Source code
Revision control
Copy as Markdown
Other Tools
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/splines.h"
#include <jxl/memory_manager.h>
#include <algorithm>
#include <cinttypes> // PRIu64
#include <cmath>
#include <limits>
#include "lib/jxl/base/common.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/rect.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/chroma_from_luma.h"
#include "lib/jxl/common.h" // JXL_HIGH_PRECISION
#include "lib/jxl/dct_scales.h"
#include "lib/jxl/dec_ans.h"
#include "lib/jxl/dec_bit_reader.h"
#include "lib/jxl/pack_signed.h"
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/splines.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/base/fast_math-inl.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
namespace {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::MulAdd;
using hwy::HWY_NAMESPACE::MulSub;
using hwy::HWY_NAMESPACE::Sqrt;
using hwy::HWY_NAMESPACE::Sub;
// Given a set of DCT coefficients, this returns the result of performing cosine
// interpolation on the original samples.
float ContinuousIDCT(const Dct32& dct, const float t) {
// We compute here the DCT-3 of the `dct` vector, rescaled by a factor of
// sqrt(32). This is such that an input vector vector {x, 0, ..., 0} produces
// a constant result of x. dct[0] was scaled in Dequantize() to allow uniform
// treatment of all the coefficients.
constexpr float kMultipliers[32] = {
kPi / 32 * 0, kPi / 32 * 1, kPi / 32 * 2, kPi / 32 * 3, kPi / 32 * 4,
kPi / 32 * 5, kPi / 32 * 6, kPi / 32 * 7, kPi / 32 * 8, kPi / 32 * 9,
kPi / 32 * 10, kPi / 32 * 11, kPi / 32 * 12, kPi / 32 * 13, kPi / 32 * 14,
kPi / 32 * 15, kPi / 32 * 16, kPi / 32 * 17, kPi / 32 * 18, kPi / 32 * 19,
kPi / 32 * 20, kPi / 32 * 21, kPi / 32 * 22, kPi / 32 * 23, kPi / 32 * 24,
kPi / 32 * 25, kPi / 32 * 26, kPi / 32 * 27, kPi / 32 * 28, kPi / 32 * 29,
kPi / 32 * 30, kPi / 32 * 31,
};
HWY_CAPPED(float, 32) df;
auto result = Zero(df);
const auto tandhalf = Set(df, t + 0.5f);
for (int i = 0; i < 32; i += Lanes(df)) {
auto cos_arg = Mul(LoadU(df, kMultipliers + i), tandhalf);
auto cos = FastCosf(df, cos_arg);
auto local_res = Mul(LoadU(df, dct.data() + i), cos);
result = MulAdd(Set(df, kSqrt2), local_res, result);
}
return GetLane(SumOfLanes(df, result));
}
template <typename DF>
void DrawSegment(DF df, const SplineSegment& segment, const bool add,
const size_t y, const size_t x, float* JXL_RESTRICT rows[3]) {
Rebind<int32_t, DF> di;
const auto inv_sigma = Set(df, segment.inv_sigma);
const auto half = Set(df, 0.5f);
const auto one_over_2s2 = Set(df, 0.353553391f);
const auto sigma_over_4_times_intensity =
Set(df, segment.sigma_over_4_times_intensity);
const auto dx = Sub(ConvertTo(df, Iota(di, x)), Set(df, segment.center_x));
const auto dy = Set(df, y - segment.center_y);
const auto sqd = MulAdd(dx, dx, Mul(dy, dy));
const auto distance = Sqrt(sqd);
const auto one_dimensional_factor =
Sub(FastErff(df, Mul(MulAdd(distance, half, one_over_2s2), inv_sigma)),
FastErff(df, Mul(MulSub(distance, half, one_over_2s2), inv_sigma)));
auto local_intensity =
Mul(sigma_over_4_times_intensity,
Mul(one_dimensional_factor, one_dimensional_factor));
for (size_t c = 0; c < 3; ++c) {
const auto cm = Set(df, add ? segment.color[c] : -segment.color[c]);
const auto in = LoadU(df, rows[c] + x);
StoreU(MulAdd(cm, local_intensity, in), df, rows[c] + x);
}
}
void DrawSegment(const SplineSegment& segment, const bool add, const size_t y,
const ssize_t x0, ssize_t x1, float* JXL_RESTRICT rows[3]) {
ssize_t x = std::max<ssize_t>(
x0, std::llround(segment.center_x - segment.maximum_distance));
// one-past-the-end
x1 = std::min<ssize_t>(
x1, std::llround(segment.center_x + segment.maximum_distance) + 1);
HWY_FULL(float) df;
for (; x + static_cast<ssize_t>(Lanes(df)) <= x1; x += Lanes(df)) {
DrawSegment(df, segment, add, y, x, rows);
}
for (; x < x1; ++x) {
DrawSegment(HWY_CAPPED(float, 1)(), segment, add, y, x, rows);
}
}
void ComputeSegments(const Spline::Point& center, const float intensity,
const float color[3], const float sigma,
std::vector<SplineSegment>& segments,
std::vector<std::pair<size_t, size_t>>& segments_by_y) {
// Sanity check sigma, inverse sigma and intensity
if (!(std::isfinite(sigma) && sigma != 0.0f && std::isfinite(1.0f / sigma) &&
std::isfinite(intensity))) {
return;
}
#if JXL_HIGH_PRECISION
constexpr float kDistanceExp = 5;
#else
// About 30% faster.
