Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/modular/encoding/encoding.h"
#include <jxl/memory_manager.h>
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <queue>
#include <utility>
#include <vector>
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/scope_guard.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/dec_ans.h"
#include "lib/jxl/dec_bit_reader.h"
#include "lib/jxl/frame_dimensions.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/modular/encoding/context_predict.h"
#include "lib/jxl/modular/options.h"
#include "lib/jxl/pack_signed.h"
namespace jxl {
// Removes all nodes that use a static property (i.e. channel or group ID) from
// the tree and collapses each node on even levels with its two children to
// produce a flatter tree. Also computes whether the resulting tree requires
// using the weighted predictor.
FlatTree FilterTree(const Tree &global_tree,
std::array<pixel_type, kNumStaticProperties> &static_props,
size_t *num_props, bool *use_wp, bool *wp_only,
bool *gradient_only) {
*num_props = 0;
bool has_wp = false;
bool has_non_wp = false;
*gradient_only = true;
const auto mark_property = [&](int32_t p) {
if (p == kWPProp) {
has_wp = true;
} else if (p >= kNumStaticProperties) {
has_non_wp = true;
}
if (p >= kNumStaticProperties && p != kGradientProp) {
*gradient_only = false;
}
};
FlatTree output;
std::queue<size_t> nodes;
nodes.push(0);
// Produces a trimmed and flattened tree by doing a BFS visit of the original
// tree, ignoring branches that are known to be false and proceeding two
// levels at a time to collapse nodes in a flatter tree; if an inner parent
// node has a leaf as a child, the leaf is duplicated and an implicit fake
// node is added. This allows to reduce the number of branches when traversing
// the resulting flat tree.
while (!nodes.empty()) {
size_t cur = nodes.front();
nodes.pop();
// Skip nodes that we can decide now, by jumping directly to their children.
while (global_tree[cur].property < kNumStaticProperties &&
global_tree[cur].property != -1) {
if (static_props[global_tree[cur].property] > global_tree[cur].splitval) {
cur = global_tree[cur].lchild;
} else {
cur = global_tree[cur].rchild;
}
}
FlatDecisionNode flat;
if (global_tree[cur].property == -1) {
flat.property0 = -1;
flat.childID = global_tree[cur].lchild;
flat.predictor = global_tree[cur].predictor;
flat.predictor_offset = global_tree[cur].predictor_offset;
flat.multiplier = global_tree[cur].multiplier;
*gradient_only &= flat.predictor == Predictor::Gradient;
has_wp |= flat.predictor == Predictor::Weighted;
has_non_wp |= flat.predictor != Predictor::Weighted;
output.push_back(flat);
continue;
}
flat.childID = output.size() + nodes.size() + 1;
flat.property0 = global_tree[cur].property;
*num_props = std::max<size_t>(flat.property0 + 1, *num_props);
flat.splitval0 = global_tree[cur].splitval;
for (size_t i = 0; i < 2; i++) {
size_t cur_child =
i == 0 ? global_tree[cur].lchild : global_tree[cur].rchild;
// Skip nodes that we can decide now.
while (global_tree[cur_child].property < kNumStaticProperties &&
global_tree[cur_child].property != -1) {
if (static_props[global_tree[cur_child].property] >
global_tree[cur_child].splitval) {
cur_child = global_tree[cur_child].lchild;
} else {
cur_child = global_tree[cur_child].rchild;
}
}
// We ended up in a leaf, add a placeholder decision and two copies of the
// leaf.
