Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_modular.h"
#include <jxl/memory_manager.h>
#include <array>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <utility>
#include <vector>
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/rect.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/chroma_from_luma.h"
#include "lib/jxl/compressed_dc.h"
#include "lib/jxl/dec_ans.h"
#include "lib/jxl/dec_modular.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_bit_writer.h"
#include "lib/jxl/enc_cluster.h"
#include "lib/jxl/enc_fields.h"
#include "lib/jxl/enc_gaborish.h"
#include "lib/jxl/enc_params.h"
#include "lib/jxl/enc_patch_dictionary.h"
#include "lib/jxl/enc_quant_weights.h"
#include "lib/jxl/frame_dimensions.h"
#include "lib/jxl/frame_header.h"
#include "lib/jxl/modular/encoding/context_predict.h"
#include "lib/jxl/modular/encoding/enc_encoding.h"
#include "lib/jxl/modular/encoding/encoding.h"
#include "lib/jxl/modular/encoding/ma_common.h"
#include "lib/jxl/modular/modular_image.h"
#include "lib/jxl/modular/options.h"
#include "lib/jxl/modular/transform/enc_transform.h"
#include "lib/jxl/pack_signed.h"
#include "lib/jxl/quant_weights.h"
#include "modular/options.h"
namespace jxl {
namespace {
// constexpr bool kPrintTree = false;
// Squeeze default quantization factors
// these quantization factors are for -Q 50 (other qualities simply scale the
// factors; things are rounded down and obviously cannot get below 1)
const float squeeze_quality_factor =
0.35; // for easy tweaking of the quality range (decrease this number for
// higher quality)
const float squeeze_luma_factor =
1.1; // for easy tweaking of the balance between luma (or anything
// non-chroma) and chroma (decrease this number for higher quality
// luma)
const float squeeze_quality_factor_xyb = 4.8f;
const float squeeze_xyb_qtable[3][16] = {
{163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28, 0.64, 0.32, 0.16,
0.08, 0.04, 0.02, 0.01, 0.005}, // Y
{1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5,
0.5}, // X
{2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5,
0.5}, // B-Y
};
const float squeeze_luma_qtable[16] = {163.84, 81.92, 40.96, 20.48, 10.24, 5.12,
2.56, 1.28, 0.64, 0.32, 0.16, 0.08,
0.04, 0.02, 0.01, 0.005};
// for 8-bit input, the range of YCoCg chroma is -255..255 so basically this
// does 4:2:0 subsampling (two most fine grained layers get quantized away)
const float squeeze_chroma_qtable[16] = {
1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5, 0.5};
// Merges the trees in `trees` using nodes that decide on stream_id, as defined
// by `tree_splits`.
Status MergeTrees(const std::vector<Tree>& trees,
const std::vector<size_t>& tree_splits, size_t begin,
size_t end, Tree* tree) {
JXL_ENSURE(trees.size() + 1 == tree_splits.size());
JXL_ENSURE(end > begin);
JXL_ENSURE(end <= trees.size());
if (end == begin + 1) {
// Insert the tree, adding the opportune offset to all child nodes.
// This will make the leaf IDs wrong, but subsequent roundtripping will fix
// them.
