Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/modular/transform/enc_palette.h"
#include <jxl/memory_manager.h>
#include <array>
#include <map>
#include <set>
#include "lib/jxl/base/common.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/modular/encoding/context_predict.h"
#include "lib/jxl/modular/modular_image.h"
#include "lib/jxl/modular/transform/enc_transform.h"
#include "lib/jxl/modular/transform/palette.h"
namespace jxl {
namespace palette_internal {
static constexpr bool kEncodeToHighQualityImplicitPalette = true;
// Inclusive.
static constexpr int kMinImplicitPaletteIndex = -(2 * 72 - 1);
float ColorDistance(const std::vector<float> &JXL_RESTRICT a,
const std::vector<pixel_type> &JXL_RESTRICT b) {
JXL_DASSERT(a.size() == b.size());
float distance = 0;
float ave3 = 0;
if (a.size() >= 3) {
ave3 = (a[0] + b[0] + a[1] + b[1] + a[2] + b[2]) * (1.21f / 3.0f);
}
float sum_a = 0;
float sum_b = 0;
for (size_t c = 0; c < a.size(); ++c) {
const float difference =
static_cast<float>(a[c]) - static_cast<float>(b[c]);
float weight = c == 0 ? 3 : c == 1 ? 5 : 2;
if (c < 3 && (a[c] + b[c] >= ave3)) {
const float add_w[3] = {
1.15,
1.15,
1.12,
};
weight += add_w[c];
if (c == 2 && ((a[2] + b[2]) < 1.22 * ave3)) {
weight -= 0.5;
}
}
distance += difference * difference * weight * weight;
const int sum_weight = c == 0 ? 3 : c == 1 ? 5 : 1;
sum_a += a[c] * sum_weight;
sum_b += b[c] * sum_weight;
}
distance *= 4;
float sum_difference = sum_a - sum_b;
distance += sum_difference * sum_difference;
return distance;
}
static int QuantizeColorToImplicitPaletteIndex(
const std::vector<pixel_type> &color, const int palette_size,
const int bit_depth, bool high_quality) {
int index = 0;
if (high_quality) {
int multiplier = 1;
for (int value : color) {
int quantized = ((kLargeCube - 1) * value + (1 << (bit_depth - 1))) /
((1 << bit_depth) - 1);
JXL_DASSERT((quantized % kLargeCube) == quantized);
index += quantized * multiplier;
multiplier *= kLargeCube;
}
return index + palette_size + kLargeCubeOffset;
} else {
int multiplier = 1;
for (int value : color) {
value -= 1 << (std::max(0, bit_depth - 3));
value = std::max(0, value);
int quantized = ((kLargeCube - 1) * value + (1 << (bit_depth - 1))) /
((1 << bit_depth) - 1);
JXL_DASSERT((quantized % kLargeCube) == quantized);
if (quantized > kSmallCube - 1) {
quantized = kSmallCube - 1;
}
index += quantized * multiplier;
multiplier *= kSmallCube;
}
return index + palette_size;
}
}
} // namespace palette_internal
int RoundInt(int value, int div) { // symmetric rounding around 0
if (value < 0) return -RoundInt(-value, div);
return (value + div / 2) / div;
}
struct PaletteIterationData {
static constexpr int kMaxDeltas = 128;
bool final_run = false;
std::vector<pixel_type> deltas[3];
std::vector<double> delta_distances;
std::vector<pixel_type> frequent_deltas[3];
// Populates `frequent_deltas` with items from `deltas` based on frequencies
// and color distances.
void FindFrequentColorDeltas(int num_pixels, int bitdepth) {
using pixel_type_3d = std::array<pixel_type, 3>;
std::map<pixel_type_3d, double> delta_frequency_map;
pixel_type bucket_size = 3 << std::max(0, bitdepth - 8);
// Store frequency weighted by delta distance from quantized value.
