
if (session_keys->rtp_xtn_hdr_cipher->type !=
session_keys->rtp_cipher->type) {
/*
* With GCM ciphers, the header extensions are still encrypted using
* the corresponding ICM cipher.
*/
uint8_t tmp_xtn_hdr_key[MAX_SRTP_KEY_LEN];
rtp_xtn_hdr_keylen =
srtp_cipher_get_key_length(session_keys->rtp_xtn_hdr_cipher);
rtp_xtn_hdr_base_key_len = base_key_length(
session_keys->rtp_xtn_hdr_cipher->type, rtp_xtn_hdr_keylen);
rtp_xtn_hdr_salt_len =
rtp_xtn_hdr_keylen - rtp_xtn_hdr_base_key_len;
if (rtp_xtn_hdr_salt_len > rtp_salt_len) {
switch (session_keys->rtp_cipher->type->id) {
case SRTP_AES_GCM_128:
case SRTP_AES_GCM_256:
/*
* The shorter GCM salt is padded to the required ICM salt
* length.
*/
rtp_xtn_hdr_salt_len = rtp_salt_len;
break;
default:
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_bad_param;
}
}
memset(tmp_xtn_hdr_key, 0x0, MAX_SRTP_KEY_LEN);
memcpy(tmp_xtn_hdr_key, key,
(rtp_xtn_hdr_base_key_len + rtp_xtn_hdr_salt_len));
xtn_hdr_kdf = &tmp_kdf;
/* initialize KDF state */
#if defined(OPENSSL) && defined(OPENSSL_KDF)
stat =
srtp_kdf_init(xtn_hdr_kdf, (const uint8_t *)tmp_xtn_hdr_key,
rtp_xtn_hdr_base_key_len, rtp_xtn_hdr_salt_len);
#else
stat = srtp_kdf_init(xtn_hdr_kdf, (const uint8_t *)tmp_xtn_hdr_key,
kdf_keylen);
#endif
octet_string_set_to_zero(tmp_xtn_hdr_key, MAX_SRTP_KEY_LEN);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
} else {
/* Reuse main KDF. */
rtp_xtn_hdr_keylen = rtp_keylen;
rtp_xtn_hdr_base_key_len = rtp_base_key_len;
rtp_xtn_hdr_salt_len = rtp_salt_len;
xtn_hdr_kdf = &kdf;
}
stat = srtp_kdf_generate(xtn_hdr_kdf, label_rtp_header_encryption,
tmp_key, rtp_xtn_hdr_base_key_len);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
debug_print(
mod_srtp, "extensions cipher key: %s",
srtp_octet_string_hex_string(tmp_key, rtp_xtn_hdr_base_key_len));
/*
* if the cipher in the srtp context uses a salt, then we need
* to generate the salt value
*/
if (rtp_xtn_hdr_salt_len > 0) {
debug_print0(mod_srtp,
"found rtp_xtn_hdr_salt_len > 0, generating salt");
/* generate encryption salt, put after encryption key */
stat = srtp_kdf_generate(xtn_hdr_kdf, label_rtp_header_salt,
tmp_key + rtp_xtn_hdr_base_key_len,
rtp_xtn_hdr_salt_len);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
}
if (rtp_xtn_hdr_salt_len > 0) {
debug_print(
mod_srtp, "extensions cipher salt: %s",
srtp_octet_string_hex_string(tmp_key + rtp_xtn_hdr_base_key_len,
rtp_xtn_hdr_salt_len));
}
/* initialize extensions header cipher */
stat = srtp_cipher_init(session_keys->rtp_xtn_hdr_cipher, tmp_key);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
if (xtn_hdr_kdf != &kdf) {
/* release memory for custom header extension encryption kdf */
stat = srtp_kdf_clear(xtn_hdr_kdf);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
}
}
/* generate authentication key */
stat = srtp_kdf_generate(&kdf, label_rtp_msg_auth, tmp_key,
srtp_auth_get_key_length(session_keys->rtp_auth));
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
debug_print(mod_srtp, "auth key: %s",
srtp_octet_string_hex_string(
tmp_key, srtp_auth_get_key_length(session_keys->rtp_auth)));
/* initialize auth function */
stat = srtp_auth_init(session_keys->rtp_auth, tmp_key);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
/*
* ...now initialize SRTCP keys
*/
rtcp_base_key_len =
base_key_length(session_keys->rtcp_cipher->type, rtcp_keylen);
rtcp_salt_len = rtcp_keylen - rtcp_base_key_len;
debug_print(mod_srtp, "rtcp salt len: %d", rtcp_salt_len);
/* generate encryption key */
stat = srtp_kdf_generate(&kdf, label_rtcp_encryption, tmp_key,
rtcp_base_key_len);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
/*
* if the cipher in the srtp context uses a salt, then we need
* to generate the salt value
*/
if (rtcp_salt_len > 0) {
debug_print0(mod_srtp, "found rtcp_salt_len > 0, generating rtcp salt");
/* generate encryption salt, put after encryption key */
stat = srtp_kdf_generate(&kdf, label_rtcp_salt,
tmp_key + rtcp_base_key_len, rtcp_salt_len);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
memcpy(session_keys->c_salt, tmp_key + rtcp_base_key_len,
SRTP_AEAD_SALT_LEN);
}
debug_print(mod_srtp, "rtcp cipher key: %s",
srtp_octet_string_hex_string(tmp_key, rtcp_base_key_len));
if (rtcp_salt_len > 0) {
debug_print(mod_srtp, "rtcp cipher salt: %s",
srtp_octet_string_hex_string(tmp_key + rtcp_base_key_len,
rtcp_salt_len));
}
/* initialize cipher */
stat = srtp_cipher_init(session_keys->rtcp_cipher, tmp_key);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
/* generate authentication key */
stat = srtp_kdf_generate(&kdf, label_rtcp_msg_auth, tmp_key,
srtp_auth_get_key_length(session_keys->rtcp_auth));
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
debug_print(
mod_srtp, "rtcp auth key: %s",
srtp_octet_string_hex_string(
tmp_key, srtp_auth_get_key_length(session_keys->rtcp_auth)));
/* initialize auth function */
stat = srtp_auth_init(session_keys->rtcp_auth, tmp_key);
if (stat) {
/* zeroize temp buffer */
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
return srtp_err_status_init_fail;
}
/* clear memory then return */
stat = srtp_kdf_clear(&kdf);
octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN);
if (stat)
return srtp_err_status_init_fail;
return srtp_err_status_ok;
}
srtp_err_status_t srtp_stream_init(srtp_stream_ctx_t *srtp,
const srtp_policy_t *p)
{
srtp_err_status_t err;
err = srtp_valid_policy(p);
if (err != srtp_err_status_ok) {
return err;
}
debug_print(mod_srtp, "initializing stream (SSRC: 0x%08x)", p->ssrc.value);
/* initialize replay database */
/*
* window size MUST be at least 64. MAY be larger. Values more than
* 2^15 aren't meaningful due to how extended sequence numbers are
* calculated.
* Let a window size of 0 imply the default value.
*/
if (p->window_size != 0 &&
(p->window_size < 64 || p->window_size >= 0x8000))
return srtp_err_status_bad_param;
if (p->window_size != 0)
err = srtp_rdbx_init(&srtp->rtp_rdbx, p->window_size);
else
err = srtp_rdbx_init(&srtp->rtp_rdbx, 128);
if (err)
return err;
/* set the SSRC value */
srtp->ssrc = htonl(p->ssrc.value);
/* reset pending ROC */
srtp->pending_roc = 0;
/* set the security service flags */
srtp->rtp_services = p->rtp.sec_serv;
srtp->rtcp_services = p->rtcp.sec_serv;
/*
* set direction to unknown - this flag gets checked in srtp_protect(),
* srtp_unprotect(), srtp_protect_rtcp(), and srtp_unprotect_rtcp(), and
* gets set appropriately if it is set to unknown.
*/
srtp->direction = dir_unknown;
/* initialize SRTCP replay database */
srtp_rdb_init(&srtp->rtcp_rdb);
/* initialize allow_repeat_tx */
/* guard against uninitialized memory: allow only 0 or 1 here */
if (p->allow_repeat_tx != 0 && p->allow_repeat_tx != 1) {
srtp_rdbx_dealloc(&srtp->rtp_rdbx);
return srtp_err_status_bad_param;
}
srtp->allow_repeat_tx = p->allow_repeat_tx;
/* DAM - no RTCP key limit at present */
/* initialize keys */
err = srtp_stream_init_all_master_keys(srtp, p->key, p->keys,
p->num_master_keys);
if (err) {
srtp_rdbx_dealloc(&srtp->rtp_rdbx);
return err;
}
return srtp_err_status_ok;
}
/*
* srtp_event_reporter is an event handler function that merely
* reports the events that are reported by the callbacks
*/
void srtp_event_reporter(srtp_event_data_t *data)
{
srtp_err_report(srtp_err_level_warning, "srtp: in stream 0x%x: ",
data->ssrc);
switch (data->event) {
case event_ssrc_collision:
srtp_err_report(srtp_err_level_warning, "\tSSRC collision\n");
break;
case event_key_soft_limit:
srtp_err_report(srtp_err_level_warning,
"\tkey usage soft limit reached\n");
break;
case event_key_hard_limit:
srtp_err_report(srtp_err_level_warning,
"\tkey usage hard limit reached\n");
break;
case event_packet_index_limit:
srtp_err_report(srtp_err_level_warning,
"\tpacket index limit reached\n");
break;
default:
srtp_err_report(srtp_err_level_warning,
"\tunknown event reported to handler\n");
}
}
/*
* srtp_event_handler is a global variable holding a pointer to the
* event handler function; this function is called for any unexpected
* event that needs to be handled out of the SRTP data path. see
* srtp_event_t in srtp.h for more info
*
* it is okay to set srtp_event_handler to NULL, but we set
* it to the srtp_event_reporter.
*/
static srtp_event_handler_func_t *srtp_event_handler = srtp_event_reporter;
srtp_err_status_t srtp_install_event_handler(srtp_event_handler_func_t func)
{
/*
* note that we accept NULL arguments intentionally - calling this
* function with a NULL arguments removes an event handler that's
* been previously installed
*/
/* set global event handling function */
srtp_event_handler = func;
return srtp_err_status_ok;
}
/*
* Check if the given extension header id is / should be encrypted.
* Returns 1 if yes, otherwise 0.
*/
static int srtp_protect_extension_header(srtp_stream_ctx_t *stream, int id)
{
int *enc_xtn_hdr = stream->enc_xtn_hdr;
int count = stream->enc_xtn_hdr_count;
if (!enc_xtn_hdr || count <= 0) {
return 0;
}
while (count > 0) {
if (*enc_xtn_hdr == id) {
return 1;
}
enc_xtn_hdr++;
count--;
}
return 0;
}
/*
* extensions header encryption RFC 6904
*/
static srtp_err_status_t srtp_process_header_encryption(
srtp_stream_ctx_t *stream,
srtp_hdr_xtnd_t *xtn_hdr,
srtp_session_keys_t *session_keys)
{
srtp_err_status_t status;
uint8_t keystream[257]; /* Maximum 2 bytes header + 255 bytes data. */
int keystream_pos;
uint8_t *xtn_hdr_data = ((uint8_t *)xtn_hdr) + octets_in_rtp_extn_hdr;
uint8_t *xtn_hdr_end =
xtn_hdr_data + (ntohs(xtn_hdr->length) * sizeof(uint32_t));
if (ntohs(xtn_hdr->profile_specific) == 0xbede) {
/* RFC 5285, section 4.2. One-Byte Header */
while (xtn_hdr_data < xtn_hdr_end) {
uint8_t xid = (*xtn_hdr_data & 0xf0) >> 4;
unsigned int xlen = (*xtn_hdr_data & 0x0f) + 1;
uint32_t xlen_with_header = 1 + xlen;
xtn_hdr_data++;
if (xtn_hdr_data + xlen > xtn_hdr_end)
return srtp_err_status_parse_err;
if (xid == 15) {
/* found header 15, stop further processing. */
break;
}
status = srtp_cipher_output(session_keys->rtp_xtn_hdr_cipher,
keystream, &xlen_with_header);
if (status)
return srtp_err_status_cipher_fail;
if (srtp_protect_extension_header(stream, xid)) {
keystream_pos = 1;
while (xlen > 0) {
*xtn_hdr_data ^= keystream[keystream_pos++];
xtn_hdr_data++;
xlen--;
}
} else {
xtn_hdr_data += xlen;
}
/* skip padding bytes. */
while (xtn_hdr_data < xtn_hdr_end && *xtn_hdr_data == 0) {
xtn_hdr_data++;
}
}
} else if ((ntohs(xtn_hdr->profile_specific) & 0xfff0) == 0x1000) {
/* RFC 5285, section 4.3. Two-Byte Header */
while (xtn_hdr_data + 1 < xtn_hdr_end) {
uint8_t xid = *xtn_hdr_data;
unsigned int xlen = *(xtn_hdr_data + 1);
uint32_t xlen_with_header = 2 + xlen;
xtn_hdr_data += 2;
if (xtn_hdr_data + xlen > xtn_hdr_end)
return srtp_err_status_parse_err;
status = srtp_cipher_output(session_keys->rtp_xtn_hdr_cipher,
keystream, &xlen_with_header);
if (status)
return srtp_err_status_cipher_fail;
if (xlen > 0 && srtp_protect_extension_header(stream, xid)) {
keystream_pos = 2;
while (xlen > 0) {
*xtn_hdr_data ^= keystream[keystream_pos++];
xtn_hdr_data++;
xlen--;
}
} else {
xtn_hdr_data += xlen;
}
/* skip padding bytes. */
while (xtn_hdr_data < xtn_hdr_end && *xtn_hdr_data == 0) {
xtn_hdr_data++;
}
}
} else {
/* unsupported extension header format. */
return srtp_err_status_parse_err;
}
return srtp_err_status_ok;
}
/*
* AEAD uses a new IV formation method. This function implements
* section 8.1. (SRTP IV Formation for AES-GCM) of RFC7714.