constexpr float kDistanceExp = 3;
#endif
// We cap from below colors to at least 0.01.
float max_color = 0.01f;
for (size_t c = 0; c < 3; c++) {
max_color = std::max(max_color, std::abs(color[c] * intensity));
}
// Distance beyond which max_color*intensity*exp(-d^2 / (2 * sigma^2)) drops
// below 10^-kDistanceExp.
const float maximum_distance =
std::sqrt(-2 * sigma * sigma *
(std::log(0.1) * kDistanceExp - std::log(max_color)));
SplineSegment segment;
segment.center_y = center.y;
segment.center_x = center.x;
memcpy(segment.color, color, sizeof(segment.color));
segment.inv_sigma = 1.0f / sigma;
segment.sigma_over_4_times_intensity = .25f * sigma * intensity;
segment.maximum_distance = maximum_distance;
ssize_t y0 = std::llround(center.y - maximum_distance);
ssize_t y1 =
std::llround(center.y + maximum_distance) + 1; // one-past-the-end
for (ssize_t y = std::max<ssize_t>(y0, 0); y < y1; y++) {
segments_by_y.emplace_back(y, segments.size());
}
segments.push_back(segment);
}
void DrawSegments(float* JXL_RESTRICT row_x, float* JXL_RESTRICT row_y,
float* JXL_RESTRICT row_b, size_t y, size_t x0, size_t x1,
const bool add, const SplineSegment* segments,
const size_t* segment_indices,
const size_t* segment_y_start) {
float* JXL_RESTRICT rows[3] = {row_x - x0, row_y - x0, row_b - x0};
for (size_t i = segment_y_start[y]; i < segment_y_start[y + 1]; i++) {
DrawSegment(segments[segment_indices[i]], add, y, x0, x1, rows);
}
}
void SegmentsFromPoints(
const Spline& spline,
const std::vector<std::pair<Spline::Point, float>>& points_to_draw,
const float arc_length, std::vector<SplineSegment>& segments,
std::vector<std::pair<size_t, size_t>>& segments_by_y) {
const float inv_arc_length = 1.0f / arc_length;
int k = 0;
for (const auto& point_to_draw : points_to_draw) {
const Spline::Point& point = point_to_draw.first;
const float multiplier = point_to_draw.second;
const float progress_along_arc =
std::min(1.f, (k * kDesiredRenderingDistance) * inv_arc_length);
++k;
float color[3];
for (size_t c = 0; c < 3; ++c) {
color[c] =
ContinuousIDCT(spline.color_dct[c], (32 - 1) * progress_along_arc);
}
const float sigma =
ContinuousIDCT(spline.sigma_dct, (32 - 1) * progress_along_arc);
ComputeSegments(point, multiplier, color, sigma, segments, segments_by_y);
}
}
} // namespace
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(SegmentsFromPoints);
HWY_EXPORT(DrawSegments);
namespace {
// It is not in spec, but reasonable limit to avoid overflows.