for (size_t i = 0; i < deltas[0].size(); ++i) {
pixel_type_3d delta = {
{RoundInt(deltas[0][i], bucket_size),
RoundInt(deltas[1][i], bucket_size),
RoundInt(deltas[2][i], bucket_size)}}; // a basic form of clustering
if (delta[0] == 0 && delta[1] == 0 && delta[2] == 0) continue;
delta_frequency_map[delta] += sqrt(sqrt(delta_distances[i]));
}
const float delta_distance_multiplier = 1.0f / num_pixels;
// Weigh frequencies by magnitude and normalize.
for (auto &delta_frequency : delta_frequency_map) {
std::vector<pixel_type> current_delta = {delta_frequency.first[0],
delta_frequency.first[1],
delta_frequency.first[2]};
float delta_distance =
std::sqrt(palette_internal::ColorDistance({0, 0, 0}, current_delta)) +
1;
delta_frequency.second *= delta_distance * delta_distance_multiplier;
}
// Sort by weighted frequency.
using pixel_type_3d_frequency = std::pair<pixel_type_3d, double>;
std::vector<pixel_type_3d_frequency> sorted_delta_frequency_map(
delta_frequency_map.begin(), delta_frequency_map.end());
std::sort(
sorted_delta_frequency_map.begin(), sorted_delta_frequency_map.end(),
[](const pixel_type_3d_frequency &a, const pixel_type_3d_frequency &b) {
return a.second > b.second;
});
// Store the top deltas.
for (auto &delta_frequency : sorted_delta_frequency_map) {
if (frequent_deltas[0].size() >= kMaxDeltas) break;
// Number obtained by optimizing on jyrki31 corpus:
if (delta_frequency.second < 17) break;
for (int c = 0; c < 3; ++c) {
frequent_deltas[c].push_back(delta_frequency.first[c] * bucket_size);
}
}
}
};
Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
uint32_t &nb_colors, uint32_t &nb_deltas,
bool ordered, bool lossy, Predictor &predictor,
const weighted::Header &wp_header,
PaletteIterationData &palette_iteration_data) {
JXL_QUIET_RETURN_IF_ERROR(CheckEqualChannels(input, begin_c, end_c));
JXL_ENSURE(begin_c >= input.nb_meta_channels);
JxlMemoryManager *memory_manager = input.memory_manager();
uint32_t nb = end_c - begin_c + 1;
size_t w = input.channel[begin_c].w;
size_t h = input.channel[begin_c].h;
if (input.bitdepth >= 32) return false;
if (!lossy && nb_colors < 2) return false;
if (!lossy && nb == 1) {
// Channel palette special case
if (nb_colors == 0) return false;
std::vector<pixel_type> lookup;
pixel_type minval;
pixel_type maxval;
compute_minmax(input.channel[begin_c], &minval, &maxval);
size_t lookup_table_size =
static_cast<int64_t>(maxval) - static_cast<int64_t>(minval) + 1;
if (lookup_table_size > palette_internal::kMaxPaletteLookupTableSize) {
// a lookup table would use too much memory, instead use a slower approach
// with std::set
std::set<pixel_type> chpalette;
pixel_type idx = 0;
for (size_t y = 0; y < h; y++) {
const pixel_type *p = input.channel[begin_c].Row(y);
for (size_t x = 0; x < w; x++) {
const bool new_color = chpalette.insert(p[x]).second;
if (new_color) {
idx++;
if (idx > static_cast<int>(nb_colors)) return false;
}
}
}
JXL_DEBUG_V(6, "Channel %i uses only %i colors.", begin_c, idx);
JXL_ASSIGN_OR_RETURN(Channel pch,
Channel::Create(memory_manager, idx, 1));
pch.hshift = -1;
pch.vshift = -1;
nb_colors = idx;
idx = 0;