* The calculation is defined as, where (+) is the xor operation:
*
*
* 0 0 0 0 0 0 0 0 0 0 1 1
* 0 1 2 3 4 5 6 7 8 9 0 1
* +--+--+--+--+--+--+--+--+--+--+--+--+
* |00|00| SSRC | ROC | SEQ |---+
* +--+--+--+--+--+--+--+--+--+--+--+--+ |
* |
* +--+--+--+--+--+--+--+--+--+--+--+--+ |
* | Encryption Salt |->(+)
* +--+--+--+--+--+--+--+--+--+--+--+--+ |
* |
* +--+--+--+--+--+--+--+--+--+--+--+--+ |
* | Initialization Vector |<--+
* +--+--+--+--+--+--+--+--+--+--+--+--+*
*
* Input: *session_keys - pointer to SRTP stream context session keys,
* used to retrieve the SALT
* *iv - Pointer to receive the calculated IV
* *seq - The ROC and SEQ value to use for the
* IV calculation.
* *hdr - The RTP header, used to get the SSRC value
*
*/
static void srtp_calc_aead_iv(srtp_session_keys_t *session_keys,
v128_t *iv,
srtp_xtd_seq_num_t *seq,
srtp_hdr_t *hdr)
{
v128_t in;
v128_t salt;
#ifdef NO_64BIT_MATH
uint32_t local_roc = ((high32(*seq) << 16) | (low32(*seq) >> 16));
uint16_t local_seq = (uint16_t)(low32(*seq));
#else
uint32_t local_roc = (uint32_t)(*seq >> 16);
uint16_t local_seq = (uint16_t)*seq;
#endif
memset(&in, 0, sizeof(v128_t));
memset(&salt, 0, sizeof(v128_t));
in.v16[5] = htons(local_seq);
local_roc = htonl(local_roc);
memcpy(&in.v16[3], &local_roc, sizeof(local_roc));
/*
* Copy in the RTP SSRC value
*/
memcpy(&in.v8[2], &hdr->ssrc, 4);
debug_print(mod_srtp, "Pre-salted RTP IV = %s\n", v128_hex_string(&in));
/*
* Get the SALT value from the context
*/
memcpy(salt.v8, session_keys->salt, SRTP_AEAD_SALT_LEN);
debug_print(mod_srtp, "RTP SALT = %s\n", v128_hex_string(&salt));
/*
* Finally, apply tyhe SALT to the input
*/
v128_xor(iv, &in, &salt);
}
srtp_session_keys_t *srtp_get_session_keys(srtp_stream_ctx_t *stream,
uint8_t *hdr,
const unsigned int *pkt_octet_len,
unsigned int *mki_size)
{
unsigned int base_mki_start_location = *pkt_octet_len;
unsigned int mki_start_location = 0;
unsigned int tag_len = 0;
unsigned int i = 0;
// Determine the authentication tag size
if (stream->session_keys[0].rtp_cipher->algorithm == SRTP_AES_GCM_128 ||
stream->session_keys[0].rtp_cipher->algorithm == SRTP_AES_GCM_256) {
tag_len = 0;
} else {
tag_len = srtp_auth_get_tag_length(stream->session_keys[0].rtp_auth);
}
if (tag_len > base_mki_start_location) {
*mki_size = 0;
return NULL;
}
base_mki_start_location -= tag_len;
for (i = 0; i < stream->num_master_keys; i++) {
if (stream->session_keys[i].mki_size != 0 &&
stream->session_keys[i].mki_size <= base_mki_start_location) {
*mki_size = stream->session_keys[i].mki_size;
mki_start_location = base_mki_start_location - *mki_size;
if (memcmp(hdr + mki_start_location, stream->session_keys[i].mki_id,
*mki_size) == 0) {
return &stream->session_keys[i];
}
}
}
*mki_size = 0;
return NULL;
}
static srtp_err_status_t srtp_estimate_index(srtp_rdbx_t *rdbx,
uint32_t roc,
srtp_xtd_seq_num_t *est,
srtp_sequence_number_t seq,
int *delta)
{
#ifdef NO_64BIT_MATH
uint32_t internal_pkt_idx_reduced;
uint32_t external_pkt_idx_reduced;
uint32_t internal_roc;
uint32_t roc_difference;
#endif
#ifdef NO_64BIT_MATH
*est = (srtp_xtd_seq_num_t)make64(roc >> 16, (roc << 16) | seq);
*delta = low32(est) - rdbx->index;
#else
*est = (srtp_xtd_seq_num_t)(((uint64_t)roc) << 16) | seq;
*delta = (int)(*est - rdbx->index);
#endif
if (*est > rdbx->index) {
#ifdef NO_64BIT_MATH
internal_roc = (uint32_t)(rdbx->index >> 16);
roc_difference = roc - internal_roc;
if (roc_difference > 1) {
*delta = 0;
return srtp_err_status_pkt_idx_adv;
}
internal_pkt_idx_reduced = (uint32_t)(rdbx->index & 0xFFFF);
external_pkt_idx_reduced = (uint32_t)((roc_difference << 16) | seq);
if (external_pkt_idx_reduced - internal_pkt_idx_reduced >
seq_num_median) {
*delta = 0;
return srtp_err_status_pkt_idx_adv;
}
#else
if (*est - rdbx->index > seq_num_median) {
*delta = 0;
return srtp_err_status_pkt_idx_adv;
}
#endif
} else if (*est < rdbx->index) {
#ifdef NO_64BIT_MATH
internal_roc = (uint32_t)(rdbx->index >> 16);
roc_difference = internal_roc - roc;
if (roc_difference > 1) {
*delta = 0;
return srtp_err_status_pkt_idx_adv;
}
internal_pkt_idx_reduced =
(uint32_t)((roc_difference << 16) | rdbx->index & 0xFFFF);
external_pkt_idx_reduced = (uint32_t)(seq);
if (internal_pkt_idx_reduced - external_pkt_idx_reduced >
seq_num_median) {
*delta = 0;
return srtp_err_status_pkt_idx_old;
}
#else
if (rdbx->index - *est > seq_num_median) {
*delta = 0;
return srtp_err_status_pkt_idx_old;
}
#endif
}
return srtp_err_status_ok;
}
static srtp_err_status_t srtp_get_est_pkt_index(srtp_hdr_t *hdr,
srtp_stream_ctx_t *stream,
srtp_xtd_seq_num_t *est,
int *delta)
{
srtp_err_status_t result = srtp_err_status_ok;
if (stream->pending_roc) {
result = srtp_estimate_index(&stream->rtp_rdbx, stream->pending_roc,
est, ntohs(hdr->seq), delta);
} else {
/* estimate packet index from seq. num. in header */
*delta =
srtp_rdbx_estimate_index(&stream->rtp_rdbx, est, ntohs(hdr->seq));
}
#ifdef NO_64BIT_MATH
debug_print2(mod_srtp, "estimated u_packet index: %08x%08x", high32(*est),
low32(*est));
#else
debug_print(mod_srtp, "estimated u_packet index: %016" PRIx64, *est);
#endif
return result;
}
/*
* This function handles outgoing SRTP packets while in AEAD mode,
* which currently supports AES-GCM encryption. All packets are
* encrypted and authenticated.
*/
static srtp_err_status_t srtp_protect_aead(srtp_ctx_t *ctx,
srtp_stream_ctx_t *stream,
void *rtp_hdr,
unsigned int *pkt_octet_len,
srtp_session_keys_t *session_keys,
unsigned int use_mki)
{
srtp_hdr_t *hdr = (srtp_hdr_t *)rtp_hdr;
uint32_t *enc_start; /* pointer to start of encrypted portion */
int enc_octet_len = 0; /* number of octets in encrypted portion */
srtp_xtd_seq_num_t est; /* estimated xtd_seq_num_t of *hdr */
int delta; /* delta of local pkt idx and that in hdr */
srtp_err_status_t status;
uint32_t tag_len;
v128_t iv;
unsigned int aad_len;
srtp_hdr_xtnd_t *xtn_hdr = NULL;
unsigned int mki_size = 0;
uint8_t *mki_location = NULL;
debug_print0(mod_srtp, "function srtp_protect_aead");
/*
* update the key usage limit, and check it to make sure that we
* didn't just hit either the soft limit or the hard limit, and call
* the event handler if we hit either.
*/
switch (srtp_key_limit_update(session_keys->limit)) {
case srtp_key_event_normal:
break;
case srtp_key_event_hard_limit:
srtp_handle_event(ctx, stream, event_key_hard_limit);
return srtp_err_status_key_expired;
case srtp_key_event_soft_limit:
default:
srtp_handle_event(ctx, stream, event_key_soft_limit);
break;
}
/* get tag length from stream */
tag_len = srtp_auth_get_tag_length(session_keys->rtp_auth);
/*
* find starting point for encryption and length of data to be
* encrypted - the encrypted portion starts after the rtp header
* extension, if present; otherwise, it starts after the last csrc,
* if any are present
*/
enc_start = (uint32_t *)hdr + uint32s_in_rtp_header + hdr->cc;
if (hdr->x == 1) {
xtn_hdr = (srtp_hdr_xtnd_t *)enc_start;
enc_start += (ntohs(xtn_hdr->length) + 1);
}
/* note: the passed size is without the auth tag */
if (!((uint8_t *)enc_start <= (uint8_t *)hdr + *pkt_octet_len))
return srtp_err_status_parse_err;
enc_octet_len =
(int)(*pkt_octet_len - ((uint8_t *)enc_start - (uint8_t *)hdr));
if (enc_octet_len < 0)
return srtp_err_status_parse_err;
/*
* estimate the packet index using the start of the replay window
* and the sequence number from the header
*/
delta = srtp_rdbx_estimate_index(&stream->rtp_rdbx, &est, ntohs(hdr->seq));
status = srtp_rdbx_check(&stream->rtp_rdbx, delta);
if (status) {
if (status != srtp_err_status_replay_fail || !stream->allow_repeat_tx) {
return status; /* we've been asked to reuse an index */
}
} else {
srtp_rdbx_add_index(&stream->rtp_rdbx, delta);
}
#ifdef NO_64BIT_MATH
debug_print2(mod_srtp, "estimated packet index: %08x%08x", high32(est),
low32(est));
#else
debug_print(mod_srtp, "estimated packet index: %016" PRIx64, est);
#endif
/*
* AEAD uses a new IV formation method
*/
srtp_calc_aead_iv(session_keys, &iv, &est, hdr);
/* shift est, put into network byte order */
#ifdef NO_64BIT_MATH
est = be64_to_cpu(
make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16));
#else
est = be64_to_cpu(est << 16);
#endif
status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv,
srtp_direction_encrypt);
if (!status && session_keys->rtp_xtn_hdr_cipher) {
iv.v32[0] = 0;
iv.v32[1] = hdr->ssrc;
iv.v64[1] = est;
status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher,
(uint8_t *)&iv, srtp_direction_encrypt);
}
if (status) {
return srtp_err_status_cipher_fail;
}
if (xtn_hdr && session_keys->rtp_xtn_hdr_cipher) {
/*
* extensions header encryption RFC 6904
*/
status = srtp_process_header_encryption(stream, xtn_hdr, session_keys);
if (status) {
return status;
}
}
/*
* Set the AAD over the RTP header
*/
aad_len = (uint8_t *)enc_start - (uint8_t *)hdr;
status =
srtp_cipher_set_aad(session_keys->rtp_cipher, (uint8_t *)hdr, aad_len);
if (status) {
return (srtp_err_status_cipher_fail);
}
/* Encrypt the payload */
status = srtp_cipher_encrypt(session_keys->rtp_cipher, (uint8_t *)enc_start,
(unsigned int *)&enc_octet_len);
if (status) {
return srtp_err_status_cipher_fail;
}
/*
* If we're doing GCM, we need to get the tag
* and append that to the output
*/
status =
srtp_cipher_get_tag(session_keys->rtp_cipher,
(uint8_t *)enc_start + enc_octet_len, &tag_len);
if (status) {
return (srtp_err_status_cipher_fail);
}
mki_location = (uint8_t *)hdr + *pkt_octet_len + tag_len;
mki_size = srtp_inject_mki(mki_location, session_keys, use_mki);
/* increase the packet length by the length of the auth tag */
*pkt_octet_len += tag_len;
/* increase the packet length by the length of the mki_size */
*pkt_octet_len += mki_size;
return srtp_err_status_ok;
}
/*
* This function handles incoming SRTP packets while in AEAD mode,
* which currently supports AES-GCM encryption. All packets are
* encrypted and authenticated. Note, the auth tag is at the end
* of the packet stream and is automatically checked by GCM
* when decrypting the payload.
*/
static srtp_err_status_t srtp_unprotect_aead(srtp_ctx_t *ctx,
srtp_stream_ctx_t *stream,
int delta,
srtp_xtd_seq_num_t est,
void *srtp_hdr,
unsigned int *pkt_octet_len,
srtp_session_keys_t *session_keys,
unsigned int mki_size)
{
srtp_hdr_t *hdr = (srtp_hdr_t *)srtp_hdr;
uint32_t *enc_start; /* pointer to start of encrypted portion */
unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */
v128_t iv;
srtp_err_status_t status;
int tag_len;
unsigned int aad_len;
srtp_hdr_xtnd_t *xtn_hdr = NULL;
debug_print0(mod_srtp, "function srtp_unprotect_aead");
#ifdef NO_64BIT_MATH
debug_print2(mod_srtp, "estimated u_packet index: %08x%08x", high32(est),
low32(est));
#else
debug_print(mod_srtp, "estimated u_packet index: %016" PRIx64, est);
#endif
/* get tag length from stream */
tag_len = srtp_auth_get_tag_length(session_keys->rtp_auth);
/*
* AEAD uses a new IV formation method
*/
srtp_calc_aead_iv(session_keys, &iv, &est, hdr);
status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv,
srtp_direction_decrypt);
if (!status && session_keys->rtp_xtn_hdr_cipher) {
iv.v32[0] = 0;
iv.v32[1] = hdr->ssrc;
#ifdef NO_64BIT_MATH
iv.v64[1] = be64_to_cpu(
make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16));
#else
iv.v64[1] = be64_to_cpu(est << 16);
#endif
status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher,
(uint8_t *)&iv, srtp_direction_encrypt);
}
if (status) {
return srtp_err_status_cipher_fail;
}
/*
* find starting point for decryption and length of data to be
* decrypted - the encrypted portion starts after the rtp header
* extension, if present; otherwise, it starts after the last csrc,
* if any are present
*/
enc_start = (uint32_t *)hdr + uint32s_in_rtp_header + hdr->cc;
if (hdr->x == 1) {
xtn_hdr = (srtp_hdr_xtnd_t *)enc_start;
enc_start += (ntohs(xtn_hdr->length) + 1);
}
if (!((uint8_t *)enc_start <=
(uint8_t *)hdr + (*pkt_octet_len - tag_len - mki_size)))
return srtp_err_status_parse_err;
/*
* We pass the tag down to the cipher when doing GCM mode
*/
enc_octet_len = (unsigned int)(*pkt_octet_len - mki_size -
((uint8_t *)enc_start - (uint8_t *)hdr));
/*
* Sanity check the encrypted payload length against
* the tag size. It must always be at least as large
* as the tag length.