size_t sz = tree->size();
tree->insert(tree->end(), trees[begin].begin(), trees[begin].end());
for (size_t i = sz; i < tree->size(); i++) {
(*tree)[i].lchild += sz;
(*tree)[i].rchild += sz;
}
return true;
}
size_t mid = (begin + end) / 2;
size_t splitval = tree_splits[mid] - 1;
size_t cur = tree->size();
tree->emplace_back(1 /*stream_id*/, splitval, 0, 0, Predictor::Zero, 0, 1);
(*tree)[cur].lchild = tree->size();
JXL_RETURN_IF_ERROR(MergeTrees(trees, tree_splits, mid, end, tree));
(*tree)[cur].rchild = tree->size();
JXL_RETURN_IF_ERROR(MergeTrees(trees, tree_splits, begin, mid, tree));
return true;
}
void QuantizeChannel(Channel& ch, const int q) {
if (q == 1) return;
for (size_t y = 0; y < ch.plane.ysize(); y++) {
pixel_type* row = ch.plane.Row(y);
for (size_t x = 0; x < ch.plane.xsize(); x++) {
if (row[x] < 0) {
row[x] = -((-row[x] + q / 2) / q) * q;
} else {
row[x] = ((row[x] + q / 2) / q) * q;
}
}
}
}
// convert binary32 float that corresponds to custom [bits]-bit float (with
// [exp_bits] exponent bits) to a [bits]-bit integer representation that should
// fit in pixel_type
Status float_to_int(const float* const row_in, pixel_type* const row_out,
size_t xsize, unsigned int bits, unsigned int exp_bits,
bool fp, double dfactor) {
JXL_ENSURE(sizeof(pixel_type) * 8 >= bits);
if (!fp) {
if (bits > 22) {
for (size_t x = 0; x < xsize; ++x) {
row_out[x] = row_in[x] * dfactor + (row_in[x] < 0 ? -0.5 : 0.5);
}
} else {
float factor = dfactor;
for (size_t x = 0; x < xsize; ++x) {
row_out[x] = row_in[x] * factor + (row_in[x] < 0 ? -0.5f : 0.5f);
}
}
return true;
}
if (bits == 32 && fp) {
JXL_ENSURE(exp_bits == 8);
memcpy(static_cast<void*>(row_out), static_cast<const void*>(row_in),
4 * xsize);
return true;
}
JXL_ENSURE(bits > 0);
int exp_bias = (1 << (exp_bits - 1)) - 1;
int max_exp = (1 << exp_bits) - 1;
uint32_t sign = (1u << (bits - 1));
int mant_bits = bits - exp_bits - 1;
int mant_shift = 23 - mant_bits;
for (size_t x = 0; x < xsize; ++x) {
uint32_t f;
memcpy(&f, &row_in[x], 4);
int signbit = (f >> 31);
f &= 0x7fffffff;
if (f == 0) {
row_out[x] = (signbit ? sign : 0);
continue;
}
int exp = (f >> 23) - 127;
if (exp == 128) return JXL_FAILURE("Inf/NaN not allowed");
int mantissa = (f & 0x007fffff);
// broke up the binary32 into its parts, now reassemble into
// arbitrary float
exp += exp_bias;
if (exp < 0) { // will become a subnormal number
// add implicit leading 1 to mantissa
mantissa |= 0x00800000;
if (exp < -mant_bits) {
return JXL_FAILURE(
"Invalid float number: %g cannot be represented with %i "
"exp_bits and %i mant_bits (exp %i)",
row_in[x], exp_bits, mant_bits, exp);
}
mantissa >>= 1 - exp;
exp = 0;
}
// exp should be representable in exp_bits, otherwise input was
// invalid
if (exp > max_exp) return JXL_FAILURE("Invalid float exponent");
if (mantissa & ((1 << mant_shift) - 1)) {
return JXL_FAILURE("%g is losing precision (mant: %x)", row_in[x],
mantissa);
}
mantissa >>= mant_shift;
f = (signbit ? sign : 0);
f |= (exp << mant_bits);
f |= mantissa;
row_out[x] = static_cast<pixel_type>(f);
}
return true;
}
float EstimateWPCost(const Image& img, size_t i) {
size_t extra_bits = 0;
float histo_cost = 0;
HybridUintConfig config;
int32_t cutoffs[] = {-500, -392, -255, -191, -127, -95, -63, -47, -31,
-23, -15, -11, -7, -4, -3, -1, 0, 1,
3, 5, 7, 11, 15, 23, 31, 47, 63,
95, 127, 191, 255, 392, 500};
constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
Histogram histo[nc] = {};
weighted::Header wp_header;
PredictorMode(i, &wp_header);
for (const Channel& ch : img.channel) {
const intptr_t onerow = ch.plane.PixelsPerRow();
weighted::State wp_state(wp_header, ch.w, ch.h);
Properties properties(1);
for (size_t y = 0; y < ch.h; y++) {
const pixel_type* JXL_RESTRICT r = ch.Row(y);
for (size_t x = 0; x < ch.w; x++) {
size_t offset = 0;
pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
pixel_type_w top = (y ? *(r + x - onerow) : left);
pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
pixel_type_w topright =
(x + 1 < ch.w && y ? *(r + x + 1 - onerow) : top);
pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top);
pixel_type guess = wp_state.Predict</*compute_properties=*/true>(
x, y, ch.w, top, left, topright, topleft, toptop, &properties,
offset);
size_t ctx = 0;
for (int c : cutoffs) {
ctx += (c >= properties[0]) ? 1 : 0;
}
pixel_type res = r[x] - guess;
uint32_t token;
uint32_t nbits;
uint32_t bits;
config.Encode(PackSigned(res), &token, &nbits, &bits);
histo[ctx].Add(token);
extra_bits += nbits;
wp_state.UpdateErrors(r[x], x, y, ch.w);
}
}
for (auto& h : histo) {
histo_cost += h.ShannonEntropy();
h.Clear();
}
}
return histo_cost + extra_bits;
}
float EstimateCost(const Image& img) {
// TODO(veluca): consider SIMDfication of this code.