pixel_type *JXL_RESTRICT p_palette = pch.Row(0);
for (pixel_type p : chpalette) {
p_palette[idx++] = p;
}
for (size_t y = 0; y < h; y++) {
pixel_type *p = input.channel[begin_c].Row(y);
for (size_t x = 0; x < w; x++) {
for (idx = 0;
p[x] != p_palette[idx] && idx < static_cast<int>(nb_colors);
idx++) {
// no-op
}
JXL_DASSERT(idx < static_cast<int>(nb_colors));
p[x] = idx;
}
}
predictor = Predictor::Zero;
input.nb_meta_channels++;
input.channel.insert(input.channel.begin(), std::move(pch));
return true;
}
lookup.resize(lookup_table_size, 0);
pixel_type idx = 0;
for (size_t y = 0; y < h; y++) {
const pixel_type *p = input.channel[begin_c].Row(y);
for (size_t x = 0; x < w; x++) {
if (lookup[p[x] - minval] == 0) {
lookup[p[x] - minval] = 1;
idx++;
if (idx > static_cast<int>(nb_colors)) return false;
}
}
}
JXL_DEBUG_V(6, "Channel %i uses only %i colors.", begin_c, idx);
JXL_ASSIGN_OR_RETURN(Channel pch, Channel::Create(memory_manager, idx, 1));
pch.hshift = -1;
pch.vshift = -1;
nb_colors = idx;
idx = 0;
pixel_type *JXL_RESTRICT p_palette = pch.Row(0);
for (size_t i = 0; i < lookup_table_size; i++) {
if (lookup[i]) {
p_palette[idx] = i + minval;
lookup[i] = idx;
idx++;
}
}
for (size_t y = 0; y < h; y++) {
pixel_type *p = input.channel[begin_c].Row(y);
for (size_t x = 0; x < w; x++) p[x] = lookup[p[x] - minval];
}
predictor = Predictor::Zero;
input.nb_meta_channels++;
input.channel.insert(input.channel.begin(), std::move(pch));
return true;
}
Image quantized_input(memory_manager);
if (lossy) {
JXL_ASSIGN_OR_RETURN(quantized_input, Image::Create(memory_manager, w, h,
input.bitdepth, nb));
for (size_t c = 0; c < nb; c++) {
JXL_RETURN_IF_ERROR(CopyImageTo(input.channel[begin_c + c].plane,
&quantized_input.channel[c].plane));
}
}
JXL_DEBUG_V(
7, "Trying to represent channels %i-%i using at most a %i-color palette.",
begin_c, end_c, nb_colors);
nb_deltas = 0;
bool delta_used = false;
std::set<std::vector<pixel_type>> candidate_palette;
std::vector<std::vector<pixel_type>> candidate_palette_imageorder;
std::vector<pixel_type> color(nb);
std::vector<float> color_with_error(nb);
std::vector<const pixel_type *> p_in(nb);
std::map<std::vector<pixel_type>, size_t> inv_palette;
if (lossy) {
palette_iteration_data.FindFrequentColorDeltas(w * h, input.bitdepth);
nb_deltas = palette_iteration_data.frequent_deltas[0].size();
// Count color frequency for colors that make a cross.
std::map<std::vector<pixel_type>, size_t> color_freq_map;
for (size_t y = 1; y + 1 < h; y++) {
for (uint32_t c = 0; c < nb; c++) {
p_in[c] = input.channel[begin_c + c].Row(y);
}
for (size_t x = 1; x + 1 < w; x++) {
for (uint32_t c = 0; c < nb; c++) {
color[c] = p_in[c][x];
}
int offsets[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
bool makes_cross = true;
for (int i = 0; i < 4 && makes_cross; ++i) {
int dx = offsets[i][0];
int dy = offsets[i][1];
for (uint32_t c = 0; c < nb && makes_cross; c++) {
if (input.channel[begin_c + c].Row(y + dy)[x + dx] != color[c]) {
makes_cross = false;
}
}
}
if (makes_cross) color_freq_map[color] += 1;
}
}
// Add colors satisfying frequency condition to the palette.