if (global_tree[cur_child].property == -1) {
flat.properties[i] = 0;
flat.splitvals[i] = 0;
nodes.push(cur_child);
nodes.push(cur_child);
} else {
flat.properties[i] = global_tree[cur_child].property;
flat.splitvals[i] = global_tree[cur_child].splitval;
nodes.push(global_tree[cur_child].lchild);
nodes.push(global_tree[cur_child].rchild);
*num_props = std::max<size_t>(flat.properties[i] + 1, *num_props);
}
}
for (int16_t property : flat.properties) mark_property(property);
mark_property(flat.property0);
output.push_back(flat);
}
if (*num_props > kNumNonrefProperties) {
*num_props =
DivCeil(*num_props - kNumNonrefProperties, kExtraPropsPerChannel) *
kExtraPropsPerChannel +
kNumNonrefProperties;
} else {
*num_props = kNumNonrefProperties;
}
*use_wp = has_wp;
*wp_only = has_wp && !has_non_wp;
return output;
}
namespace detail {
template <bool uses_lz77>
Status DecodeModularChannelMAANS(BitReader *br, ANSSymbolReader *reader,
const std::vector<uint8_t> &context_map,
const Tree &global_tree,
const weighted::Header &wp_header,
pixel_type chan, size_t group_id,
TreeLut<uint8_t, false, false> &tree_lut,
Image *image, uint32_t &fl_run,
uint32_t &fl_v) {
JxlMemoryManager *memory_manager = image->memory_manager();
Channel &channel = image->channel[chan];
std::array<pixel_type, kNumStaticProperties> static_props = {
{chan, static_cast<int>(group_id)}};
// TODO(veluca): filter the tree according to static_props.
// zero pixel channel? could happen
if (channel.w == 0 || channel.h == 0) return true;
bool tree_has_wp_prop_or_pred = false;
bool is_wp_only = false;
bool is_gradient_only = false;
size_t num_props;
FlatTree tree =
FilterTree(global_tree, static_props, &num_props,
&tree_has_wp_prop_or_pred, &is_wp_only, &is_gradient_only);
// From here on, tree lookup returns a *clustered* context ID.
// This avoids an extra memory lookup after tree traversal.
for (auto &node : tree) {
if (node.property0 == -1) {
node.childID = context_map[node.childID];
}
}
JXL_DEBUG_V(3, "Decoded MA tree with %" PRIuS " nodes", tree.size());
// MAANS decode
const auto make_pixel = [](uint64_t v, pixel_type multiplier,
pixel_type_w offset) -> pixel_type {
JXL_DASSERT((v & 0xFFFFFFFF) == v);
pixel_type_w val = UnpackSigned(v);
// if it overflows, it overflows, and we have a problem anyway
return val * multiplier + offset;
};
if (tree.size() == 1) {
// special optimized case: no meta-adaptation, so no need
// to compute properties.
Predictor predictor = tree[0].predictor;
int64_t offset = tree[0].predictor_offset;
int32_t multiplier = tree[0].multiplier;
size_t ctx_id = tree[0].childID;
if (predictor == Predictor::Zero) {
uint32_t value;
if (reader->IsSingleValueAndAdvance(ctx_id, &value,
channel.w * channel.h)) {
// Special-case: histogram has a single symbol, with no extra bits, and
// we use ANS mode.
JXL_DEBUG_V(8, "Fastest track.");
pixel_type v = make_pixel(value, multiplier, offset);
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT r = channel.Row(y);
std::fill(r, r + channel.w, v);
}
} else {
JXL_DEBUG_V(8, "Fast track.");
if (multiplier == 1 && offset == 0) {
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT r = channel.Row(y);
for (size_t x = 0; x < channel.w; x++) {
uint32_t v =
reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
r[x] = UnpackSigned(v);
}
}
} else {
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT r = channel.Row(y);
for (size_t x = 0; x < channel.w; x++) {
uint32_t v =
reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(ctx_id,
br);
r[x] = make_pixel(v, multiplier, offset);
}
}
}
}
return true;
} else if (uses_lz77 && predictor == Predictor::Gradient && offset == 0 &&
multiplier == 1 && reader->IsHuffRleOnly()) {
JXL_DEBUG_V(8, "Gradient RLE (fjxl) very fast track.");
pixel_type_w sv = UnpackSigned(fl_v);
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT r = channel.Row(y);
const pixel_type *JXL_RESTRICT rtop = (y ? channel.Row(y - 1) : r - 1);
const pixel_type *JXL_RESTRICT rtopleft =
(y ? channel.Row(y - 1) - 1 : r - 1);
pixel_type_w guess = (y ? rtop[0] : 0);
if (fl_run == 0) {
reader->ReadHybridUintClusteredHuffRleOnly(ctx_id, br, &fl_v,
&fl_run);
sv = UnpackSigned(fl_v);
} else {
fl_run--;
}
r[0] = sv + guess;
for (size_t x = 1; x < channel.w; x++) {
pixel_type left = r[x - 1];
pixel_type top = rtop[x];
pixel_type topleft = rtopleft[x];
pixel_type_w guess = ClampedGradient(top, left, topleft);
if (!fl_run) {
reader->ReadHybridUintClusteredHuffRleOnly(ctx_id, br, &fl_v,
&fl_run);
sv = UnpackSigned(fl_v);
} else {
fl_run--;
}
r[x] = sv + guess;
}
}
return true;
} else if (predictor == Predictor::Gradient && offset == 0 &&
multiplier == 1) {
JXL_DEBUG_V(8, "Gradient very fast track.");
const intptr_t onerow = channel.plane.PixelsPerRow();
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT r = channel.Row(y);
for (size_t x = 0; x < channel.w; x++) {
pixel_type left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
pixel_type top = (y ? *(r + x - onerow) : left);
pixel_type topleft = (x && y ? *(r + x - 1 - onerow) : left);
pixel_type guess = ClampedGradient(top, left, topleft);
uint64_t v = reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(
ctx_id, br);
r[x] = make_pixel(v, 1, guess);
}
}
return true;
}
}
// Check if this tree is a WP-only tree with a small enough property value
// range.