*/
if (enc_octet_len < (unsigned int)tag_len) {
return srtp_err_status_cipher_fail;
}
/*
* update the key usage limit, and check it to make sure that we
* didn't just hit either the soft limit or the hard limit, and call
* the event handler if we hit either.
*/
switch (srtp_key_limit_update(session_keys->limit)) {
case srtp_key_event_normal:
break;
case srtp_key_event_soft_limit:
srtp_handle_event(ctx, stream, event_key_soft_limit);
break;
case srtp_key_event_hard_limit:
srtp_handle_event(ctx, stream, event_key_hard_limit);
return srtp_err_status_key_expired;
default:
break;
}
/*
* Set the AAD for AES-GCM, which is the RTP header
*/
aad_len = (uint8_t *)enc_start - (uint8_t *)hdr;
status =
srtp_cipher_set_aad(session_keys->rtp_cipher, (uint8_t *)hdr, aad_len);
if (status) {
return (srtp_err_status_cipher_fail);
}
/* Decrypt the ciphertext. This also checks the auth tag based
* on the AAD we just specified above */
status = srtp_cipher_decrypt(session_keys->rtp_cipher, (uint8_t *)enc_start,
&enc_octet_len);
if (status) {
return status;
}
if (xtn_hdr && session_keys->rtp_xtn_hdr_cipher) {
/*
* extensions header encryption RFC 6904
*/
status = srtp_process_header_encryption(stream, xtn_hdr, session_keys);
if (status) {
return status;
}
}
/*
* verify that stream is for received traffic - this check will
* detect SSRC collisions, since a stream that appears in both
* srtp_protect() and srtp_unprotect() will fail this test in one of
* those functions.
*
* we do this check *after* the authentication check, so that the
* latter check will catch any attempts to fool us into thinking
* that we've got a collision
*/
if (stream->direction != dir_srtp_receiver) {
if (stream->direction == dir_unknown) {
stream->direction = dir_srtp_receiver;
} else {
srtp_handle_event(ctx, stream, event_ssrc_collision);
}
}
/*
* if the stream is a 'provisional' one, in which the template context
* is used, then we need to allocate a new stream at this point, since
* the authentication passed
*/
if (stream == ctx->stream_template) {
srtp_stream_ctx_t *new_stream;
/*
* allocate and initialize a new stream
*
* note that we indicate failure if we can't allocate the new
* stream, and some implementations will want to not return
* failure here
*/
status =
srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream);
if (status) {
return status;
}
/* add new stream to the head of the stream_list */
new_stream->next = ctx->stream_list;
ctx->stream_list = new_stream;
/* set stream (the pointer used in this function) */
stream = new_stream;
}
/*
* the message authentication function passed, so add the packet
* index into the replay database
*/
srtp_rdbx_add_index(&stream->rtp_rdbx, delta);
/* decrease the packet length by the length of the auth tag */
*pkt_octet_len -= tag_len;
/* decrease the packet length by the length of the mki_size */
*pkt_octet_len -= mki_size;
return srtp_err_status_ok;
}
srtp_err_status_t srtp_protect(srtp_ctx_t *ctx,
void *rtp_hdr,
int *pkt_octet_len)
{
return srtp_protect_mki(ctx, rtp_hdr, pkt_octet_len, 0, 0);
}
srtp_err_status_t srtp_protect_mki(srtp_ctx_t *ctx,
void *rtp_hdr,
int *pkt_octet_len,
unsigned int use_mki,
unsigned int mki_index)
{
srtp_hdr_t *hdr = (srtp_hdr_t *)rtp_hdr;
uint32_t *enc_start; /* pointer to start of encrypted portion */
uint32_t *auth_start; /* pointer to start of auth. portion */
int enc_octet_len = 0; /* number of octets in encrypted portion */
srtp_xtd_seq_num_t est; /* estimated xtd_seq_num_t of *hdr */
int delta; /* delta of local pkt idx and that in hdr */
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */
srtp_err_status_t status;
int tag_len;
srtp_stream_ctx_t *stream;
uint32_t prefix_len;
srtp_hdr_xtnd_t *xtn_hdr = NULL;
unsigned int mki_size = 0;
srtp_session_keys_t *session_keys = NULL;
uint8_t *mki_location = NULL;
int advance_packet_index = 0;
debug_print0(mod_srtp, "function srtp_protect");
/* we assume the hdr is 32-bit aligned to start */
/* Verify RTP header */
status = srtp_validate_rtp_header(rtp_hdr, pkt_octet_len);
if (status)
return status;
/* check the packet length - it must at least contain a full header */
if (*pkt_octet_len < octets_in_rtp_header)
return srtp_err_status_bad_param;
/*
* look up ssrc in srtp_stream list, and process the packet with
* the appropriate stream. if we haven't seen this stream before,
* there's a template key for this srtp_session, and the cipher
* supports key-sharing, then we assume that a new stream using
* that key has just started up
*/
stream = srtp_get_stream(ctx, hdr->ssrc);
if (stream == NULL) {
if (ctx->stream_template != NULL) {
srtp_stream_ctx_t *new_stream;
/* allocate and initialize a new stream */
status =
srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream);
if (status)
return status;
/* add new stream to the head of the stream_list */
new_stream->next = ctx->stream_list;
ctx->stream_list = new_stream;
/* set direction to outbound */
new_stream->direction = dir_srtp_sender;
/* set stream (the pointer used in this function) */
stream = new_stream;
} else {
/* no template stream, so we return an error */
return srtp_err_status_no_ctx;
}
}
/*
* verify that stream is for sending traffic - this check will
* detect SSRC collisions, since a stream that appears in both
* srtp_protect() and srtp_unprotect() will fail this test in one of
* those functions.
*/
if (stream->direction != dir_srtp_sender) {
if (stream->direction == dir_unknown) {
stream->direction = dir_srtp_sender;
} else {
srtp_handle_event(ctx, stream, event_ssrc_collision);
}
}
session_keys =
srtp_get_session_keys_with_mki_index(stream, use_mki, mki_index);
if (session_keys == NULL)
return srtp_err_status_bad_mki;
/*
* Check if this is an AEAD stream (GCM mode). If so, then dispatch
* the request to our AEAD handler.
*/
if (session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_128 ||
session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_256) {
return srtp_protect_aead(ctx, stream, rtp_hdr,
(unsigned int *)pkt_octet_len, session_keys,
use_mki);
}
/*
* update the key usage limit, and check it to make sure that we
* didn't just hit either the soft limit or the hard limit, and call
* the event handler if we hit either.
*/
switch (srtp_key_limit_update(session_keys->limit)) {
case srtp_key_event_normal:
break;
case srtp_key_event_soft_limit:
srtp_handle_event(ctx, stream, event_key_soft_limit);
break;
case srtp_key_event_hard_limit:
srtp_handle_event(ctx, stream, event_key_hard_limit);
return srtp_err_status_key_expired;
default:
break;
}
/* get tag length from stream */
tag_len = srtp_auth_get_tag_length(session_keys->rtp_auth);
/*
* find starting point for encryption and length of data to be
* encrypted - the encrypted portion starts after the rtp header
* extension, if present; otherwise, it starts after the last csrc,
* if any are present
*
* if we're not providing confidentiality, set enc_start to NULL
*/
if (stream->rtp_services & sec_serv_conf) {
enc_start = (uint32_t *)hdr + uint32s_in_rtp_header + hdr->cc;
if (hdr->x == 1) {
xtn_hdr = (srtp_hdr_xtnd_t *)enc_start;
enc_start += (ntohs(xtn_hdr->length) + 1);
}
/* note: the passed size is without the auth tag */
if (!((uint8_t *)enc_start <= (uint8_t *)hdr + *pkt_octet_len))
return srtp_err_status_parse_err;
enc_octet_len =
(int)(*pkt_octet_len - ((uint8_t *)enc_start - (uint8_t *)hdr));
if (enc_octet_len < 0)
return srtp_err_status_parse_err;
} else {
enc_start = NULL;
}
mki_location = (uint8_t *)hdr + *pkt_octet_len;
mki_size = srtp_inject_mki(mki_location, session_keys, use_mki);
/*
* if we're providing authentication, set the auth_start and auth_tag
* pointers to the proper locations; otherwise, set auth_start to NULL
* to indicate that no authentication is needed
*/
if (stream->rtp_services & sec_serv_auth) {
auth_start = (uint32_t *)hdr;
auth_tag = (uint8_t *)hdr + *pkt_octet_len + mki_size;
} else {
auth_start = NULL;
auth_tag = NULL;
}
/*
* estimate the packet index using the start of the replay window
* and the sequence number from the header
*/
status = srtp_get_est_pkt_index(hdr, stream, &est, &delta);
if (status && (status != srtp_err_status_pkt_idx_adv))
return status;
if (status == srtp_err_status_pkt_idx_adv)
advance_packet_index = 1;
if (advance_packet_index) {
srtp_rdbx_set_roc_seq(&stream->rtp_rdbx, (uint32_t)(est >> 16),
(uint16_t)(est & 0xFFFF));
stream->pending_roc = 0;
srtp_rdbx_add_index(&stream->rtp_rdbx, 0);
} else {
status = srtp_rdbx_check(&stream->rtp_rdbx, delta);
if (status) {
if (status != srtp_err_status_replay_fail ||
!stream->allow_repeat_tx)
return status; /* we've been asked to reuse an index */
}
srtp_rdbx_add_index(&stream->rtp_rdbx, delta);
}
#ifdef NO_64BIT_MATH
debug_print2(mod_srtp, "estimated packet index: %08x%08x", high32(est),
low32(est));
#else
debug_print(mod_srtp, "estimated packet index: %016" PRIx64, est);
#endif
/*
* if we're using rindael counter mode, set nonce and seq
*/
if (session_keys->rtp_cipher->type->id == SRTP_AES_ICM_128 ||
session_keys->rtp_cipher->type->id == SRTP_AES_ICM_192 ||
session_keys->rtp_cipher->type->id == SRTP_AES_ICM_256) {
v128_t iv;
iv.v32[0] = 0;
iv.v32[1] = hdr->ssrc;
#ifdef NO_64BIT_MATH
iv.v64[1] = be64_to_cpu(
make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16));
#else
iv.v64[1] = be64_to_cpu(est << 16);
#endif
status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv,
srtp_direction_encrypt);
if (!status && session_keys->rtp_xtn_hdr_cipher) {
status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher,
(uint8_t *)&iv, srtp_direction_encrypt);
}
} else {
v128_t iv;
/* otherwise, set the index to est */
#ifdef NO_64BIT_MATH
iv.v32[0] = 0;
iv.v32[1] = 0;
#else
iv.v64[0] = 0;
#endif
iv.v64[1] = be64_to_cpu(est);
status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv,
srtp_direction_encrypt);
if (!status && session_keys->rtp_xtn_hdr_cipher) {
status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher,
(uint8_t *)&iv, srtp_direction_encrypt);
}
}
if (status)
return srtp_err_status_cipher_fail;
/* shift est, put into network byte order */
#ifdef NO_64BIT_MATH
est = be64_to_cpu(
make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16));
#else
est = be64_to_cpu(est << 16);
#endif
/*
* if we're authenticating using a universal hash, put the keystream
* prefix into the authentication tag
*/
if (auth_start) {
prefix_len = srtp_auth_get_prefix_length(session_keys->rtp_auth);
if (prefix_len) {
status = srtp_cipher_output(session_keys->rtp_cipher, auth_tag,
&prefix_len);
if (status)
return srtp_err_status_cipher_fail;
debug_print(mod_srtp, "keystream prefix: %s",
srtp_octet_string_hex_string(auth_tag, prefix_len));
}
}
if (xtn_hdr && session_keys->rtp_xtn_hdr_cipher) {
/*
* extensions header encryption RFC 6904
*/
status = srtp_process_header_encryption(stream, xtn_hdr, session_keys);
if (status) {
return status;
}
}
/* if we're encrypting, exor keystream into the message */
if (enc_start) {
status =
srtp_cipher_encrypt(session_keys->rtp_cipher, (uint8_t *)enc_start,
(unsigned int *)&enc_octet_len);
if (status)
return srtp_err_status_cipher_fail;
}
/*
* if we're authenticating, run authentication function and put result
* into the auth_tag
*/
if (auth_start) {
/* initialize auth func context */
status = srtp_auth_start(session_keys->rtp_auth);
if (status)
return status;
/* run auth func over packet */
status = srtp_auth_update(session_keys->rtp_auth, (uint8_t *)auth_start,
*pkt_octet_len);
if (status)
return status;
/* run auth func over ROC, put result into auth_tag */
debug_print(mod_srtp, "estimated packet index: %016" PRIx64, est);
status = srtp_auth_compute(session_keys->rtp_auth, (uint8_t *)&est, 4,
auth_tag);
debug_print(mod_srtp, "srtp auth tag: %s",
srtp_octet_string_hex_string(auth_tag, tag_len));
if (status)
return srtp_err_status_auth_fail;
}
if (auth_tag) {
/* increase the packet length by the length of the auth tag */
*pkt_octet_len += tag_len;
}
if (use_mki) {
/* increate the packet length by the mki size */
*pkt_octet_len += mki_size;
}
return srtp_err_status_ok;
}
srtp_err_status_t srtp_unprotect(srtp_ctx_t *ctx,
void *srtp_hdr,
int *pkt_octet_len)
{
return srtp_unprotect_mki(ctx, srtp_hdr, pkt_octet_len, 0);
}
srtp_err_status_t srtp_unprotect_mki(srtp_ctx_t *ctx,
void *srtp_hdr,
int *pkt_octet_len,
unsigned int use_mki)
{
srtp_hdr_t *hdr = (srtp_hdr_t *)srtp_hdr;
uint32_t *enc_start; /* pointer to start of encrypted portion */
uint32_t *auth_start; /* pointer to start of auth. portion */
unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */
srtp_xtd_seq_num_t est; /* estimated xtd_seq_num_t of *hdr */
int delta; /* delta of local pkt idx and that in hdr */
v128_t iv;
srtp_err_status_t status;
srtp_stream_ctx_t *stream;
uint8_t tmp_tag[SRTP_MAX_TAG_LEN];
uint32_t tag_len, prefix_len;
srtp_hdr_xtnd_t *xtn_hdr = NULL;
unsigned int mki_size = 0;
srtp_session_keys_t *session_keys = NULL;
int advance_packet_index = 0;
uint32_t roc_to_set = 0;
uint16_t seq_to_set = 0;
debug_print0(mod_srtp, "function srtp_unprotect");
/* we assume the hdr is 32-bit aligned to start */
/* Verify RTP header */
status = srtp_validate_rtp_header(srtp_hdr, pkt_octet_len);
if (status)
return status;
/* check the packet length - it must at least contain a full header */
if (*pkt_octet_len < octets_in_rtp_header)
return srtp_err_status_bad_param;
/*
* look up ssrc in srtp_stream list, and process the packet with
* the appropriate stream. if we haven't seen this stream before,
* there's only one key for this srtp_session, and the cipher
* supports key-sharing, then we assume that a new stream using
* that key has just started up
*/
stream = srtp_get_stream(ctx, hdr->ssrc);
if (stream == NULL) {
if (ctx->stream_template != NULL) {
stream = ctx->stream_template;
debug_print(mod_srtp, "using provisional stream (SSRC: 0x%08x)",
ntohl(hdr->ssrc));
/*
* set estimated packet index to sequence number from header,
* and set delta equal to the same value
*/
#ifdef NO_64BIT_MATH
est = (srtp_xtd_seq_num_t)make64(0, ntohs(hdr->seq));
delta = low32(est);
#else
est = (srtp_xtd_seq_num_t)ntohs(hdr->seq);
delta = (int)est;
#endif
} else {
/*
* no stream corresponding to SSRC found, and we don't do
* key-sharing, so return an error
*/
return srtp_err_status_no_ctx;
}
} else {
status = srtp_get_est_pkt_index(hdr, stream, &est, &delta);
if (status && (status != srtp_err_status_pkt_idx_adv))
return status;
if (status == srtp_err_status_pkt_idx_adv) {
advance_packet_index = 1;
roc_to_set = (uint32_t)(est >> 16);
seq_to_set = (uint16_t)(est & 0xFFFF);
}
/* check replay database */
if (!advance_packet_index) {
status = srtp_rdbx_check(&stream->rtp_rdbx, delta);
if (status)
return status;
}
}
#ifdef NO_64BIT_MATH
debug_print2(mod_srtp, "estimated u_packet index: %08x%08x", high32(est),
low32(est));
#else
debug_print(mod_srtp, "estimated u_packet index: %016" PRIx64, est);
#endif
/* Determine if MKI is being used and what session keys should be used */
if (use_mki) {
session_keys = srtp_get_session_keys(
stream, (uint8_t *)hdr, (const unsigned int *)pkt_octet_len,
&mki_size);
if (session_keys == NULL)
return srtp_err_status_bad_mki;
} else {
session_keys = &stream->session_keys[0];
}
/*
* Check if this is an AEAD stream (GCM mode). If so, then dispatch
* the request to our AEAD handler.