size_t extra_bits = 0;
float histo_cost = 0;
HybridUintConfig config;
uint32_t cutoffs[] = {0, 1, 3, 5, 7, 11, 15, 23, 31,
47, 63, 95, 127, 191, 255, 392, 500};
constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
Histogram histo[nc] = {};
for (const Channel& ch : img.channel) {
const intptr_t onerow = ch.plane.PixelsPerRow();
for (size_t y = 0; y < ch.h; y++) {
const pixel_type* JXL_RESTRICT r = ch.Row(y);
for (size_t x = 0; x < ch.w; x++) {
pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
pixel_type_w top = (y ? *(r + x - onerow) : left);
pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
size_t maxdiff = std::max(std::max(left, top), topleft) -
std::min(std::min(left, top), topleft);
size_t ctx = 0;
for (uint32_t c : cutoffs) {
ctx += (c > maxdiff) ? 1 : 0;
}
pixel_type res = r[x] - ClampedGradient(top, left, topleft);
uint32_t token;
uint32_t nbits;
uint32_t bits;
config.Encode(PackSigned(res), &token, &nbits, &bits);
histo[ctx].Add(token);
extra_bits += nbits;
}
}
for (auto& h : histo) {
histo_cost += h.ShannonEntropy();
h.Clear();
}
}
return histo_cost + extra_bits;
}
bool do_transform(Image& image, const Transform& tr,
const weighted::Header& wp_header,
jxl::ThreadPool* pool = nullptr, bool force_jxlart = false) {
Transform t = tr;
bool did_it = true;
if (force_jxlart) {
if (!t.MetaApply(image)) return false;
} else {
did_it = TransformForward(t, image, wp_header, pool);
}
if (did_it) image.transform.push_back(t);
return did_it;
}
bool maybe_do_transform(Image& image, const Transform& tr,
const CompressParams& cparams,
const weighted::Header& wp_header, float cost_before,
jxl::ThreadPool* pool = nullptr,
bool force_jxlart = false) {
if (force_jxlart || cparams.speed_tier >= SpeedTier::kSquirrel) {
return do_transform(image, tr, wp_header, pool, force_jxlart);
}
bool did_it = do_transform(image, tr, wp_header, pool);
if (did_it) {
float cost_after = EstimateCost(image);
JXL_DEBUG_V(7, "Cost before: %f cost after: %f", cost_before, cost_after);
if (cost_after > cost_before) {
Transform t = image.transform.back();
JXL_RETURN_IF_ERROR(t.Inverse(image, wp_header, pool));
image.transform.pop_back();
did_it = false;
}
}
return did_it;
}
void try_palettes(Image& gi, int& max_bitdepth, int& maxval,
const CompressParams& cparams_, float channel_colors_percent,
jxl::ThreadPool* pool = nullptr) {
float cost_before = 0.f;
size_t did_palette = 0;
float nb_pixels = gi.channel[0].w * gi.channel[0].h;
int nb_chans = gi.channel.size() - gi.nb_meta_channels;
// arbitrary estimate: 4.8 bpp for 8-bit RGB
float arbitrary_bpp_estimate = 0.2f * gi.bitdepth * nb_chans;
if (cparams_.palette_colors != 0 || cparams_.lossy_palette) {
// when not estimating, assume some arbitrary bpp
cost_before = cparams_.speed_tier <= SpeedTier::kSquirrel
? EstimateCost(gi)
: nb_pixels * arbitrary_bpp_estimate;
// all-channel palette (e.g. RGBA)
if (nb_chans > 1) {
Transform maybe_palette(TransformId::kPalette);
maybe_palette.begin_c = gi.nb_meta_channels;
maybe_palette.num_c = nb_chans;
// Heuristic choice of max colors for a palette:
// max_colors = nb_pixels * estimated_bpp_without_palette * 0.0005 +
// + nb_pixels / 128 + 128
// (estimated_bpp_without_palette = cost_before / nb_pixels)
// Rationale: small image with large palette is not effective;
// also if the entropy (estimated bpp) is low (e.g. mostly solid/gradient
// areas), palette is less useful and may even be counterproductive.