template <typename T>
Status ValidateSplinePointPos(const T& x, const T& y) {
constexpr T kSplinePosLimit = 1u << 23;
if ((x >= kSplinePosLimit) || (x <= -kSplinePosLimit) ||
(y >= kSplinePosLimit) || (y <= -kSplinePosLimit)) {
return JXL_FAILURE("Spline coordinates out of bounds");
}
return true;
}
// Maximum number of spline control points per frame is
// std::min(kMaxNumControlPoints, xsize * ysize / 2)
constexpr size_t kMaxNumControlPoints = 1u << 20u;
constexpr size_t kMaxNumControlPointsPerPixelRatio = 2;
float AdjustedQuant(const int32_t adjustment) {
return (adjustment >= 0) ? (1.f + .125f * adjustment)
: 1.f / (1.f - .125f * adjustment);
}
float InvAdjustedQuant(const int32_t adjustment) {
return (adjustment >= 0) ? 1.f / (1.f + .125f * adjustment)
: (1.f - .125f * adjustment);
}
// X, Y, B, sigma.
constexpr float kChannelWeight[] = {0.0042f, 0.075f, 0.07f, .3333f};
Status DecodeAllStartingPoints(std::vector<Spline::Point>* const points,
BitReader* const br, ANSSymbolReader* reader,
const std::vector<uint8_t>& context_map,
const size_t num_splines) {
points->clear();
points->reserve(num_splines);
int64_t last_x = 0;
int64_t last_y = 0;
for (size_t i = 0; i < num_splines; i++) {
int64_t x =
reader->ReadHybridUint(kStartingPositionContext, br, context_map);
int64_t y =
reader->ReadHybridUint(kStartingPositionContext, br, context_map);
if (i != 0) {
x = UnpackSigned(x) + last_x;
y = UnpackSigned(y) + last_y;
}
JXL_RETURN_IF_ERROR(ValidateSplinePointPos(x, y));
points->emplace_back(static_cast<float>(x), static_cast<float>(y));
last_x = x;
last_y = y;
}
return true;
}
struct Vector {
float x, y;
Vector operator-() const { return {-x, -y}; }
Vector operator+(const Vector& other) const {
return {x + other.x, y + other.y};
}
float SquaredNorm() const { return x * x + y * y; }
};
Vector operator*(const float k, const Vector& vec) {
return {k * vec.x, k * vec.y};
}
Spline::Point operator+(const Spline::Point& p, const Vector& vec) {
return {p.x + vec.x, p.y + vec.y};
}
Vector operator-(const Spline::Point& a, const Spline::Point& b) {
return {a.x - b.x, a.y - b.y};
}
// TODO(eustas): avoid making a copy of "points".
void DrawCentripetalCatmullRomSpline(std::vector<Spline::Point> points,
std::vector<Spline::Point>& result) {
if (points.empty()) return;
if (points.size() == 1) {
result.push_back(points[0]);
return;
}
// Number of points to compute between each control point.
static constexpr int kNumPoints = 16;
result.reserve((points.size() - 1) * kNumPoints + 1);
points.insert(points.begin(), points[0] + (points[0] - points[1]));
points.push_back(points[points.size() - 1] +
(points[points.size() - 1] - points[points.size() - 2]));
// points has at least 4 elements at this point.
for (size_t start = 0; start < points.size() - 3; ++start) {
// 4 of them are used, and we draw from p[1] to p[2].
const Spline::Point* const p = &points[start];
result.push_back(p[1]);
float d[3];
float t[4];
t[0] = 0;
for (int k = 0; k < 3; ++k) {
// TODO(eustas): for each segment delta is calculated 3 times...
// TODO(eustas): restrict d[k] with reasonable limit and spec it.
d[k] = std::sqrt(hypotf(p[k + 1].x - p[k].x, p[k + 1].y - p[k].y));
t[k + 1] = t[k] + d[k];
}
for (int i = 1; i < kNumPoints; ++i) {
const float tt = d[0] + (static_cast<float>(i) / kNumPoints) * d[1];
Spline::Point a[3];
for (int k = 0; k < 3; ++k) {
// TODO(eustas): reciprocal multiplication would be faster.
a[k] = p[k] + ((tt - t[k]) / d[k]) * (p[k + 1] - p[k]);
}
Spline::Point b[2];
for (int k = 0; k < 2; ++k) {
b[k] = a[k] + ((tt - t[k]) / (d[k] + d[k + 1])) * (a[k + 1] - a[k]);
}
result.push_back(b[0] + ((tt - t[1]) / d[1]) * (b[1] - b[0]));
}
}
result.push_back(points[points.size() - 2]);
}
// Move along the line segments defined by `points`, `kDesiredRenderingDistance`
// pixels at a time, and call `functor` with each point and the actual distance
// to the previous point (which will always be kDesiredRenderingDistance except
// possibly for the very last point).