*/
if (session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_128 ||
session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_256) {
return srtp_unprotect_aead(ctx, stream, delta, est, srtp_hdr,
(unsigned int *)pkt_octet_len, session_keys,
mki_size);
}
/* get tag length from stream */
tag_len = srtp_auth_get_tag_length(session_keys->rtp_auth);
/*
* set the cipher's IV properly, depending on whatever cipher we
* happen to be using
*/
if (session_keys->rtp_cipher->type->id == SRTP_AES_ICM_128 ||
session_keys->rtp_cipher->type->id == SRTP_AES_ICM_192 ||
session_keys->rtp_cipher->type->id == SRTP_AES_ICM_256) {
/* aes counter mode */
iv.v32[0] = 0;
iv.v32[1] = hdr->ssrc; /* still in network order */
#ifdef NO_64BIT_MATH
iv.v64[1] = be64_to_cpu(
make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16));
#else
iv.v64[1] = be64_to_cpu(est << 16);
#endif
status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv,
srtp_direction_decrypt);
if (!status && session_keys->rtp_xtn_hdr_cipher) {
status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher,
(uint8_t *)&iv, srtp_direction_decrypt);
}
} else {
/* no particular format - set the iv to the pakcet index */
#ifdef NO_64BIT_MATH
iv.v32[0] = 0;
iv.v32[1] = 0;
#else
iv.v64[0] = 0;
#endif
iv.v64[1] = be64_to_cpu(est);
status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv,
srtp_direction_decrypt);
if (!status && session_keys->rtp_xtn_hdr_cipher) {
status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher,
(uint8_t *)&iv, srtp_direction_decrypt);
}
}
if (status)
return srtp_err_status_cipher_fail;
/* shift est, put into network byte order */
#ifdef NO_64BIT_MATH
est = be64_to_cpu(
make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16));
#else
est = be64_to_cpu(est << 16);
#endif
/*
* find starting point for decryption and length of data to be
* decrypted - the encrypted portion starts after the rtp header
* extension, if present; otherwise, it starts after the last csrc,
* if any are present
*
* if we're not providing confidentiality, set enc_start to NULL
*/
if (stream->rtp_services & sec_serv_conf) {
enc_start = (uint32_t *)hdr + uint32s_in_rtp_header + hdr->cc;
if (hdr->x == 1) {
xtn_hdr = (srtp_hdr_xtnd_t *)enc_start;
enc_start += (ntohs(xtn_hdr->length) + 1);
}
if (!((uint8_t *)enc_start <=
(uint8_t *)hdr + (*pkt_octet_len - tag_len - mki_size)))
return srtp_err_status_parse_err;
enc_octet_len = (uint32_t)(*pkt_octet_len - tag_len - mki_size -
((uint8_t *)enc_start - (uint8_t *)hdr));
} else {
enc_start = NULL;
}
/*
* if we're providing authentication, set the auth_start and auth_tag
* pointers to the proper locations; otherwise, set auth_start to NULL
* to indicate that no authentication is needed
*/
if (stream->rtp_services & sec_serv_auth) {
auth_start = (uint32_t *)hdr;
auth_tag = (uint8_t *)hdr + *pkt_octet_len - tag_len;
} else {
auth_start = NULL;
auth_tag = NULL;
}
/*
* if we expect message authentication, run the authentication
* function and compare the result with the value of the auth_tag
*/
if (auth_start) {
/*
* if we're using a universal hash, then we need to compute the
* keystream prefix for encrypting the universal hash output
*
* if the keystream prefix length is zero, then we know that
* the authenticator isn't using a universal hash function
*/
if (session_keys->rtp_auth->prefix_len != 0) {
prefix_len = srtp_auth_get_prefix_length(session_keys->rtp_auth);
status = srtp_cipher_output(session_keys->rtp_cipher, tmp_tag,
&prefix_len);
debug_print(mod_srtp, "keystream prefix: %s",
srtp_octet_string_hex_string(tmp_tag, prefix_len));
if (status)
return srtp_err_status_cipher_fail;
}
/* initialize auth func context */
status = srtp_auth_start(session_keys->rtp_auth);
if (status)
return status;
/* now compute auth function over packet */
status = srtp_auth_update(session_keys->rtp_auth, (uint8_t *)auth_start,
*pkt_octet_len - tag_len - mki_size);
if (status)
return status;
/* run auth func over ROC, then write tmp tag */
status = srtp_auth_compute(session_keys->rtp_auth, (uint8_t *)&est, 4,
tmp_tag);
debug_print(mod_srtp, "computed auth tag: %s",
srtp_octet_string_hex_string(tmp_tag, tag_len));
debug_print(mod_srtp, "packet auth tag: %s",
srtp_octet_string_hex_string(auth_tag, tag_len));
if (status)
return srtp_err_status_auth_fail;
if (srtp_octet_string_is_eq(tmp_tag, auth_tag, tag_len))
return srtp_err_status_auth_fail;
}
/*
* update the key usage limit, and check it to make sure that we
* didn't just hit either the soft limit or the hard limit, and call
* the event handler if we hit either.
*/
switch (srtp_key_limit_update(session_keys->limit)) {
case srtp_key_event_normal:
break;
case srtp_key_event_soft_limit:
srtp_handle_event(ctx, stream, event_key_soft_limit);
break;
case srtp_key_event_hard_limit:
srtp_handle_event(ctx, stream, event_key_hard_limit);
return srtp_err_status_key_expired;
default:
break;
}
if (xtn_hdr && session_keys->rtp_xtn_hdr_cipher) {
/* extensions header encryption RFC 6904 */
status = srtp_process_header_encryption(stream, xtn_hdr, session_keys);
if (status) {
return status;
}
}
/* if we're decrypting, add keystream into ciphertext */
if (enc_start) {
status = srtp_cipher_decrypt(session_keys->rtp_cipher,
(uint8_t *)enc_start, &enc_octet_len);
if (status)
return srtp_err_status_cipher_fail;
}
/*
* verify that stream is for received traffic - this check will
* detect SSRC collisions, since a stream that appears in both
* srtp_protect() and srtp_unprotect() will fail this test in one of
* those functions.