constexpr float kImageFraction = 0.01f;
size_t color_frequency_lower_bound = 5 + input.h * input.w * kImageFraction;
for (const auto &color_freq : color_freq_map) {
if (color_freq.second > color_frequency_lower_bound) {
candidate_palette.insert(color_freq.first);
candidate_palette_imageorder.push_back(color_freq.first);
}
}
}
std::map<std::vector<pixel_type>, bool> implicit_color;
std::vector<std::vector<pixel_type>> implicit_colors;
implicit_colors.reserve(palette_internal::kImplicitPaletteSize);
for (size_t k = 0; k < palette_internal::kImplicitPaletteSize; k++) {
for (size_t i = 0; i < nb; i++) {
color[i] = palette_internal::GetPaletteValue(nullptr, k, i, 0, 0,
input.bitdepth);
}
implicit_color[color] = true;
implicit_colors.push_back(color);
}
std::map<std::vector<pixel_type>, size_t> color_freq_map;
uint32_t implicit_colors_used = 0;
for (size_t y = 0; y < h; y++) {
for (uint32_t c = 0; c < nb; c++) {
p_in[c] = input.channel[begin_c + c].Row(y);
}
for (size_t x = 0; x < w; x++) {
if (lossy && candidate_palette.size() >= nb_colors) break;
for (uint32_t c = 0; c < nb; c++) {
color[c] = p_in[c][x];
}
const bool new_color = candidate_palette.insert(color).second;
if (new_color) {
if (implicit_color[color]) {
implicit_colors_used++;
} else {
candidate_palette_imageorder.push_back(color);
if (candidate_palette_imageorder.size() > nb_colors) {
return false; // too many colors
}
}
}
color_freq_map[color] += 1;
}
}
nb_colors = nb_deltas + candidate_palette_imageorder.size();
// not useful to make a single-color palette
if (!lossy && nb_colors + implicit_colors_used == 1) return false;
// TODO(jon): if this happens (e.g. solid white group), special-case it for
// faster encode
for (size_t k = 0; k < palette_internal::kImplicitPaletteSize; k++) {
color = implicit_colors[k];
// still add the color to the explicit palette if it is frequent enough
if (color_freq_map[color] > 10) {
nb_colors++;
candidate_palette_imageorder.push_back(color);
}
}
for (size_t k = 0; k < palette_internal::kImplicitPaletteSize; k++) {
color = implicit_colors[k];
inv_palette[color] = nb_colors + k;
}
JXL_DEBUG_V(6, "Channels %i-%i can be represented using a %i-color palette.",
begin_c, end_c, nb_colors);
JXL_ASSIGN_OR_RETURN(Channel pch,
Channel::Create(memory_manager, nb_colors, nb));
pch.hshift = -1;
pch.vshift = -1;
pixel_type *JXL_RESTRICT p_palette = pch.Row(0);
intptr_t onerow = pch.plane.PixelsPerRow();
intptr_t onerow_image = input.channel[begin_c].plane.PixelsPerRow();
const int bit_depth = std::min(input.bitdepth, 24);
if (lossy) {
for (uint32_t i = 0; i < nb_deltas; i++) {
for (size_t c = 0; c < 3; c++) {
p_palette[c * onerow + i] =
palette_iteration_data.frequent_deltas[c][i];
}
}
}
// Separate the palette in two buckets, first the common colors, then the
// rare colors.
// Within each bucket, the colors are sorted on luma (times alpha).
float freq_threshold = 4; // arbitrary threshold
int x = 0;
if (ordered && nb >= 3) {
JXL_DEBUG_V(7, "Palette of %i colors, using luma order", nb_colors);
// sort on luma (multiplied by alpha if available)
std::sort(candidate_palette_imageorder.begin(),
candidate_palette_imageorder.end(),
[&](std::vector<pixel_type> ap, std::vector<pixel_type> bp) {
float ay;
float by;
ay = (0.299f * ap[0] + 0.587f * ap[1] + 0.114f * ap[2] + 0.1f);
if (ap.size() > 3) ay *= 1.f + ap[3];
by = (0.299f * bp[0] + 0.587f * bp[1] + 0.114f * bp[2] + 0.1f);
if (bp.size() > 3) by *= 1.f + bp[3];
// put common colors first, transparent dark to opaque bright,
// then rare colors, bright to dark
ay = color_freq_map[ap] > freq_threshold ? -ay : ay;
by = color_freq_map[bp] > freq_threshold ? -by : by;
return ay < by;
});
} else {
JXL_DEBUG_V(7, "Palette of %i colors, using image order", nb_colors);
}
for (auto pcol : candidate_palette_imageorder) {
JXL_DEBUG_V(9, " Color %i : ", x);
for (size_t i = 0; i < nb; i++) {
p_palette[nb_deltas + i * onerow + x] = pcol[i];
JXL_DEBUG_V(9, "%i ", pcol[i]);
}
inv_palette[pcol] = x;
x++;
}
std::vector<weighted::State> wp_states;
for (size_t c = 0; c < nb; c++) {
wp_states.emplace_back(wp_header, w, h);
}
std::vector<pixel_type *> p_quant(nb);
// Three rows of error for dithering: y to y + 2.