// TODO(eustas): this method always adds the last point, but never the first
// (unless those are one); I believe both ends matter.
template <typename Points, typename Functor>
Status ForEachEquallySpacedPoint(const Points& points, const Functor& functor) {
JXL_ENSURE(!points.empty());
Spline::Point current = points.front();
functor(current, kDesiredRenderingDistance);
auto next = points.begin();
while (next != points.end()) {
const Spline::Point* previous = ¤t;
float arclength_from_previous = 0.f;
for (;;) {
if (next == points.end()) {
functor(*previous, arclength_from_previous);
return true;
}
const float arclength_to_next =
std::sqrt((*next - *previous).SquaredNorm());
if (arclength_from_previous + arclength_to_next >=
kDesiredRenderingDistance) {
current =
*previous + ((kDesiredRenderingDistance - arclength_from_previous) /
arclength_to_next) *
(*next - *previous);
functor(current, kDesiredRenderingDistance);
break;
}
arclength_from_previous += arclength_to_next;
previous = &*next;
++next;
}
}
return true;
}
} // namespace
StatusOr<QuantizedSpline> QuantizedSpline::Create(
const Spline& original, const int32_t quantization_adjustment,
const float y_to_x, const float y_to_b) {
JXL_ENSURE(!original.control_points.empty());
QuantizedSpline result;
result.control_points_.reserve(original.control_points.size() - 1);
const Spline::Point& starting_point = original.control_points.front();
int previous_x = static_cast<int>(std::roundf(starting_point.x));
int previous_y = static_cast<int>(std::roundf(starting_point.y));
int previous_delta_x = 0;
int previous_delta_y = 0;
for (auto it = original.control_points.begin() + 1;
it != original.control_points.end(); ++it) {
const int new_x = static_cast<int>(std::roundf(it->x));
const int new_y = static_cast<int>(std::roundf(it->y));
const int new_delta_x = new_x - previous_x;
const int new_delta_y = new_y - previous_y;
result.control_points_.emplace_back(new_delta_x - previous_delta_x,
new_delta_y - previous_delta_y);
previous_delta_x = new_delta_x;
previous_delta_y = new_delta_y;
previous_x = new_x;
previous_y = new_y;
}
const auto to_int = [](float v) -> int {
// Maximal int representable with float.
constexpr float kMax = std::numeric_limits<int>::max() - 127;
constexpr float kMin = -kMax;
return static_cast<int>(std::roundf(Clamp1(v, kMin, kMax)));
};
const auto quant = AdjustedQuant(quantization_adjustment);
const auto inv_quant = InvAdjustedQuant(quantization_adjustment);
for (int c : {1, 0, 2}) {
float factor = (c == 0) ? y_to_x : (c == 1) ? 0 : y_to_b;
for (int i = 0; i < 32; ++i) {
const float dct_factor = (i == 0) ? kSqrt2 : 1.0f;
const float inv_dct_factor = (i == 0) ? kSqrt0_5 : 1.0f;
auto restored_y = result.color_dct_[1][i] * inv_dct_factor *
kChannelWeight[1] * inv_quant;
auto decorrelated = original.color_dct[c][i] - factor * restored_y;
result.color_dct_[c][i] =
to_int(decorrelated * dct_factor * quant / kChannelWeight[c]);
}
}
for (int i = 0; i < 32; ++i) {
const float dct_factor = (i == 0) ? kSqrt2 : 1.0f;
result.sigma_dct_[i] =
to_int(original.sigma_dct[i] * dct_factor * quant / kChannelWeight[3]);
}
return result;
}
Status QuantizedSpline::Dequantize(const Spline::Point& starting_point,
const int32_t quantization_adjustment,
const float y_to_x, const float y_to_b,
const uint64_t image_size,
uint64_t* total_estimated_area_reached,
Spline& result) const {
constexpr uint64_t kOne = static_cast<uint64_t>(1);
const uint64_t area_limit =
std::min(1024 * image_size + (kOne << 32), kOne << 42);
result.control_points.clear();
result.control_points.reserve(control_points_.size() + 1);
float px = std::roundf(starting_point.x);
float py = std::roundf(starting_point.y);
JXL_RETURN_IF_ERROR(ValidateSplinePointPos(px, py));