*
* we do this check *after* the authentication check, so that the
* latter check will catch any attempts to fool us into thinking
* that we've got a collision
*/
if (stream->direction != dir_srtp_receiver) {
if (stream->direction == dir_unknown) {
stream->direction = dir_srtp_receiver;
} else {
srtp_handle_event(ctx, stream, event_ssrc_collision);
}
}
/*
* if the stream is a 'provisional' one, in which the template context
* is used, then we need to allocate a new stream at this point, since
* the authentication passed
*/
if (stream == ctx->stream_template) {
srtp_stream_ctx_t *new_stream;
/*
* allocate and initialize a new stream
*
* note that we indicate failure if we can't allocate the new
* stream, and some implementations will want to not return
* failure here
*/
status =
srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream);
if (status)
return status;
/* add new stream to the head of the stream_list */
new_stream->next = ctx->stream_list;
ctx->stream_list = new_stream;
/* set stream (the pointer used in this function) */
stream = new_stream;
}
/*
* the message authentication function passed, so add the packet
* index into the replay database
*/
if (advance_packet_index) {
srtp_rdbx_set_roc_seq(&stream->rtp_rdbx, roc_to_set, seq_to_set);
stream->pending_roc = 0;
srtp_rdbx_add_index(&stream->rtp_rdbx, 0);
} else {
srtp_rdbx_add_index(&stream->rtp_rdbx, delta);
}
/* decrease the packet length by the length of the auth tag */
*pkt_octet_len -= tag_len;
/* decrease the packet length by the mki size */
*pkt_octet_len -= mki_size;
return srtp_err_status_ok;
}
srtp_err_status_t srtp_init()
{
srtp_err_status_t status;
/* initialize crypto kernel */
status = srtp_crypto_kernel_init();
if (status)
return status;
/* load srtp debug module into the kernel */
status = srtp_crypto_kernel_load_debug_module(&mod_srtp);
if (status)
return status;
return srtp_err_status_ok;
}
srtp_err_status_t srtp_shutdown()
{
srtp_err_status_t status;
/* shut down crypto kernel */
status = srtp_crypto_kernel_shutdown();
if (status)
return status;
/* shutting down crypto kernel frees the srtp debug module as well */
return srtp_err_status_ok;
}
/*
* srtp_get_stream(ssrc) returns a pointer to the stream corresponding
* to ssrc, or NULL if no stream exists for that ssrc
*
* this is an internal function
*/
srtp_stream_ctx_t *srtp_get_stream(srtp_t srtp, uint32_t ssrc)
{
srtp_stream_ctx_t *stream;
/* walk down list until ssrc is found */
stream = srtp->stream_list;
while (stream != NULL) {
if (stream->ssrc == ssrc)
return stream;
stream = stream->next;
}
/* we haven't found our ssrc, so return a null */
return NULL;
}
srtp_err_status_t srtp_dealloc(srtp_t session)
{
srtp_stream_ctx_t *stream;
srtp_err_status_t status;
/*
* we take a conservative deallocation strategy - if we encounter an
* error deallocating a stream, then we stop trying to deallocate
* memory and just return an error
*/
/* walk list of streams, deallocating as we go */
stream = session->stream_list;
while (stream != NULL) {
srtp_stream_t next = stream->next;
status = srtp_stream_dealloc(stream, session->stream_template);
if (status)
return status;
stream = next;
}
/* deallocate stream template, if there is one */
if (session->stream_template != NULL) {
status = srtp_stream_dealloc(session->stream_template, NULL);
if (status)
return status;
}
/* deallocate session context */
srtp_crypto_free(session);
return srtp_err_status_ok;
}
srtp_err_status_t srtp_add_stream(srtp_t session, const srtp_policy_t *policy)
{
srtp_err_status_t status;
srtp_stream_t tmp;
status = srtp_valid_policy(policy);
if (status != srtp_err_status_ok) {
return status;
}
/* sanity check arguments */
if ((session == NULL) || (policy == NULL) ||
(!srtp_validate_policy_master_keys(policy)))
return srtp_err_status_bad_param;
/* allocate stream */
status = srtp_stream_alloc(&tmp, policy);
if (status) {
return status;
}
/* initialize stream */
status = srtp_stream_init(tmp, policy);
if (status) {
srtp_stream_dealloc(tmp, NULL);
return status;
}
/*
* set the head of the stream list or the template to point to the
* stream that we've just alloced and init'ed, depending on whether
* or not it has a wildcard SSRC value or not
*
* if the template stream has already been set, then the policy is
* inconsistent, so we return a bad_param error code
*/
switch (policy->ssrc.type) {
case (ssrc_any_outbound):
if (session->stream_template) {
srtp_stream_dealloc(tmp, NULL);
return srtp_err_status_bad_param;
}
session->stream_template = tmp;
session->stream_template->direction = dir_srtp_sender;
break;
case (ssrc_any_inbound):
if (session->stream_template) {
srtp_stream_dealloc(tmp, NULL);
return srtp_err_status_bad_param;
}
session->stream_template = tmp;
session->stream_template->direction = dir_srtp_receiver;
break;
case (ssrc_specific):
tmp->next = session->stream_list;
session->stream_list = tmp;
break;
case (ssrc_undefined):
default:
srtp_stream_dealloc(tmp, NULL);
return srtp_err_status_bad_param;
}
return srtp_err_status_ok;
}
srtp_err_status_t srtp_create(srtp_t *session, /* handle for session */
const srtp_policy_t *policy)
{ /* SRTP policy (list) */
srtp_err_status_t stat;
srtp_ctx_t *ctx;
stat = srtp_valid_policy(policy);
if (stat != srtp_err_status_ok) {
return stat;
}
/* sanity check arguments */
if (session == NULL)
return srtp_err_status_bad_param;
/* allocate srtp context and set ctx_ptr */
ctx = (srtp_ctx_t *)srtp_crypto_alloc(sizeof(srtp_ctx_t));
if (ctx == NULL)
return srtp_err_status_alloc_fail;
*session = ctx;
/*
* loop over elements in the policy list, allocating and
* initializing a stream for each element
*/
ctx->stream_template = NULL;
ctx->stream_list = NULL;
ctx->user_data = NULL;
while (policy != NULL) {
stat = srtp_add_stream(ctx, policy);
if (stat) {
/* clean up everything */
srtp_dealloc(*session);
*session = NULL;
return stat;
}
/* set policy to next item in list */
policy = policy->next;
}
return srtp_err_status_ok;
}
srtp_err_status_t srtp_remove_stream(srtp_t session, uint32_t ssrc)
{
srtp_stream_ctx_t *stream, *last_stream;
srtp_err_status_t status;
/* sanity check arguments */
if (session == NULL)
return srtp_err_status_bad_param;
/* find stream in list; complain if not found */
last_stream = stream = session->stream_list;
while ((stream != NULL) && (ssrc != stream->ssrc)) {
last_stream = stream;
stream = stream->next;
}
if (stream == NULL)
return srtp_err_status_no_ctx;
/* remove stream from the list */
if (last_stream == stream)
/* stream was first in list */
session->stream_list = stream->next;
else
last_stream->next = stream->next;
/* deallocate the stream */
status = srtp_stream_dealloc(stream, session->stream_template);
if (status)
return status;
return srtp_err_status_ok;
}
srtp_err_status_t srtp_update(srtp_t session, const srtp_policy_t *policy)
{
srtp_err_status_t stat;
stat = srtp_valid_policy(policy);
if (stat != srtp_err_status_ok) {
return stat;
}
/* sanity check arguments */
if ((session == NULL) || (policy == NULL) ||
(!srtp_validate_policy_master_keys(policy))) {
return srtp_err_status_bad_param;
}
while (policy != NULL) {
stat = srtp_update_stream(session, policy);
if (stat) {
return stat;
}
/* set policy to next item in list */
policy = policy->next;
}
return srtp_err_status_ok;
}
static srtp_err_status_t update_template_streams(srtp_t session,
const srtp_policy_t *policy)
{
srtp_err_status_t status;
srtp_stream_t new_stream_template;
srtp_stream_t new_stream_list = NULL;
status = srtp_valid_policy(policy);
if (status != srtp_err_status_ok) {
return status;
}
if (session->stream_template == NULL) {
return srtp_err_status_bad_param;
}
/* allocate new template stream */
status = srtp_stream_alloc(&new_stream_template, policy);
if (status) {
return status;
}
/* initialize new template stream */
status = srtp_stream_init(new_stream_template, policy);
if (status) {
srtp_crypto_free(new_stream_template);
return status;
}
/* for all old templated streams */
for (;;) {
srtp_stream_t stream;
uint32_t ssrc;
srtp_xtd_seq_num_t old_index;
srtp_rdb_t old_rtcp_rdb;
stream = session->stream_list;
while ((stream != NULL) &&
(stream->session_keys[0].rtp_auth !=
session->stream_template->session_keys[0].rtp_auth)) {
stream = stream->next;
}
if (stream == NULL) {
/* no more templated streams */
break;
}
/* save old extendard seq */
ssrc = stream->ssrc;
old_index = stream->rtp_rdbx.index;
old_rtcp_rdb = stream->rtcp_rdb;
/* remove stream */
status = srtp_remove_stream(session, ssrc);
if (status) {
/* free new allocations */
while (new_stream_list != NULL) {
srtp_stream_t next = new_stream_list->next;
srtp_stream_dealloc(new_stream_list, new_stream_template);
new_stream_list = next;
}
srtp_stream_dealloc(new_stream_template, NULL);
return status;
}
/* allocate and initialize a new stream */
status = srtp_stream_clone(new_stream_template, ssrc, &stream);
if (status) {
/* free new allocations */
while (new_stream_list != NULL) {
srtp_stream_t next = new_stream_list->next;
srtp_stream_dealloc(new_stream_list, new_stream_template);
new_stream_list = next;
}
srtp_stream_dealloc(new_stream_template, NULL);
return status;
}
/* add new stream to the head of the new_stream_list */
stream->next = new_stream_list;
new_stream_list = stream;
/* restore old extended seq */
stream->rtp_rdbx.index = old_index;
stream->rtcp_rdb = old_rtcp_rdb;
}
/* dealloc old template */
srtp_stream_dealloc(session->stream_template, NULL);
/* set new template */
session->stream_template = new_stream_template;
/* add new list */
if (new_stream_list) {
srtp_stream_t tail = new_stream_list;
while (tail->next) {
tail = tail->next;
}
tail->next = session->stream_list;
session->stream_list = new_stream_list;
}
return status;
}
static srtp_err_status_t update_stream(srtp_t session,
const srtp_policy_t *policy)
{
srtp_err_status_t status;
srtp_xtd_seq_num_t old_index;
srtp_rdb_t old_rtcp_rdb;
srtp_stream_t stream;
status = srtp_valid_policy(policy);
if (status != srtp_err_status_ok) {
return status;
}
stream = srtp_get_stream(session, htonl(policy->ssrc.value));
if (stream == NULL) {
return srtp_err_status_bad_param;
}
/* save old extendard seq */
old_index = stream->rtp_rdbx.index;
old_rtcp_rdb = stream->rtcp_rdb;
status = srtp_remove_stream(session, htonl(policy->ssrc.value));
if (status) {
return status;
}
status = srtp_add_stream(session, policy);
if (status) {
return status;
}
stream = srtp_get_stream(session, htonl(policy->ssrc.value));
if (stream == NULL) {
return srtp_err_status_fail;
}
/* restore old extended seq */
stream->rtp_rdbx.index = old_index;
stream->rtcp_rdb = old_rtcp_rdb;
return srtp_err_status_ok;
}
srtp_err_status_t srtp_update_stream(srtp_t session,
const srtp_policy_t *policy)
{
srtp_err_status_t status;
status = srtp_valid_policy(policy);
if (status != srtp_err_status_ok) {
return status;
}
/* sanity check arguments */
if ((session == NULL) || (policy == NULL) ||
(!srtp_validate_policy_master_keys(policy)))
return srtp_err_status_bad_param;
switch (policy->ssrc.type) {
case (ssrc_any_outbound):
case (ssrc_any_inbound):
status = update_template_streams(session, policy);
break;
case (ssrc_specific):
status = update_stream(session, policy);
break;
case (ssrc_undefined):
default:
return srtp_err_status_bad_param;
}
return status;
}
/*
* The default policy - provides a convenient way for callers to use
* the default security policy
*
* The default policy is defined in RFC 3711
* (Section 5. Default and mandatory-to-implement Transforms)
*
*/
/*
* NOTE: cipher_key_len is really key len (128 bits) plus salt len
* (112 bits)
*/
/* There are hard-coded 16's for base_key_len in the key generation code */
void srtp_crypto_policy_set_rtp_default(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_ICM_128;
p->cipher_key_len =
SRTP_AES_ICM_128_KEY_LEN_WSALT; /* default 128 bits per RFC 3711 */
p->auth_type = SRTP_HMAC_SHA1;
p->auth_key_len = 20; /* default 160 bits per RFC 3711 */
p->auth_tag_len = 10; /* default 80 bits per RFC 3711 */
p->sec_serv = sec_serv_conf_and_auth;
}
void srtp_crypto_policy_set_rtcp_default(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_ICM_128;
p->cipher_key_len =
SRTP_AES_ICM_128_KEY_LEN_WSALT; /* default 128 bits per RFC 3711 */
p->auth_type = SRTP_HMAC_SHA1;
p->auth_key_len = 20; /* default 160 bits per RFC 3711 */
p->auth_tag_len = 10; /* default 80 bits per RFC 3711 */
p->sec_serv = sec_serv_conf_and_auth;
}
void srtp_crypto_policy_set_aes_cm_128_hmac_sha1_32(srtp_crypto_policy_t *p)
{
/*
* corresponds to RFC 4568
*
* note that this crypto policy is intended for SRTP, but not SRTCP
*/
p->cipher_type = SRTP_AES_ICM_128;
p->cipher_key_len =
SRTP_AES_ICM_128_KEY_LEN_WSALT; /* 128 bit key, 112 bit salt */
p->auth_type = SRTP_HMAC_SHA1;
p->auth_key_len = 20; /* 160 bit key */
p->auth_tag_len = 4; /* 32 bit tag */
p->sec_serv = sec_serv_conf_and_auth;
}
void srtp_crypto_policy_set_aes_cm_128_null_auth(srtp_crypto_policy_t *p)
{
/*
* corresponds to RFC 4568
*
* note that this crypto policy is intended for SRTP, but not SRTCP
*/
p->cipher_type = SRTP_AES_ICM_128;
p->cipher_key_len =
SRTP_AES_ICM_128_KEY_LEN_WSALT; /* 128 bit key, 112 bit salt */
p->auth_type = SRTP_NULL_AUTH;
p->auth_key_len = 0;
p->auth_tag_len = 0;
p->sec_serv = sec_serv_conf;
}
void srtp_crypto_policy_set_null_cipher_hmac_sha1_80(srtp_crypto_policy_t *p)
{
/*
* corresponds to RFC 4568
*/
p->cipher_type = SRTP_NULL_CIPHER;
p->cipher_key_len = 16;
p->auth_type = SRTP_HMAC_SHA1;
p->auth_key_len = 20;
p->auth_tag_len = 10;
p->sec_serv = sec_serv_auth;
}
void srtp_crypto_policy_set_null_cipher_hmac_null(srtp_crypto_policy_t *p)
{
/*
* Should only be used for testing
*/
p->cipher_type = SRTP_NULL_CIPHER;
p->cipher_key_len = 16;
p->auth_type = SRTP_NULL_AUTH;
p->auth_key_len = 0;
p->auth_tag_len = 0;
p->sec_serv = sec_serv_none;
}
void srtp_crypto_policy_set_aes_cm_256_hmac_sha1_80(srtp_crypto_policy_t *p)
{
/*
* corresponds to RFC 6188
*/
p->cipher_type = SRTP_AES_ICM_256;
p->cipher_key_len = SRTP_AES_ICM_256_KEY_LEN_WSALT;
p->auth_type = SRTP_HMAC_SHA1;
p->auth_key_len = 20; /* default 160 bits per RFC 3711 */
p->auth_tag_len = 10; /* default 80 bits per RFC 3711 */
p->sec_serv = sec_serv_conf_and_auth;
}
void srtp_crypto_policy_set_aes_cm_256_hmac_sha1_32(srtp_crypto_policy_t *p)
{
/*
* corresponds to RFC 6188
*
* note that this crypto policy is intended for SRTP, but not SRTCP
*/
p->cipher_type = SRTP_AES_ICM_256;
p->cipher_key_len = SRTP_AES_ICM_256_KEY_LEN_WSALT;
p->auth_type = SRTP_HMAC_SHA1;
p->auth_key_len = 20; /* default 160 bits per RFC 3711 */
p->auth_tag_len = 4; /* default 80 bits per RFC 3711 */
p->sec_serv = sec_serv_conf_and_auth;
}
/*
* AES-256 with no authentication.
*/
void srtp_crypto_policy_set_aes_cm_256_null_auth(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_ICM_256;
p->cipher_key_len = SRTP_AES_ICM_256_KEY_LEN_WSALT;
p->auth_type = SRTP_NULL_AUTH;
p->auth_key_len = 0;
p->auth_tag_len = 0;
p->sec_serv = sec_serv_conf;
}
void srtp_crypto_policy_set_aes_cm_192_hmac_sha1_80(srtp_crypto_policy_t *p)
{
/*
* corresponds to RFC 6188
*/
p->cipher_type = SRTP_AES_ICM_192;
p->cipher_key_len = SRTP_AES_ICM_192_KEY_LEN_WSALT;
p->auth_type = SRTP_HMAC_SHA1;
p->auth_key_len = 20; /* default 160 bits per RFC 3711 */
p->auth_tag_len = 10; /* default 80 bits per RFC 3711 */
p->sec_serv = sec_serv_conf_and_auth;
}
void srtp_crypto_policy_set_aes_cm_192_hmac_sha1_32(srtp_crypto_policy_t *p)
{
/*
* corresponds to RFC 6188
*
* note that this crypto policy is intended for SRTP, but not SRTCP
*/
p->cipher_type = SRTP_AES_ICM_192;
p->cipher_key_len = SRTP_AES_ICM_192_KEY_LEN_WSALT;
p->auth_type = SRTP_HMAC_SHA1;
p->auth_key_len = 20; /* default 160 bits per RFC 3711 */
p->auth_tag_len = 4; /* default 80 bits per RFC 3711 */
p->sec_serv = sec_serv_conf_and_auth;
}
/*
* AES-192 with no authentication.