if (is_wp_only) {
is_wp_only = TreeToLookupTable(tree, tree_lut);
}
if (is_gradient_only) {
is_gradient_only = TreeToLookupTable(tree, tree_lut);
}
if (is_gradient_only) {
JXL_DEBUG_V(8, "Gradient fast track.");
const intptr_t onerow = channel.plane.PixelsPerRow();
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT r = channel.Row(y);
for (size_t x = 0; x < channel.w; x++) {
pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
pixel_type_w top = (y ? *(r + x - onerow) : left);
pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
int32_t guess = ClampedGradient(top, left, topleft);
uint32_t pos =
kPropRangeFast +
std::min<pixel_type_w>(
std::max<pixel_type_w>(-kPropRangeFast, top + left - topleft),
kPropRangeFast - 1);
uint32_t ctx_id = tree_lut.context_lookup[pos];
uint64_t v =
reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(ctx_id, br);
r[x] = make_pixel(v, 1, guess);
}
}
} else if (!uses_lz77 && is_wp_only && channel.w > 8) {
JXL_DEBUG_V(8, "WP fast track.");
weighted::State wp_state(wp_header, channel.w, channel.h);
Properties properties(1);
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT r = channel.Row(y);
const pixel_type *JXL_RESTRICT rtop = (y ? channel.Row(y - 1) : r - 1);
const pixel_type *JXL_RESTRICT rtoptop =
(y > 1 ? channel.Row(y - 2) : rtop);
const pixel_type *JXL_RESTRICT rtopleft =
(y ? channel.Row(y - 1) - 1 : r - 1);
const pixel_type *JXL_RESTRICT rtopright =
(y ? channel.Row(y - 1) + 1 : r - 1);
size_t x = 0;
{
size_t offset = 0;
pixel_type_w left = y ? rtop[x] : 0;
pixel_type_w toptop = y ? rtoptop[x] : 0;
pixel_type_w topright = (x + 1 < channel.w && y ? rtop[x + 1] : left);
int32_t guess = wp_state.Predict</*compute_properties=*/true>(
x, y, channel.w, left, left, topright, left, toptop, &properties,
offset);
uint32_t pos =
kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
kPropRangeFast - 1);
uint32_t ctx_id = tree_lut.context_lookup[pos];
uint64_t v =
reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
r[x] = make_pixel(v, 1, guess);
wp_state.UpdateErrors(r[x], x, y, channel.w);
}
for (x = 1; x + 1 < channel.w; x++) {
size_t offset = 0;
int32_t guess = wp_state.Predict</*compute_properties=*/true>(
x, y, channel.w, rtop[x], r[x - 1], rtopright[x], rtopleft[x],
rtoptop[x], &properties, offset);
uint32_t pos =
kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
kPropRangeFast - 1);
uint32_t ctx_id = tree_lut.context_lookup[pos];
uint64_t v =
reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
r[x] = make_pixel(v, 1, guess);
wp_state.UpdateErrors(r[x], x, y, channel.w);
}
{
size_t offset = 0;
int32_t guess = wp_state.Predict</*compute_properties=*/true>(
x, y, channel.w, rtop[x], r[x - 1], rtop[x], rtopleft[x],
rtoptop[x], &properties, offset);
uint32_t pos =
kPropRangeFast + std::min(std::max(-kPropRangeFast, properties[0]),
kPropRangeFast - 1);
uint32_t ctx_id = tree_lut.context_lookup[pos];
uint64_t v =
reader->ReadHybridUintClusteredInlined<uses_lz77>(ctx_id, br);
r[x] = make_pixel(v, 1, guess);
wp_state.UpdateErrors(r[x], x, y, channel.w);
}
}
} else if (!tree_has_wp_prop_or_pred) {
// special optimized case: the weighted predictor and its properties are not
// used, so no need to compute weights and properties.