int current_x = static_cast<int>(px);
int current_y = static_cast<int>(py);
result.control_points.emplace_back(static_cast<float>(current_x),
static_cast<float>(current_y));
int current_delta_x = 0;
int current_delta_y = 0;
uint64_t manhattan_distance = 0;
for (const auto& point : control_points_) {
current_delta_x += point.first;
current_delta_y += point.second;
manhattan_distance += std::abs(current_delta_x) + std::abs(current_delta_y);
if (manhattan_distance > area_limit) {
return JXL_FAILURE("Too large manhattan_distance reached: %" PRIu64,
manhattan_distance);
}
JXL_RETURN_IF_ERROR(
ValidateSplinePointPos(current_delta_x, current_delta_y));
current_x += current_delta_x;
current_y += current_delta_y;
JXL_RETURN_IF_ERROR(ValidateSplinePointPos(current_x, current_y));
result.control_points.emplace_back(static_cast<float>(current_x),
static_cast<float>(current_y));
}
const auto inv_quant = InvAdjustedQuant(quantization_adjustment);
for (int c = 0; c < 3; ++c) {
for (int i = 0; i < 32; ++i) {
const float inv_dct_factor = (i == 0) ? kSqrt0_5 : 1.0f;
result.color_dct[c][i] =
color_dct_[c][i] * inv_dct_factor * kChannelWeight[c] * inv_quant;
}
}
for (int i = 0; i < 32; ++i) {
result.color_dct[0][i] += y_to_x * result.color_dct[1][i];
result.color_dct[2][i] += y_to_b * result.color_dct[1][i];
}
uint64_t width_estimate = 0;
uint64_t color[3] = {};
for (int c = 0; c < 3; ++c) {
for (int i = 0; i < 32; ++i) {
color[c] += static_cast<uint64_t>(
std::ceil(inv_quant * std::abs(color_dct_[c][i])));
}
}
color[0] += static_cast<uint64_t>(std::ceil(std::abs(y_to_x))) * color[1];
color[2] += static_cast<uint64_t>(std::ceil(std::abs(y_to_b))) * color[1];
// This is not taking kChannelWeight into account, but up to constant factors
// it gives an indication of the influence of the color values on the area
// that will need to be rendered.
const uint64_t max_color = std::max({color[1], color[0], color[2]});
uint64_t logcolor =
std::max(kOne, static_cast<uint64_t>(CeilLog2Nonzero(kOne + max_color)));
const float weight_limit =
std::ceil(std::sqrt((static_cast<float>(area_limit) / logcolor) /
std::max<size_t>(1, manhattan_distance)));
for (int i = 0; i < 32; ++i) {
const float inv_dct_factor = (i == 0) ? kSqrt0_5 : 1.0f;
result.sigma_dct[i] =
sigma_dct_[i] * inv_dct_factor * kChannelWeight[3] * inv_quant;
// If we include the factor kChannelWeight[3]=.3333f here, we get a
// realistic area estimate. We leave it out to simplify the calculations,
// and understand that this way we underestimate the area by a factor of
// 1/(0.3333*0.3333). This is taken into account in the limits below.
float weight_f = std::ceil(inv_quant * std::abs(sigma_dct_[i]));
uint64_t weight =
static_cast<uint64_t>(std::min(weight_limit, std::max(1.0f, weight_f)));
width_estimate += weight * weight * logcolor;
}
*total_estimated_area_reached += (width_estimate * manhattan_distance);
if (*total_estimated_area_reached > area_limit) {
return JXL_FAILURE("Too large total_estimated_area eached: %" PRIu64,
*total_estimated_area_reached);
}
return true;
}
Status QuantizedSpline::Decode(const std::vector<uint8_t>& context_map,
ANSSymbolReader* const decoder,
BitReader* const br,
const size_t max_control_points,
size_t* total_num_control_points) {
const size_t num_control_points =
decoder->ReadHybridUint(kNumControlPointsContext, br, context_map);
if (num_control_points > max_control_points) {
return JXL_FAILURE("Too many control points: %" PRIuS, num_control_points);
}
*total_num_control_points += num_control_points;
if (*total_num_control_points > max_control_points) {
return JXL_FAILURE("Too many control points: %" PRIuS,
*total_num_control_points);
}
control_points_.resize(num_control_points);
// Maximal image dimension.