*/
void srtp_crypto_policy_set_aes_cm_192_null_auth(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_ICM_192;
p->cipher_key_len = SRTP_AES_ICM_192_KEY_LEN_WSALT;
p->auth_type = SRTP_NULL_AUTH;
p->auth_key_len = 0;
p->auth_tag_len = 0;
p->sec_serv = sec_serv_conf;
}
/*
* AES-128 GCM mode with 8 octet auth tag.
*/
void srtp_crypto_policy_set_aes_gcm_128_8_auth(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_GCM_128;
p->cipher_key_len = SRTP_AES_GCM_128_KEY_LEN_WSALT;
p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */
p->auth_key_len = 0;
p->auth_tag_len = 8; /* 8 octet tag length */
p->sec_serv = sec_serv_conf_and_auth;
}
/*
* AES-256 GCM mode with 8 octet auth tag.
*/
void srtp_crypto_policy_set_aes_gcm_256_8_auth(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_GCM_256;
p->cipher_key_len = SRTP_AES_GCM_256_KEY_LEN_WSALT;
p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */
p->auth_key_len = 0;
p->auth_tag_len = 8; /* 8 octet tag length */
p->sec_serv = sec_serv_conf_and_auth;
}
/*
* AES-128 GCM mode with 8 octet auth tag, no RTCP encryption.
*/
void srtp_crypto_policy_set_aes_gcm_128_8_only_auth(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_GCM_128;
p->cipher_key_len = SRTP_AES_GCM_128_KEY_LEN_WSALT;
p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */
p->auth_key_len = 0;
p->auth_tag_len = 8; /* 8 octet tag length */
p->sec_serv = sec_serv_auth; /* This only applies to RTCP */
}
/*
* AES-256 GCM mode with 8 octet auth tag, no RTCP encryption.
*/
void srtp_crypto_policy_set_aes_gcm_256_8_only_auth(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_GCM_256;
p->cipher_key_len = SRTP_AES_GCM_256_KEY_LEN_WSALT;
p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */
p->auth_key_len = 0;
p->auth_tag_len = 8; /* 8 octet tag length */
p->sec_serv = sec_serv_auth; /* This only applies to RTCP */
}
/*
* AES-128 GCM mode with 16 octet auth tag.
*/
void srtp_crypto_policy_set_aes_gcm_128_16_auth(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_GCM_128;
p->cipher_key_len = SRTP_AES_GCM_128_KEY_LEN_WSALT;
p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */
p->auth_key_len = 0;
p->auth_tag_len = 16; /* 16 octet tag length */
p->sec_serv = sec_serv_conf_and_auth;
}
/*
* AES-256 GCM mode with 16 octet auth tag.
*/
void srtp_crypto_policy_set_aes_gcm_256_16_auth(srtp_crypto_policy_t *p)
{
p->cipher_type = SRTP_AES_GCM_256;
p->cipher_key_len = SRTP_AES_GCM_256_KEY_LEN_WSALT;
p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */
p->auth_key_len = 0;
p->auth_tag_len = 16; /* 16 octet tag length */
p->sec_serv = sec_serv_conf_and_auth;
}
/*
* secure rtcp functions
*/
/*
* AEAD uses a new IV formation method. This function implements
* section 9.1 (SRTCP IV Formation for AES-GCM) from RFC7714.
* The calculation is defined as, where (+) is the xor operation:
*
* 0 1 2 3 4 5 6 7 8 9 10 11
* +--+--+--+--+--+--+--+--+--+--+--+--+
* |00|00| SSRC |00|00|0+SRTCP Idx|---+
* +--+--+--+--+--+--+--+--+--+--+--+--+ |
* |
* +--+--+--+--+--+--+--+--+--+--+--+--+ |
* | Encryption Salt |->(+)
* +--+--+--+--+--+--+--+--+--+--+--+--+ |
* |
* +--+--+--+--+--+--+--+--+--+--+--+--+ |
* | Initialization Vector |<--+
* +--+--+--+--+--+--+--+--+--+--+--+--+*
*
* Input: *session_keys - pointer to SRTP stream context session keys,
* used to retrieve the SALT
* *iv - Pointer to recieve the calculated IV
* seq_num - The SEQ value to use for the IV calculation.
* *hdr - The RTP header, used to get the SSRC value
*
* Returns: srtp_err_status_ok if no error or srtp_err_status_bad_param
* if seq_num is invalid
*
*/
static srtp_err_status_t srtp_calc_aead_iv_srtcp(
srtp_session_keys_t *session_keys,
v128_t *iv,
uint32_t seq_num,
srtcp_hdr_t *hdr)
{
v128_t in;
v128_t salt;
memset(&in, 0, sizeof(v128_t));
memset(&salt, 0, sizeof(v128_t));
in.v16[0] = 0;
memcpy(&in.v16[1], &hdr->ssrc, 4); /* still in network order! */
in.v16[3] = 0;
/*
* The SRTCP index (seq_num) spans bits 0 through 30 inclusive.
* The most significant bit should be zero.
*/
if (seq_num & 0x80000000UL) {
return srtp_err_status_bad_param;
}
in.v32[2] = htonl(seq_num);
debug_print(mod_srtp, "Pre-salted RTCP IV = %s\n", v128_hex_string(&in));
/*
* Get the SALT value from the context
*/
memcpy(salt.v8, session_keys->c_salt, 12);
debug_print(mod_srtp, "RTCP SALT = %s\n", v128_hex_string(&salt));
/*
* Finally, apply the SALT to the input
*/
v128_xor(iv, &in, &salt);
return srtp_err_status_ok;
}
/*
* This code handles AEAD ciphers for outgoing RTCP. We currently support
* AES-GCM mode with 128 or 256 bit keys.
*/
static srtp_err_status_t srtp_protect_rtcp_aead(
srtp_t ctx,
srtp_stream_ctx_t *stream,
void *rtcp_hdr,
unsigned int *pkt_octet_len,
srtp_session_keys_t *session_keys,
unsigned int use_mki)
{
srtcp_hdr_t *hdr = (srtcp_hdr_t *)rtcp_hdr;
uint32_t *enc_start; /* pointer to start of encrypted portion */
uint32_t *trailer_p; /* pointer to start of trailer */
uint32_t trailer; /* trailer value */
unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */
srtp_err_status_t status;
uint32_t tag_len;
uint32_t seq_num;
v128_t iv;
uint32_t tseq;
unsigned int mki_size = 0;
/* get tag length from stream context */
tag_len = srtp_auth_get_tag_length(session_keys->rtcp_auth);
/*
* set encryption start and encryption length - if we're not
* providing confidentiality, set enc_start to NULL
*/
enc_start = (uint32_t *)hdr + uint32s_in_rtcp_header;
enc_octet_len = *pkt_octet_len - octets_in_rtcp_header;
/* NOTE: hdr->length is not usable - it refers to only the first
* RTCP report in the compound packet!
*/
trailer_p = (uint32_t *)((char *)enc_start + enc_octet_len + tag_len);
if (stream->rtcp_services & sec_serv_conf) {
trailer = htonl(SRTCP_E_BIT); /* set encrypt bit */
} else {
enc_start = NULL;
enc_octet_len = 0;
/* 0 is network-order independant */
trailer = 0x00000000; /* set encrypt bit */
}
mki_size = srtp_inject_mki((uint8_t *)hdr + *pkt_octet_len + tag_len +
sizeof(srtcp_trailer_t),
session_keys, use_mki);
/*
* set the auth_tag pointer to the proper location, which is after
* the payload, but before the trailer
* (note that srtpc *always* provides authentication, unlike srtp)
*/
/* Note: This would need to change for optional mikey data */
auth_tag = (uint8_t *)hdr + *pkt_octet_len;
/*
* check sequence number for overruns, and copy it into the packet
* if its value isn't too big
*/
status = srtp_rdb_increment(&stream->rtcp_rdb);
if (status) {
return status;
}
seq_num = srtp_rdb_get_value(&stream->rtcp_rdb);
trailer |= htonl(seq_num);
debug_print(mod_srtp, "srtcp index: %x", seq_num);
memcpy(trailer_p, &trailer, sizeof(trailer));
/*
* Calculate and set the IV
*/
status = srtp_calc_aead_iv_srtcp(session_keys, &iv, seq_num, hdr);
if (status) {
return srtp_err_status_cipher_fail;
}
status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv,
srtp_direction_encrypt);
if (status) {
return srtp_err_status_cipher_fail;
}
/*
* Set the AAD for GCM mode
*/
if (enc_start) {
/*
* If payload encryption is enabled, then the AAD consist of
* the RTCP header and the seq# at the end of the packet
*/
status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)hdr,
octets_in_rtcp_header);
if (status) {
return (srtp_err_status_cipher_fail);
}
} else {
/*
* Since payload encryption is not enabled, we must authenticate
* the entire packet as described in RFC 7714 (Section 9.3. Data
* Types in Unencrypted SRTCP Compound Packets)
*/
status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)hdr,
*pkt_octet_len);
if (status) {
return (srtp_err_status_cipher_fail);
}
}
/*
* Process the sequence# as AAD
*/
tseq = trailer;
status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)&tseq,
sizeof(srtcp_trailer_t));
if (status) {
return (srtp_err_status_cipher_fail);
}
/* if we're encrypting, exor keystream into the message */
if (enc_start) {
status = srtp_cipher_encrypt(session_keys->rtcp_cipher,
(uint8_t *)enc_start, &enc_octet_len);
if (status) {
return srtp_err_status_cipher_fail;
}
/*
* Get the tag and append that to the output
*/
status = srtp_cipher_get_tag(session_keys->rtcp_cipher,
(uint8_t *)auth_tag, &tag_len);
if (status) {
return (srtp_err_status_cipher_fail);
}
enc_octet_len += tag_len;
} else {
/*
* Even though we're not encrypting the payload, we need
* to run the cipher to get the auth tag.
*/
unsigned int nolen = 0;
status = srtp_cipher_encrypt(session_keys->rtcp_cipher, NULL, &nolen);
if (status) {
return srtp_err_status_cipher_fail;
}
/*
* Get the tag and append that to the output
*/
status = srtp_cipher_get_tag(session_keys->rtcp_cipher,
(uint8_t *)auth_tag, &tag_len);
if (status) {
return (srtp_err_status_cipher_fail);
}
enc_octet_len += tag_len;
}
/* increase the packet length by the length of the auth tag and seq_num*/
*pkt_octet_len += (tag_len + sizeof(srtcp_trailer_t));
/* increase the packet by the mki_size */
*pkt_octet_len += mki_size;
return srtp_err_status_ok;
}
/*
* This function handles incoming SRTCP packets while in AEAD mode,
* which currently supports AES-GCM encryption. Note, the auth tag is
* at the end of the packet stream and is automatically checked by GCM
* when decrypting the payload.
*/
static srtp_err_status_t srtp_unprotect_rtcp_aead(
srtp_t ctx,
srtp_stream_ctx_t *stream,
void *srtcp_hdr,
unsigned int *pkt_octet_len,
srtp_session_keys_t *session_keys,
unsigned int use_mki)
{
srtcp_hdr_t *hdr = (srtcp_hdr_t *)srtcp_hdr;
uint32_t *enc_start; /* pointer to start of encrypted portion */
uint32_t *trailer_p; /* pointer to start of trailer */
uint32_t trailer; /* trailer value */
unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */
srtp_err_status_t status;
int tag_len;
unsigned int tmp_len;
uint32_t seq_num;
v128_t iv;
uint32_t tseq;
unsigned int mki_size = 0;
/* get tag length from stream context */
tag_len = srtp_auth_get_tag_length(session_keys->rtcp_auth);
if (use_mki) {
mki_size = session_keys->mki_size;
}
/*
* set encryption start, encryption length, and trailer
*/
/* index & E (encryption) bit follow normal data. hdr->len is the number of
* words (32-bit) in the normal packet minus 1
*/
/* This should point trailer to the word past the end of the normal data. */
/* This would need to be modified for optional mikey data */
trailer_p = (uint32_t *)((char *)hdr + *pkt_octet_len -
sizeof(srtcp_trailer_t) - mki_size);
memcpy(&trailer, trailer_p, sizeof(trailer));
/*
* We pass the tag down to the cipher when doing GCM mode
*/
enc_octet_len = *pkt_octet_len - (octets_in_rtcp_header +
sizeof(srtcp_trailer_t) + mki_size);
auth_tag = (uint8_t *)hdr + *pkt_octet_len - tag_len - mki_size -
sizeof(srtcp_trailer_t);
if (*((unsigned char *)trailer_p) & SRTCP_E_BYTE_BIT) {
enc_start = (uint32_t *)hdr + uint32s_in_rtcp_header;
} else {
enc_octet_len = 0;
enc_start = NULL; /* this indicates that there's no encryption */
}
/*
* check the sequence number for replays
*/
/* this is easier than dealing with bitfield access */
seq_num = ntohl(trailer) & SRTCP_INDEX_MASK;
debug_print(mod_srtp, "srtcp index: %x", seq_num);
status = srtp_rdb_check(&stream->rtcp_rdb, seq_num);
if (status) {
return status;
}
/*
* Calculate and set the IV
*/
status = srtp_calc_aead_iv_srtcp(session_keys, &iv, seq_num, hdr);
if (status) {
return srtp_err_status_cipher_fail;
}
status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv,
srtp_direction_decrypt);
if (status) {
return srtp_err_status_cipher_fail;
}
/*
* Set the AAD for GCM mode
*/
if (enc_start) {
/*
* If payload encryption is enabled, then the AAD consist of
* the RTCP header and the seq# at the end of the packet
*/
status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)hdr,
octets_in_rtcp_header);
if (status) {
return (srtp_err_status_cipher_fail);
}
} else {
/*
* Since payload encryption is not enabled, we must authenticate
* the entire packet as described in RFC 7714 (Section 9.3. Data
* Types in Unencrypted SRTCP Compound Packets)
*/
status = srtp_cipher_set_aad(
session_keys->rtcp_cipher, (uint8_t *)hdr,
(*pkt_octet_len - tag_len - sizeof(srtcp_trailer_t) - mki_size));
if (status) {
return (srtp_err_status_cipher_fail);
}
}
/*
* Process the sequence# as AAD
*/
tseq = trailer;
status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)&tseq,
sizeof(srtcp_trailer_t));
if (status) {
return (srtp_err_status_cipher_fail);
}
/* if we're decrypting, exor keystream into the message */
if (enc_start) {
status = srtp_cipher_decrypt(session_keys->rtcp_cipher,
(uint8_t *)enc_start, &enc_octet_len);
if (status) {
return status;
}
} else {
/*
* Still need to run the cipher to check the tag
*/
tmp_len = tag_len;
status = srtp_cipher_decrypt(session_keys->rtcp_cipher,
(uint8_t *)auth_tag, &tmp_len);
if (status) {
return status;
}
}
/* decrease the packet length by the length of the auth tag and seq_num*/
*pkt_octet_len -= (tag_len + sizeof(srtcp_trailer_t) + mki_size);
/*
* verify that stream is for received traffic - this check will
* detect SSRC collisions, since a stream that appears in both
* srtp_protect() and srtp_unprotect() will fail this test in one of
* those functions.