JXL_DEBUG_V(8, "Slow track.");
MATreeLookup tree_lookup(tree);
Properties properties = Properties(num_props);
const intptr_t onerow = channel.plane.PixelsPerRow();
JXL_ASSIGN_OR_RETURN(
Channel references,
Channel::Create(memory_manager,
properties.size() - kNumNonrefProperties, channel.w));
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT p = channel.Row(y);
PrecomputeReferences(channel, y, *image, chan, &references);
InitPropsRow(&properties, static_props, y);
if (y > 1 && channel.w > 8 && references.w == 0) {
for (size_t x = 0; x < 2; x++) {
PredictionResult res =
PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
tree_lookup, references);
uint64_t v =
reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
p[x] = make_pixel(v, res.multiplier, res.guess);
}
for (size_t x = 2; x < channel.w - 2; x++) {
PredictionResult res =
PredictTreeNoWPNEC(&properties, channel.w, p + x, onerow, x, y,
tree_lookup, references);
uint64_t v = reader->ReadHybridUintClusteredInlined<uses_lz77>(
res.context, br);
p[x] = make_pixel(v, res.multiplier, res.guess);
}
for (size_t x = channel.w - 2; x < channel.w; x++) {
PredictionResult res =
PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
tree_lookup, references);
uint64_t v =
reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
p[x] = make_pixel(v, res.multiplier, res.guess);
}
} else {
for (size_t x = 0; x < channel.w; x++) {
PredictionResult res =
PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
tree_lookup, references);
uint64_t v = reader->ReadHybridUintClusteredMaybeInlined<uses_lz77>(
res.context, br);
p[x] = make_pixel(v, res.multiplier, res.guess);
}
}
}
} else {
JXL_DEBUG_V(8, "Slowest track.");
MATreeLookup tree_lookup(tree);
Properties properties = Properties(num_props);
const intptr_t onerow = channel.plane.PixelsPerRow();
JXL_ASSIGN_OR_RETURN(
Channel references,
Channel::Create(memory_manager,
properties.size() - kNumNonrefProperties, channel.w));
weighted::State wp_state(wp_header, channel.w, channel.h);
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT p = channel.Row(y);
InitPropsRow(&properties, static_props, y);
PrecomputeReferences(channel, y, *image, chan, &references);
if (!uses_lz77 && y > 1 && channel.w > 8 && references.w == 0) {
for (size_t x = 0; x < 2; x++) {
PredictionResult res =
PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
tree_lookup, references, &wp_state);
uint64_t v =
reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
p[x] = make_pixel(v, res.multiplier, res.guess);
wp_state.UpdateErrors(p[x], x, y, channel.w);
}
for (size_t x = 2; x < channel.w - 2; x++) {
PredictionResult res =
PredictTreeWPNEC(&properties, channel.w, p + x, onerow, x, y,
tree_lookup, references, &wp_state);
uint64_t v = reader->ReadHybridUintClusteredInlined<uses_lz77>(
res.context, br);
p[x] = make_pixel(v, res.multiplier, res.guess);
wp_state.UpdateErrors(p[x], x, y, channel.w);
}
for (size_t x = channel.w - 2; x < channel.w; x++) {
PredictionResult res =
PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
tree_lookup, references, &wp_state);
uint64_t v =
reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
p[x] = make_pixel(v, res.multiplier, res.guess);
wp_state.UpdateErrors(p[x], x, y, channel.w);
}
} else {
for (size_t x = 0; x < channel.w; x++) {
PredictionResult res =
PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
tree_lookup, references, &wp_state);
uint64_t v =
reader->ReadHybridUintClustered<uses_lz77>(res.context, br);