constexpr int64_t kDeltaLimit = 1u << 30;
for (std::pair<int64_t, int64_t>& control_point : control_points_) {
control_point.first = UnpackSigned(
decoder->ReadHybridUint(kControlPointsContext, br, context_map));
control_point.second = UnpackSigned(
decoder->ReadHybridUint(kControlPointsContext, br, context_map));
// Check delta-deltas are not outrageous; it is not in spec, but there is
// no reason to allow larger values.
if ((control_point.first >= kDeltaLimit) ||
(control_point.first <= -kDeltaLimit) ||
(control_point.second >= kDeltaLimit) ||
(control_point.second <= -kDeltaLimit)) {
return JXL_FAILURE("Spline delta-delta is out of bounds");
}
}
const auto decode_dct = [decoder, br, &context_map](int dct[32]) -> Status {
constexpr int kWeirdNumber = std::numeric_limits<int>::min();
for (int i = 0; i < 32; ++i) {
dct[i] =
UnpackSigned(decoder->ReadHybridUint(kDCTContext, br, context_map));
if (dct[i] == kWeirdNumber) {
return JXL_FAILURE("The weird number in spline DCT");
}
}
return true;
};
for (auto& dct : color_dct_) {
JXL_RETURN_IF_ERROR(decode_dct(dct));
}
JXL_RETURN_IF_ERROR(decode_dct(sigma_dct_));
return true;
}
void Splines::Clear() {
quantization_adjustment_ = 0;
splines_.clear();
starting_points_.clear();
segments_.clear();
segment_indices_.clear();
segment_y_start_.clear();
}
Status Splines::Decode(JxlMemoryManager* memory_manager, jxl::BitReader* br,
const size_t num_pixels) {
std::vector<uint8_t> context_map;
ANSCode code;
JXL_RETURN_IF_ERROR(DecodeHistograms(memory_manager, br, kNumSplineContexts,
&code, &context_map));
JXL_ASSIGN_OR_RETURN(ANSSymbolReader decoder,
ANSSymbolReader::Create(&code, br));
size_t num_splines =
decoder.ReadHybridUint(kNumSplinesContext, br, context_map);
size_t max_control_points = std::min(
kMaxNumControlPoints, num_pixels / kMaxNumControlPointsPerPixelRatio);
if (num_splines > max_control_points ||
num_splines + 1 > max_control_points) {
return JXL_FAILURE("Too many splines: %" PRIuS, num_splines);
}
num_splines++;
JXL_RETURN_IF_ERROR(DecodeAllStartingPoints(&starting_points_, br, &decoder,
context_map, num_splines));
quantization_adjustment_ = UnpackSigned(
decoder.ReadHybridUint(kQuantizationAdjustmentContext, br, context_map));
splines_.clear();
splines_.reserve(num_splines);
size_t num_control_points = num_splines;
for (size_t i = 0; i < num_splines; ++i) {
QuantizedSpline spline;
JXL_RETURN_IF_ERROR(spline.Decode(context_map, &decoder, br,
max_control_points, &num_control_points));
splines_.push_back(std::move(spline));
}
JXL_RETURN_IF_ERROR(decoder.CheckANSFinalState());
if (!HasAny()) {
return JXL_FAILURE("Decoded splines but got none");
}
return true;
}
void Splines::AddTo(Image3F* const opsin, const Rect& opsin_rect) const {
Apply</*add=*/true>(opsin, opsin_rect);
}
void Splines::AddToRow(float* JXL_RESTRICT row_x, float* JXL_RESTRICT row_y,
float* JXL_RESTRICT row_b, size_t y, size_t x0,
size_t x1) const {
ApplyToRow</*add=*/true>(row_x, row_y, row_b, y, x0, x1);
}
void Splines::SubtractFrom(Image3F* const opsin) const {
Apply</*add=*/false>(opsin, Rect(*opsin));
}
Status Splines::InitializeDrawCache(const size_t image_xsize,
const size_t image_ysize,
const ColorCorrelation& color_correlation) {
// TODO(veluca): avoid storing segments that are entirely outside image
// boundaries.