*
* we do this check *after* the authentication check, so that the
* latter check will catch any attempts to fool us into thinking
* that we've got a collision
*/
if (stream->direction != dir_srtp_receiver) {
if (stream->direction == dir_unknown) {
stream->direction = dir_srtp_receiver;
} else {
srtp_handle_event(ctx, stream, event_ssrc_collision);
}
}
/*
* if the stream is a 'provisional' one, in which the template context
* is used, then we need to allocate a new stream at this point, since
* the authentication passed
*/
if (stream == ctx->stream_template) {
srtp_stream_ctx_t *new_stream;
/*
* allocate and initialize a new stream
*
* note that we indicate failure if we can't allocate the new
* stream, and some implementations will want to not return
* failure here
*/
status =
srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream);
if (status) {
return status;
}
/* add new stream to the head of the stream_list */
new_stream->next = ctx->stream_list;
ctx->stream_list = new_stream;
/* set stream (the pointer used in this function) */
stream = new_stream;
}
/* we've passed the authentication check, so add seq_num to the rdb */
srtp_rdb_add_index(&stream->rtcp_rdb, seq_num);
return srtp_err_status_ok;
}
srtp_err_status_t srtp_protect_rtcp(srtp_t ctx,
void *rtcp_hdr,
int *pkt_octet_len)
{
return srtp_protect_rtcp_mki(ctx, rtcp_hdr, pkt_octet_len, 0, 0);
}
srtp_err_status_t srtp_protect_rtcp_mki(srtp_t ctx,
void *rtcp_hdr,
int *pkt_octet_len,
unsigned int use_mki,
unsigned int mki_index)
{
srtcp_hdr_t *hdr = (srtcp_hdr_t *)rtcp_hdr;
uint32_t *enc_start; /* pointer to start of encrypted portion */
uint32_t *auth_start; /* pointer to start of auth. portion */
uint32_t *trailer_p; /* pointer to start of trailer */
uint32_t trailer; /* trailer value */
unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */
srtp_err_status_t status;
int tag_len;
srtp_stream_ctx_t *stream;
uint32_t prefix_len;
uint32_t seq_num;
unsigned int mki_size = 0;
srtp_session_keys_t *session_keys = NULL;
/* we assume the hdr is 32-bit aligned to start */
/* check the packet length - it must at least contain a full header */
if (*pkt_octet_len < octets_in_rtcp_header)
return srtp_err_status_bad_param;
/*
* look up ssrc in srtp_stream list, and process the packet with
* the appropriate stream. if we haven't seen this stream before,
* there's only one key for this srtp_session, and the cipher
* supports key-sharing, then we assume that a new stream using
* that key has just started up
*/
stream = srtp_get_stream(ctx, hdr->ssrc);
if (stream == NULL) {
if (ctx->stream_template != NULL) {
srtp_stream_ctx_t *new_stream;
/* allocate and initialize a new stream */
status =
srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream);
if (status)
return status;
/* add new stream to the head of the stream_list */
new_stream->next = ctx->stream_list;
ctx->stream_list = new_stream;
/* set stream (the pointer used in this function) */
stream = new_stream;
} else {
/* no template stream, so we return an error */
return srtp_err_status_no_ctx;
}
}
/*
* verify that stream is for sending traffic - this check will
* detect SSRC collisions, since a stream that appears in both
* srtp_protect() and srtp_unprotect() will fail this test in one of
* those functions.
*/
if (stream->direction != dir_srtp_sender) {
if (stream->direction == dir_unknown) {
stream->direction = dir_srtp_sender;
} else {
srtp_handle_event(ctx, stream, event_ssrc_collision);
}
}
session_keys =
srtp_get_session_keys_with_mki_index(stream, use_mki, mki_index);
if (session_keys == NULL)
return srtp_err_status_bad_mki;
/*
* Check if this is an AEAD stream (GCM mode). If so, then dispatch
* the request to our AEAD handler.
*/
if (session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_128 ||
session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_256) {
return srtp_protect_rtcp_aead(ctx, stream, rtcp_hdr,
(unsigned int *)pkt_octet_len,
session_keys, use_mki);
}
/* get tag length from stream context */
tag_len = srtp_auth_get_tag_length(session_keys->rtcp_auth);
/*
* set encryption start and encryption length - if we're not
* providing confidentiality, set enc_start to NULL
*/
enc_start = (uint32_t *)hdr + uint32s_in_rtcp_header;
enc_octet_len = *pkt_octet_len - octets_in_rtcp_header;
/* all of the packet, except the header, gets encrypted */
/*
* NOTE: hdr->length is not usable - it refers to only the first RTCP report
* in the compound packet!
*/
trailer_p = (uint32_t *)((char *)enc_start + enc_octet_len);
if (stream->rtcp_services & sec_serv_conf) {
trailer = htonl(SRTCP_E_BIT); /* set encrypt bit */
} else {
enc_start = NULL;
enc_octet_len = 0;
/* 0 is network-order independant */
trailer = 0x00000000; /* set encrypt bit */
}
mki_size = srtp_inject_mki((uint8_t *)hdr + *pkt_octet_len +
sizeof(srtcp_trailer_t),
session_keys, use_mki);
/*
* set the auth_start and auth_tag pointers to the proper locations
* (note that srtpc *always* provides authentication, unlike srtp)
*/
/* Note: This would need to change for optional mikey data */
auth_start = (uint32_t *)hdr;
auth_tag =
(uint8_t *)hdr + *pkt_octet_len + sizeof(srtcp_trailer_t) + mki_size;
/*
* check sequence number for overruns, and copy it into the packet
* if its value isn't too big
*/
status = srtp_rdb_increment(&stream->rtcp_rdb);
if (status)
return status;
seq_num = srtp_rdb_get_value(&stream->rtcp_rdb);
trailer |= htonl(seq_num);
debug_print(mod_srtp, "srtcp index: %x", seq_num);
memcpy(trailer_p, &trailer, sizeof(trailer));
/*
* if we're using rindael counter mode, set nonce and seq
*/
if (session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_128 ||
session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_192 ||
session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_256) {
v128_t iv;
iv.v32[0] = 0;
iv.v32[1] = hdr->ssrc; /* still in network order! */
iv.v32[2] = htonl(seq_num >> 16);
iv.v32[3] = htonl(seq_num << 16);
status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv,
srtp_direction_encrypt);
} else {
v128_t iv;
/* otherwise, just set the index to seq_num */
iv.v32[0] = 0;
iv.v32[1] = 0;
iv.v32[2] = 0;
iv.v32[3] = htonl(seq_num);
status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv,
srtp_direction_encrypt);
}
if (status)
return srtp_err_status_cipher_fail;
/*
* if we're authenticating using a universal hash, put the keystream
* prefix into the authentication tag
*/
/* if auth_start is non-null, then put keystream into tag */
if (auth_start) {
/* put keystream prefix into auth_tag */
prefix_len = srtp_auth_get_prefix_length(session_keys->rtcp_auth);
status = srtp_cipher_output(session_keys->rtcp_cipher, auth_tag,
&prefix_len);
debug_print(mod_srtp, "keystream prefix: %s",
srtp_octet_string_hex_string(auth_tag, prefix_len));
if (status)
return srtp_err_status_cipher_fail;
}
/* if we're encrypting, exor keystream into the message */
if (enc_start) {
status = srtp_cipher_encrypt(session_keys->rtcp_cipher,
(uint8_t *)enc_start, &enc_octet_len);
if (status)
return srtp_err_status_cipher_fail;
}
/* initialize auth func context */
status = srtp_auth_start(session_keys->rtcp_auth);
if (status)
return status;
/*
* run auth func over packet (including trailer), and write the
* result at auth_tag
*/
status =
srtp_auth_compute(session_keys->rtcp_auth, (uint8_t *)auth_start,
(*pkt_octet_len) + sizeof(srtcp_trailer_t), auth_tag);
debug_print(mod_srtp, "srtcp auth tag: %s",
srtp_octet_string_hex_string(auth_tag, tag_len));
if (status)
return srtp_err_status_auth_fail;
/* increase the packet length by the length of the auth tag and seq_num*/
*pkt_octet_len += (tag_len + sizeof(srtcp_trailer_t));
/* increase the packet by the mki_size */
*pkt_octet_len += mki_size;
return srtp_err_status_ok;
}
srtp_err_status_t srtp_unprotect_rtcp(srtp_t ctx,
void *srtcp_hdr,
int *pkt_octet_len)
{
return srtp_unprotect_rtcp_mki(ctx, srtcp_hdr, pkt_octet_len, 0);
}
srtp_err_status_t srtp_unprotect_rtcp_mki(srtp_t ctx,
void *srtcp_hdr,
int *pkt_octet_len,
unsigned int use_mki)
{
srtcp_hdr_t *hdr = (srtcp_hdr_t *)srtcp_hdr;
uint32_t *enc_start; /* pointer to start of encrypted portion */
uint32_t *auth_start; /* pointer to start of auth. portion */
uint32_t *trailer_p; /* pointer to start of trailer */
uint32_t trailer; /* trailer value */
unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */
uint8_t *auth_tag = NULL; /* location of auth_tag within packet */
uint8_t tmp_tag[SRTP_MAX_TAG_LEN];
srtp_err_status_t status;
unsigned int auth_len;
int tag_len;
srtp_stream_ctx_t *stream;
uint32_t prefix_len;
uint32_t seq_num;
int e_bit_in_packet; /* whether the E-bit was found in the packet */
int sec_serv_confidentiality; /* whether confidentiality was requested */
unsigned int mki_size = 0;
srtp_session_keys_t *session_keys = NULL;
/* we assume the hdr is 32-bit aligned to start */
if (*pkt_octet_len < 0)
return srtp_err_status_bad_param;
/*
* check that the length value is sane; we'll check again once we
* know the tag length, but we at least want to know that it is
* a positive value
*/
if ((unsigned int)(*pkt_octet_len) <
octets_in_rtcp_header + sizeof(srtcp_trailer_t))
return srtp_err_status_bad_param;
/*
* look up ssrc in srtp_stream list, and process the packet with
* the appropriate stream. if we haven't seen this stream before,
* there's only one key for this srtp_session, and the cipher
* supports key-sharing, then we assume that a new stream using
* that key has just started up
*/
stream = srtp_get_stream(ctx, hdr->ssrc);
if (stream == NULL) {
if (ctx->stream_template != NULL) {
stream = ctx->stream_template;
debug_print(mod_srtp,
"srtcp using provisional stream (SSRC: 0x%08x)",
ntohl(hdr->ssrc));
} else {
/* no template stream, so we return an error */
return srtp_err_status_no_ctx;
}
}
/*
* Determine if MKI is being used and what session keys should be used
*/
if (use_mki) {
session_keys = srtp_get_session_keys(
stream, (uint8_t *)hdr, (const unsigned int *)pkt_octet_len,
&mki_size);
if (session_keys == NULL)
return srtp_err_status_bad_mki;
} else {
session_keys = &stream->session_keys[0];
}
/* get tag length from stream context */
tag_len = srtp_auth_get_tag_length(session_keys->rtcp_auth);
/* check the packet length - it must contain at least a full RTCP
header, an auth tag (if applicable), and the SRTCP encrypted flag
and 31-bit index value */
if (*pkt_octet_len < (int)(octets_in_rtcp_header + tag_len + mki_size +
sizeof(srtcp_trailer_t))) {
return srtp_err_status_bad_param;
}
/*
* Check if this is an AEAD stream (GCM mode). If so, then dispatch
* the request to our AEAD handler.