// Each row has two pixels of padding in the ends, which is
// beneficial for both precision and encoding speed.
std::vector<std::vector<float>> error_row[3];
if (lossy) {
for (auto &row : error_row) {
row.resize(nb);
for (size_t c = 0; c < nb; ++c) {
row[c].resize(w + 4);
}
}
}
for (size_t y = 0; y < h; y++) {
for (size_t c = 0; c < nb; c++) {
p_in[c] = input.channel[begin_c + c].Row(y);
if (lossy) p_quant[c] = quantized_input.channel[c].Row(y);
}
pixel_type *JXL_RESTRICT p = input.channel[begin_c].Row(y);
for (size_t x = 0; x < w; x++) {
int index;
if (!lossy) {
for (size_t c = 0; c < nb; c++) color[c] = p_in[c][x];
index = inv_palette[color];
} else {
int best_index = 0;
bool best_is_delta = false;
float best_distance = std::numeric_limits<float>::infinity();
std::vector<pixel_type> best_val(nb, 0);
std::vector<pixel_type> ideal_residual(nb, 0);
std::vector<pixel_type> quantized_val(nb);
std::vector<pixel_type> predictions(nb);
for (double diffusion_multiplier : {0.55, 0.75}) {
for (size_t c = 0; c < nb; c++) {
color_with_error[c] =
p_in[c][x] + (palette_iteration_data.final_run ? 1 : 0) *
diffusion_multiplier * error_row[0][c][x + 2];
color[c] = Clamp1(lroundf(color_with_error[c]), 0l,
(1l << input.bitdepth) - 1);
}
for (size_t c = 0; c < nb; ++c) {
predictions[c] = PredictNoTreeWP(w, p_quant[c] + x, onerow_image, x,
y, predictor, &wp_states[c])
.guess;
}
const auto TryIndex = [&](const int index) {
for (size_t c = 0; c < nb; c++) {
quantized_val[c] = palette_internal::GetPaletteValue(
p_palette, index, /*c=*/c,
/*palette_size=*/nb_colors,
/*onerow=*/onerow, /*bit_depth=*/bit_depth);
if (index < static_cast<int>(nb_deltas)) {
quantized_val[c] += predictions[c];
}
}
const float color_distance =
32.0 / (1LL << std::max(0, 2 * (bit_depth - 8))) *
palette_internal::ColorDistance(color_with_error,
quantized_val);
float index_penalty = 0;
if (index == -1) {
index_penalty = -124;
} else if (index < 0) {
index_penalty = -2 * index;
} else if (index < static_cast<int>(nb_deltas)) {
index_penalty = 250;
} else if (index < static_cast<int>(nb_colors)) {
index_penalty = 150;
} else if (index < static_cast<int>(nb_colors) +
palette_internal::kLargeCubeOffset) {
index_penalty = 70;
} else {
index_penalty = 256;
}
const float distance = color_distance + index_penalty;
if (distance < best_distance) {
best_distance = distance;
best_index = index;
best_is_delta = index < static_cast<int>(nb_deltas);
best_val.swap(quantized_val);
for (size_t c = 0; c < nb; ++c) {
ideal_residual[c] = color_with_error[c] - predictions[c];
}
}
};
for (index = palette_internal::kMinImplicitPaletteIndex;
index < static_cast<int32_t>(nb_colors); index++) {
TryIndex(index);
}
TryIndex(palette_internal::QuantizeColorToImplicitPaletteIndex(
color, nb_colors, bit_depth,
/*high_quality=*/false));
if (palette_internal::kEncodeToHighQualityImplicitPalette) {
TryIndex(palette_internal::QuantizeColorToImplicitPaletteIndex(
color, nb_colors, bit_depth,
/*high_quality=*/true));
}
}
index = best_index;
delta_used |= best_is_delta;
if (!palette_iteration_data.final_run) {
for (size_t c = 0; c < 3; ++c) {
palette_iteration_data.deltas[c].push_back(ideal_residual[c]);
}
palette_iteration_data.delta_distances.push_back(best_distance);
}
for (size_t c = 0; c < nb; ++c) {
wp_states[c].UpdateErrors(best_val[c], x, y, w);
p_quant[c][x] = best_val[c];
}
float len_error = 0;
for (size_t c = 0; c < nb; ++c) {
float local_error = color_with_error[c] - best_val[c];
len_error += local_error * local_error;
}
len_error = std::sqrt(len_error);
float modulate = 1.0;
int len_limit = 38 << std::max(0, bit_depth - 8);
if (len_error > len_limit) {
modulate *= len_limit / len_error;
}
for (size_t c = 0; c < nb; ++c) {
float total_error = (color_with_error[c] - best_val[c]);
// If the neighboring pixels have some error in the opposite
// direction of total_error, cancel some or all of it out before
// spreading among them.