segments_.clear();
segment_indices_.clear();
segment_y_start_.clear();
std::vector<std::pair<size_t, size_t>> segments_by_y;
std::vector<Spline::Point> intermediate_points;
uint64_t total_estimated_area_reached = 0;
std::vector<Spline> splines;
for (size_t i = 0; i < splines_.size(); ++i) {
Spline spline;
JXL_RETURN_IF_ERROR(splines_[i].Dequantize(
starting_points_[i], quantization_adjustment_,
color_correlation.YtoXRatio(0), color_correlation.YtoBRatio(0),
image_xsize * image_ysize, &total_estimated_area_reached, spline));
if (std::adjacent_find(spline.control_points.begin(),
spline.control_points.end()) !=
spline.control_points.end()) {
// Otherwise division by zero might occur. Once control points coincide,
// the direction of curve is undefined...
return JXL_FAILURE(
"identical successive control points in spline %" PRIuS, i);
}
splines.push_back(spline);
}
// TODO(firsching) Change this into a JXL_FAILURE for level 5 codestreams.
if (total_estimated_area_reached >
std::min(
(8 * image_xsize * image_ysize + (static_cast<uint64_t>(1) << 25)),
(static_cast<uint64_t>(1) << 30))) {
JXL_WARNING(
"Large total_estimated_area_reached, expect slower decoding: %" PRIu64,
total_estimated_area_reached);
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
return JXL_FAILURE("Total spline area is too large");
#endif
}
for (Spline& spline : splines) {
std::vector<std::pair<Spline::Point, float>> points_to_draw;
auto add_point = [&](const Spline::Point& point, const float multiplier) {
points_to_draw.emplace_back(point, multiplier);
};
intermediate_points.clear();
DrawCentripetalCatmullRomSpline(spline.control_points, intermediate_points);
JXL_RETURN_IF_ERROR(
ForEachEquallySpacedPoint(intermediate_points, add_point));
const float arc_length =
(points_to_draw.size() - 2) * kDesiredRenderingDistance +
points_to_draw.back().second;
if (arc_length <= 0.f) {
// This spline wouldn't have any effect.
continue;
}
HWY_DYNAMIC_DISPATCH(SegmentsFromPoints)
(spline, points_to_draw, arc_length, segments_, segments_by_y);
}
// TODO(eustas): consider linear sorting here.
std::sort(segments_by_y.begin(), segments_by_y.end());
segment_indices_.resize(segments_by_y.size());
segment_y_start_.resize(image_ysize + 1);
for (size_t i = 0; i < segments_by_y.size(); i++) {
segment_indices_[i] = segments_by_y[i].second;
size_t y = segments_by_y[i].first;
if (y < image_ysize) {
segment_y_start_[y + 1]++;
}
}
for (size_t y = 0; y < image_ysize; y++) {
segment_y_start_[y + 1] += segment_y_start_[y];
}
return true;
}
template <bool add>
void Splines::ApplyToRow(float* JXL_RESTRICT row_x, float* JXL_RESTRICT row_y,
float* JXL_RESTRICT row_b, size_t y, size_t x0,
size_t x1) const {
if (segments_.empty()) return;
HWY_DYNAMIC_DISPATCH(DrawSegments)
(row_x, row_y, row_b, y, x0, x1, add, segments_.data(),
segment_indices_.data(), segment_y_start_.data());
}
template <bool add>
void Splines::Apply(Image3F* const opsin, const Rect& opsin_rect) const {
if (segments_.empty()) return;
const size_t y0 = opsin_rect.y0();
const size_t x0 = opsin_rect.x0();
const size_t x1 = opsin_rect.x1();
for (size_t y = 0; y < opsin_rect.ysize(); y++) {
ApplyToRow<add>(opsin->PlaneRow(0, y0 + y) + x0,
opsin->PlaneRow(1, y0 + y) + x0,
opsin->PlaneRow(2, y0 + y) + x0, y0 + y, x0, x1);
}
}
} // namespace jxl
#endif // HWY_ONCE