*/
if (session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_128 ||
session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_256) {
return srtp_unprotect_rtcp_aead(ctx, stream, srtcp_hdr,
(unsigned int *)pkt_octet_len,
session_keys, mki_size);
}
sec_serv_confidentiality = stream->rtcp_services == sec_serv_conf ||
stream->rtcp_services == sec_serv_conf_and_auth;
/*
* set encryption start, encryption length, and trailer
*/
enc_octet_len = *pkt_octet_len - (octets_in_rtcp_header + tag_len +
mki_size + sizeof(srtcp_trailer_t));
/*
*index & E (encryption) bit follow normal data. hdr->len is the number of
* words (32-bit) in the normal packet minus 1
*/
/* This should point trailer to the word past the end of the normal data. */
/* This would need to be modified for optional mikey data */
trailer_p = (uint32_t *)((char *)hdr + *pkt_octet_len -
(tag_len + mki_size + sizeof(srtcp_trailer_t)));
memcpy(&trailer, trailer_p, sizeof(trailer));
e_bit_in_packet =
(*((unsigned char *)trailer_p) & SRTCP_E_BYTE_BIT) == SRTCP_E_BYTE_BIT;
if (e_bit_in_packet != sec_serv_confidentiality) {
return srtp_err_status_cant_check;
}
if (sec_serv_confidentiality) {
enc_start = (uint32_t *)hdr + uint32s_in_rtcp_header;
} else {
enc_octet_len = 0;
enc_start = NULL; /* this indicates that there's no encryption */
}
/*
* set the auth_start and auth_tag pointers to the proper locations
* (note that srtcp *always* uses authentication, unlike srtp)
*/
auth_start = (uint32_t *)hdr;
/*
* The location of the auth tag in the packet needs to know MKI
* could be present. The data needed to calculate the Auth tag
* must not include the MKI
*/
auth_len = *pkt_octet_len - tag_len - mki_size;
auth_tag = (uint8_t *)hdr + auth_len + mki_size;
/*
* check the sequence number for replays
*/
/* this is easier than dealing with bitfield access */
seq_num = ntohl(trailer) & SRTCP_INDEX_MASK;
debug_print(mod_srtp, "srtcp index: %x", seq_num);
status = srtp_rdb_check(&stream->rtcp_rdb, seq_num);
if (status)
return status;
/*
* if we're using aes counter mode, set nonce and seq
*/
if (session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_128 ||
session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_192 ||
session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_256) {
v128_t iv;
iv.v32[0] = 0;
iv.v32[1] = hdr->ssrc; /* still in network order! */
iv.v32[2] = htonl(seq_num >> 16);
iv.v32[3] = htonl(seq_num << 16);
status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv,
srtp_direction_decrypt);
} else {
v128_t iv;
/* otherwise, just set the index to seq_num */
iv.v32[0] = 0;
iv.v32[1] = 0;
iv.v32[2] = 0;
iv.v32[3] = htonl(seq_num);
status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv,
srtp_direction_decrypt);
}
if (status)
return srtp_err_status_cipher_fail;
/* initialize auth func context */
status = srtp_auth_start(session_keys->rtcp_auth);
if (status)
return status;
/* run auth func over packet, put result into tmp_tag */
status = srtp_auth_compute(session_keys->rtcp_auth, (uint8_t *)auth_start,
auth_len, tmp_tag);
debug_print(mod_srtp, "srtcp computed tag: %s",
srtp_octet_string_hex_string(tmp_tag, tag_len));
if (status)
return srtp_err_status_auth_fail;
/* compare the tag just computed with the one in the packet */
debug_print(mod_srtp, "srtcp tag from packet: %s",
srtp_octet_string_hex_string(auth_tag, tag_len));
if (srtp_octet_string_is_eq(tmp_tag, auth_tag, tag_len))
return srtp_err_status_auth_fail;
/*
* if we're authenticating using a universal hash, put the keystream
* prefix into the authentication tag
*/
prefix_len = srtp_auth_get_prefix_length(session_keys->rtcp_auth);
if (prefix_len) {
status = srtp_cipher_output(session_keys->rtcp_cipher, auth_tag,
&prefix_len);
debug_print(mod_srtp, "keystream prefix: %s",
srtp_octet_string_hex_string(auth_tag, prefix_len));
if (status)
return srtp_err_status_cipher_fail;
}
/* if we're decrypting, exor keystream into the message */
if (enc_start) {
status = srtp_cipher_decrypt(session_keys->rtcp_cipher,
(uint8_t *)enc_start, &enc_octet_len);
if (status)
return srtp_err_status_cipher_fail;
}
/* decrease the packet length by the length of the auth tag and seq_num */
*pkt_octet_len -= (tag_len + sizeof(srtcp_trailer_t));
/* decrease the packet length by the length of the mki_size */
*pkt_octet_len -= mki_size;
/*
* verify that stream is for received traffic - this check will
* detect SSRC collisions, since a stream that appears in both
* srtp_protect() and srtp_unprotect() will fail this test in one of
* those functions.
*
* we do this check *after* the authentication check, so that the
* latter check will catch any attempts to fool us into thinking
* that we've got a collision
*/
if (stream->direction != dir_srtp_receiver) {
if (stream->direction == dir_unknown) {
stream->direction = dir_srtp_receiver;
} else {
srtp_handle_event(ctx, stream, event_ssrc_collision);
}
}
/*
* if the stream is a 'provisional' one, in which the template context
* is used, then we need to allocate a new stream at this point, since
* the authentication passed
*/
if (stream == ctx->stream_template) {
srtp_stream_ctx_t *new_stream;
/*
* allocate and initialize a new stream
*
* note that we indicate failure if we can't allocate the new
* stream, and some implementations will want to not return
* failure here
*/
status =
srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream);
if (status)
return status;
/* add new stream to the head of the stream_list */
new_stream->next = ctx->stream_list;
ctx->stream_list = new_stream;
/* set stream (the pointer used in this function) */
stream = new_stream;
}
/* we've passed the authentication check, so add seq_num to the rdb */
srtp_rdb_add_index(&stream->rtcp_rdb, seq_num);
return srtp_err_status_ok;
}
/*
* user data within srtp_t context
*/
void srtp_set_user_data(srtp_t ctx, void *data)
{
ctx->user_data = data;
}
void *srtp_get_user_data(srtp_t ctx)
{
return ctx->user_data;
}
srtp_err_status_t srtp_crypto_policy_set_from_profile_for_rtp(
srtp_crypto_policy_t *policy,
srtp_profile_t profile)
{
/* set SRTP policy from the SRTP profile in the key set */
switch (profile) {
case srtp_profile_aes128_cm_sha1_80:
srtp_crypto_policy_set_aes_cm_128_hmac_sha1_80(policy);
break;
case srtp_profile_aes128_cm_sha1_32:
srtp_crypto_policy_set_aes_cm_128_hmac_sha1_32(policy);
break;
case srtp_profile_null_sha1_80:
srtp_crypto_policy_set_null_cipher_hmac_sha1_80(policy);
break;
#ifdef GCM
case srtp_profile_aead_aes_128_gcm:
srtp_crypto_policy_set_aes_gcm_128_16_auth(policy);
break;
case srtp_profile_aead_aes_256_gcm:
srtp_crypto_policy_set_aes_gcm_256_16_auth(policy);
break;
#endif
/* the following profiles are not (yet) supported */
case srtp_profile_null_sha1_32:
default:
return srtp_err_status_bad_param;
}
return srtp_err_status_ok;
}
srtp_err_status_t srtp_crypto_policy_set_from_profile_for_rtcp(
srtp_crypto_policy_t *policy,
srtp_profile_t profile)
{
/* set SRTP policy from the SRTP profile in the key set */
switch (profile) {
case srtp_profile_aes128_cm_sha1_80:
srtp_crypto_policy_set_aes_cm_128_hmac_sha1_80(policy);
break;
case srtp_profile_aes128_cm_sha1_32:
/* We do not honor the 32-bit auth tag request since
* this is not compliant with RFC 3711 */
srtp_crypto_policy_set_aes_cm_128_hmac_sha1_80(policy);
break;
case srtp_profile_null_sha1_80:
srtp_crypto_policy_set_null_cipher_hmac_sha1_80(policy);
break;
#ifdef GCM
case srtp_profile_aead_aes_128_gcm:
srtp_crypto_policy_set_aes_gcm_128_16_auth(policy);
break;
case srtp_profile_aead_aes_256_gcm:
srtp_crypto_policy_set_aes_gcm_256_16_auth(policy);
break;
#endif
/* the following profiles are not (yet) supported */
case srtp_profile_null_sha1_32:
default:
return srtp_err_status_bad_param;
}
return srtp_err_status_ok;
}
void srtp_append_salt_to_key(uint8_t *key,
unsigned int bytes_in_key,
uint8_t *salt,
unsigned int bytes_in_salt)
{
memcpy(key + bytes_in_key, salt, bytes_in_salt);
}
unsigned int srtp_profile_get_master_key_length(srtp_profile_t profile)
{
switch (profile) {
case srtp_profile_aes128_cm_sha1_80:
return SRTP_AES_128_KEY_LEN;
break;
case srtp_profile_aes128_cm_sha1_32:
return SRTP_AES_128_KEY_LEN;
break;
case srtp_profile_null_sha1_80:
return SRTP_AES_128_KEY_LEN;
break;
case srtp_profile_aead_aes_128_gcm:
return SRTP_AES_128_KEY_LEN;
break;
case srtp_profile_aead_aes_256_gcm:
return SRTP_AES_256_KEY_LEN;
break;
/* the following profiles are not (yet) supported */
case srtp_profile_null_sha1_32:
default:
return 0; /* indicate error by returning a zero */
}
}
unsigned int srtp_profile_get_master_salt_length(srtp_profile_t profile)
{
switch (profile) {
case srtp_profile_aes128_cm_sha1_80:
return SRTP_SALT_LEN;
break;
case srtp_profile_aes128_cm_sha1_32:
return SRTP_SALT_LEN;
break;
case srtp_profile_null_sha1_80:
return SRTP_SALT_LEN;
break;
case srtp_profile_aead_aes_128_gcm:
return SRTP_AEAD_SALT_LEN;
break;
case srtp_profile_aead_aes_256_gcm:
return SRTP_AEAD_SALT_LEN;
break;
/* the following profiles are not (yet) supported */
case srtp_profile_null_sha1_32:
default:
return 0; /* indicate error by returning a zero */
}
}
srtp_err_status_t stream_get_protect_trailer_length(srtp_stream_ctx_t *stream,
uint32_t is_rtp,
uint32_t use_mki,
uint32_t mki_index,
uint32_t *length)
{
srtp_session_keys_t *session_key;
*length = 0;
if (use_mki) {
if (mki_index >= stream->num_master_keys) {
return srtp_err_status_bad_mki;
}
session_key = &stream->session_keys[mki_index];
*length += session_key->mki_size;
} else {
session_key = &stream->session_keys[0];
}
if (is_rtp) {
*length += srtp_auth_get_tag_length(session_key->rtp_auth);
} else {
*length += srtp_auth_get_tag_length(session_key->rtcp_auth);
*length += sizeof(srtcp_trailer_t);
}
return srtp_err_status_ok;
}
srtp_err_status_t get_protect_trailer_length(srtp_t session,
uint32_t is_rtp,
uint32_t use_mki,
uint32_t mki_index,
uint32_t *length)
{
srtp_stream_ctx_t *stream;
if (session == NULL) {
return srtp_err_status_bad_param;
}
if (session->stream_template == NULL && session->stream_list == NULL) {
return srtp_err_status_bad_param;
}
*length = 0;
stream = session->stream_template;
if (stream != NULL) {
stream_get_protect_trailer_length(stream, is_rtp, use_mki, mki_index,
length);
}
stream = session->stream_list;
while (stream != NULL) {
uint32_t temp_length;
if (stream_get_protect_trailer_length(stream, is_rtp, use_mki,
mki_index, &temp_length) ==
srtp_err_status_ok) {
if (temp_length > *length) {
*length = temp_length;
}
}
stream = stream->next;
}
return srtp_err_status_ok;
}
srtp_err_status_t srtp_get_protect_trailer_length(srtp_t session,
uint32_t use_mki,
uint32_t mki_index,
uint32_t *length)
{
return get_protect_trailer_length(session, 1, use_mki, mki_index, length);
}
srtp_err_status_t srtp_get_protect_rtcp_trailer_length(srtp_t session,
uint32_t use_mki,
uint32_t mki_index,
uint32_t *length)
{
return get_protect_trailer_length(session, 0, use_mki, mki_index, length);
}
/*
* SRTP debug interface
*/
srtp_err_status_t srtp_set_debug_module(const char *mod_name, int v)
{
return srtp_crypto_kernel_set_debug_module(mod_name, v);
}
srtp_err_status_t srtp_list_debug_modules(void)
{
return srtp_crypto_kernel_list_debug_modules();
}
/*
* srtp_log_handler is a global variable holding a pointer to the
* log handler function; this function is called for any log
* output.
*/
static srtp_log_handler_func_t *srtp_log_handler = NULL;
static void *srtp_log_handler_data = NULL;
void srtp_err_handler(srtp_err_reporting_level_t level, const char *msg)
{
if (srtp_log_handler) {
srtp_log_level_t log_level = srtp_log_level_error;
switch (level) {
case srtp_err_level_error:
log_level = srtp_log_level_error;
break;
case srtp_err_level_warning:
log_level = srtp_log_level_warning;
break;
case srtp_err_level_info:
log_level = srtp_log_level_info;
break;
case srtp_err_level_debug:
log_level = srtp_log_level_debug;
break;
}
srtp_log_handler(log_level, msg, srtp_log_handler_data);
}
}
srtp_err_status_t srtp_install_log_handler(srtp_log_handler_func_t func,
void *data)
{
/*
* note that we accept NULL arguments intentionally - calling this
* function with a NULL arguments removes a log handler that's
* been previously installed
*/
if (srtp_log_handler) {
srtp_install_err_report_handler(NULL);
}
srtp_log_handler = func;
srtp_log_handler_data = data;
if (srtp_log_handler) {
srtp_install_err_report_handler(srtp_err_handler);
}
return srtp_err_status_ok;
}
srtp_err_status_t srtp_set_stream_roc(srtp_t session,
uint32_t ssrc,
uint32_t roc)
{
srtp_stream_t stream;
stream = srtp_get_stream(session, htonl(ssrc));
if (stream == NULL)
return srtp_err_status_bad_param;
stream->pending_roc = roc;
return srtp_err_status_ok;
}
srtp_err_status_t srtp_get_stream_roc(srtp_t session,
uint32_t ssrc,
uint32_t *roc)
{
srtp_stream_t stream;
stream = srtp_get_stream(session, htonl(ssrc));
if (stream == NULL)
return srtp_err_status_bad_param;
*roc = srtp_rdbx_get_roc(&stream->rtp_rdbx);
return srtp_err_status_ok;
}