p[x] = make_pixel(v, res.multiplier, res.guess);
wp_state.UpdateErrors(p[x], x, y, channel.w);
}
}
}
}
return true;
}
} // namespace detail
Status DecodeModularChannelMAANS(BitReader *br, ANSSymbolReader *reader,
const std::vector<uint8_t> &context_map,
const Tree &global_tree,
const weighted::Header &wp_header,
pixel_type chan, size_t group_id,
TreeLut<uint8_t, false, false> &tree_lut,
Image *image, uint32_t &fl_run,
uint32_t &fl_v) {
if (reader->UsesLZ77()) {
return detail::DecodeModularChannelMAANS</*uses_lz77=*/true>(
br, reader, context_map, global_tree, wp_header, chan, group_id,
tree_lut, image, fl_run, fl_v);
} else {
return detail::DecodeModularChannelMAANS</*uses_lz77=*/false>(
br, reader, context_map, global_tree, wp_header, chan, group_id,
tree_lut, image, fl_run, fl_v);
}
}
GroupHeader::GroupHeader() { Bundle::Init(this); }
Status ValidateChannelDimensions(const Image &image,
const ModularOptions &options) {
size_t nb_channels = image.channel.size();
for (bool is_dc : {true, false}) {
size_t group_dim = options.group_dim * (is_dc ? kBlockDim : 1);
size_t c = image.nb_meta_channels;
for (; c < nb_channels; c++) {
const Channel &ch = image.channel[c];
if (ch.w > options.group_dim || ch.h > options.group_dim) break;
}
for (; c < nb_channels; c++) {
const Channel &ch = image.channel[c];
if (ch.w == 0 || ch.h == 0) continue; // skip empty
bool is_dc_channel = std::min(ch.hshift, ch.vshift) >= 3;
if (is_dc_channel != is_dc) continue;
size_t tile_dim = group_dim >> std::max(ch.hshift, ch.vshift);
if (tile_dim == 0) {
return JXL_FAILURE("Inconsistent transforms");
}
}
}
return true;
}
Status ModularDecode(BitReader *br, Image &image, GroupHeader &header,
size_t group_id, ModularOptions *options,
const Tree *global_tree, const ANSCode *global_code,
const std::vector<uint8_t> *global_ctx_map,
const bool allow_truncated_group) {
if (image.channel.empty()) return true;
JxlMemoryManager *memory_manager = image.memory_manager();
// decode transforms
Status status = Bundle::Read(br, &header);
if (!allow_truncated_group) JXL_RETURN_IF_ERROR(status);
if (status.IsFatalError()) return status;
if (!br->AllReadsWithinBounds()) {
// Don't do/undo transforms if header is incomplete.
header.transforms.clear();
image.transform = header.transforms;
for (auto &ch : image.channel) {
ZeroFillImage(&ch.plane);
}
return Status(StatusCode::kNotEnoughBytes);
}
JXL_DEBUG_V(3, "Image data underwent %" PRIuS " transformations: ",
header.transforms.size());
image.transform = header.transforms;
for (Transform &transform : image.transform) {
JXL_RETURN_IF_ERROR(transform.MetaApply(image));
}
if (image.error) {
return JXL_FAILURE("Corrupt file. Aborting.");
}
JXL_RETURN_IF_ERROR(ValidateChannelDimensions(image, *options));
size_t nb_channels = image.channel.size();
size_t num_chans = 0;
size_t distance_multiplier = 0;
for (size_t i = 0; i < nb_channels; i++) {
Channel &channel = image.channel[i];
if (!channel.w || !channel.h) {
continue; // skip empty channels
}
if (i >= image.nb_meta_channels && (channel.w > options->max_chan_size ||
channel.h > options->max_chan_size)) {
break;
}
if (channel.w > distance_multiplier) {
distance_multiplier = channel.w;
}
num_chans++;
}
if (num_chans == 0) return true;
size_t next_channel = 0;
auto scope_guard = MakeScopeGuard([&]() {
for (size_t c = next_channel; c < image.channel.size(); c++) {
ZeroFillImage(&image.channel[c].plane);
}
});
// Do not do anything if truncated groups are not allowed.
if (allow_truncated_group) scope_guard.Disarm();
// Read tree.