constexpr int offsets[12][2] = {{1, 2}, {0, 3}, {0, 4}, {1, 1},
{1, 3}, {2, 2}, {1, 0}, {1, 4},
{2, 1}, {2, 3}, {2, 0}, {2, 4}};
float total_available = 0;
for (int i = 0; i < 11; ++i) {
const int row = offsets[i][0];
const int col = offsets[i][1];
if (std::signbit(error_row[row][c][x + col]) !=
std::signbit(total_error)) {
total_available += error_row[row][c][x + col];
}
}
float weight =
std::abs(total_error) / (std::abs(total_available) + 1e-3);
weight = std::min(weight, 1.0f);
for (int i = 0; i < 11; ++i) {
const int row = offsets[i][0];
const int col = offsets[i][1];
if (std::signbit(error_row[row][c][x + col]) !=
std::signbit(total_error)) {
total_error += weight * error_row[row][c][x + col];
error_row[row][c][x + col] *= (1 - weight);
}
}
total_error *= modulate;
const float remaining_error = (1.0f / 14.) * total_error;
error_row[0][c][x + 3] += 2 * remaining_error;
error_row[0][c][x + 4] += remaining_error;
error_row[1][c][x + 0] += remaining_error;
for (int i = 0; i < 5; ++i) {
error_row[1][c][x + i] += remaining_error;
error_row[2][c][x + i] += remaining_error;
}
}
}
if (palette_iteration_data.final_run) p[x] = index;
}
if (lossy) {
for (size_t c = 0; c < nb; ++c) {
error_row[0][c].swap(error_row[1][c]);
error_row[1][c].swap(error_row[2][c]);
std::fill(error_row[2][c].begin(), error_row[2][c].end(), 0.f);
}
}
}
if (!delta_used) {
predictor = Predictor::Zero;
}
if (palette_iteration_data.final_run) {
input.nb_meta_channels++;
input.channel.erase(input.channel.begin() + begin_c + 1,
input.channel.begin() + end_c + 1);
input.channel.insert(input.channel.begin(), std::move(pch));
}
nb_colors -= nb_deltas;
return true;
}
Status FwdPalette(Image &input, uint32_t begin_c, uint32_t end_c,
uint32_t &nb_colors, uint32_t &nb_deltas, bool ordered,
bool lossy, Predictor &predictor,
const weighted::Header &wp_header) {
PaletteIterationData palette_iteration_data;
uint32_t nb_colors_orig = nb_colors;
uint32_t nb_deltas_orig = nb_deltas;
// preprocessing pass in case of lossy palette
if (lossy && input.bitdepth >= 8) {
JXL_RETURN_IF_ERROR(FwdPaletteIteration(
input, begin_c, end_c, nb_colors_orig, nb_deltas_orig, ordered, lossy,
predictor, wp_header, palette_iteration_data));
}
palette_iteration_data.final_run = true;
return FwdPaletteIteration(input, begin_c, end_c, nb_colors, nb_deltas,
ordered, lossy, predictor, wp_header,
palette_iteration_data);
}
} // namespace jxl