Tree tree_storage;
std::vector<uint8_t> context_map_storage;
ANSCode code_storage;
const Tree *tree = &tree_storage;
const ANSCode *code = &code_storage;
const std::vector<uint8_t> *context_map = &context_map_storage;
if (!header.use_global_tree) {
uint64_t max_tree_size = 1024;
for (size_t i = 0; i < nb_channels; i++) {
Channel &channel = image.channel[i];
if (i >= image.nb_meta_channels && (channel.w > options->max_chan_size ||
channel.h > options->max_chan_size)) {
break;
}
uint64_t pixels = channel.w * channel.h;
max_tree_size += pixels;
}
max_tree_size = std::min(static_cast<uint64_t>(1 << 20), max_tree_size);
JXL_RETURN_IF_ERROR(
DecodeTree(memory_manager, br, &tree_storage, max_tree_size));
JXL_RETURN_IF_ERROR(DecodeHistograms(memory_manager, br,
(tree_storage.size() + 1) / 2,
&code_storage, &context_map_storage));
} else {
if (!global_tree || !global_code || !global_ctx_map ||
global_tree->empty()) {
return JXL_FAILURE("No global tree available but one was requested");
}
tree = global_tree;
code = global_code;
context_map = global_ctx_map;
}
// Read channels
JXL_ASSIGN_OR_RETURN(ANSSymbolReader reader,
ANSSymbolReader::Create(code, br, distance_multiplier));
auto tree_lut = jxl::make_unique<TreeLut<uint8_t, false, false>>();
uint32_t fl_run = 0;
uint32_t fl_v = 0;
for (; next_channel < nb_channels; next_channel++) {
Channel &channel = image.channel[next_channel];
if (!channel.w || !channel.h) {
continue; // skip empty channels
}
if (next_channel >= image.nb_meta_channels &&
(channel.w > options->max_chan_size ||
channel.h > options->max_chan_size)) {
break;
}
JXL_RETURN_IF_ERROR(DecodeModularChannelMAANS(
br, &reader, *context_map, *tree, header.wp_header, next_channel,
group_id, *tree_lut, &image, fl_run, fl_v));
// Truncated group.
if (!br->AllReadsWithinBounds()) {
if (!allow_truncated_group) return JXL_FAILURE("Truncated input");
return Status(StatusCode::kNotEnoughBytes);
}
}
// Make sure no zero-filling happens even if next_channel < nb_channels.
scope_guard.Disarm();
if (!reader.CheckANSFinalState()) {
return JXL_FAILURE("ANS decode final state failed");
}
return true;
}
Status ModularGenericDecompress(BitReader *br, Image &image,
GroupHeader *header, size_t group_id,
ModularOptions *options, bool undo_transforms,
const Tree *tree, const ANSCode *code,
const std::vector<uint8_t> *ctx_map,
bool allow_truncated_group) {
std::vector<std::pair<uint32_t, uint32_t>> req_sizes;
req_sizes.reserve(image.channel.size());
for (const auto &c : image.channel) {
req_sizes.emplace_back(c.w, c.h);
}
GroupHeader local_header;
if (header == nullptr) header = &local_header;
size_t bit_pos = br->TotalBitsConsumed();
auto dec_status = ModularDecode(br, image, *header, group_id, options, tree,
code, ctx_map, allow_truncated_group);
if (!allow_truncated_group) JXL_RETURN_IF_ERROR(dec_status);
if (dec_status.IsFatalError()) return dec_status;
if (undo_transforms) image.undo_transforms(header->wp_header);
if (image.error) return JXL_FAILURE("Corrupt file. Aborting.");
JXL_DEBUG_V(4,
"Modular-decoded a %" PRIuS "x%" PRIuS " nbchans=%" PRIuS
" image from %" PRIuS " bytes",
image.w, image.h, image.channel.size(),
(br->TotalBitsConsumed() - bit_pos) / 8);
JXL_DEBUG_V(5, "Modular image: %s", image.DebugString().c_str());
(void)bit_pos;
// Check that after applying all transforms we are back to the requested
// image sizes, otherwise there's a programming error with the
// transformations.
if (undo_transforms) {
JXL_ENSURE(image.channel.size() == req_sizes.size());
for (size_t c = 0; c < req_sizes.size(); c++) {
JXL_ENSURE(req_sizes[c].first == image.channel[c].w);
JXL_ENSURE(req_sizes[c].second == image.channel[c].h);
}
}
return dec_status;
}
} // namespace jxl