maybe_palette.nb_colors = std::min(
static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128),
std::abs(cparams_.palette_colors));
maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
maybe_palette.lossy_palette =
(cparams_.lossy_palette && maybe_palette.num_c == 3);
if (maybe_palette.lossy_palette) {
maybe_palette.predictor = Predictor::Average4;
}
// TODO(veluca): use a custom weighted header if using the weighted
// predictor.
if (maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header(),
cost_before, pool, cparams_.options.zero_tokens)) {
did_palette = 1;
};
}
// all-minus-one-channel palette (RGB with separate alpha, or CMY with
// separate K)
if (!did_palette && nb_chans > 3) {
Transform maybe_palette_3(TransformId::kPalette);
maybe_palette_3.begin_c = gi.nb_meta_channels;
maybe_palette_3.num_c = nb_chans - 1;
maybe_palette_3.nb_colors = std::min(
static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128),
std::abs(cparams_.palette_colors));
maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0;
maybe_palette_3.lossy_palette = cparams_.lossy_palette;
if (maybe_palette_3.lossy_palette) {
maybe_palette_3.predictor = Predictor::Average4;
}
if (maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header(),
cost_before, pool, cparams_.options.zero_tokens)) {
did_palette = 1;
}
}
}
if (channel_colors_percent > 0) {
// single channel palette (like FLIF's ChannelCompact)
size_t nb_channels = gi.channel.size() - gi.nb_meta_channels - did_palette;
int orig_bitdepth = max_bitdepth;
max_bitdepth = 0;
if (nb_channels > 0 && (did_palette || cost_before == 0)) {
cost_before =
cparams_.speed_tier < SpeedTier::kSquirrel ? EstimateCost(gi) : 0;
}
for (size_t i = did_palette; i < nb_channels + did_palette; i++) {
int32_t min;
int32_t max;
compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
int64_t colors = static_cast<int64_t>(max) - min + 1;
JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
Transform maybe_palette_1(TransformId::kPalette);
maybe_palette_1.begin_c = i + gi.nb_meta_channels;
maybe_palette_1.num_c = 1;
// simple heuristic: if less than X percent of the values in the range
// actually occur, it is probably worth it to do a compaction
// (but only if the channel palette is less than 6% the size of the
// image itself)
maybe_palette_1.nb_colors =
std::min(static_cast<int>(nb_pixels / 16),
static_cast<int>(channel_colors_percent / 100. * colors));
if (maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header(),
cost_before, pool)) {
// effective bit depth is lower, adjust quantization accordingly
compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
if (max < maxval) maxval = max;
int ch_bitdepth =
(max > 0 ? CeilLog2Nonzero(static_cast<uint32_t>(max)) : 0);
if (ch_bitdepth > max_bitdepth) max_bitdepth = ch_bitdepth;
} else {
max_bitdepth = orig_bitdepth;
}
}
}
}
} // namespace
StatusOr<ModularFrameEncoder> ModularFrameEncoder::Create(
JxlMemoryManager* memory_manager, const FrameHeader& frame_header,
const CompressParams& cparams_orig, bool streaming_mode) {
ModularFrameEncoder self{memory_manager};
JXL_RETURN_IF_ERROR(self.Init(frame_header, cparams_orig, streaming_mode));
return self;
}
ModularFrameEncoder::ModularFrameEncoder(JxlMemoryManager* memory_manager)
: memory_manager_(memory_manager) {}
Status ModularFrameEncoder::Init(const FrameHeader& frame_header,
const CompressParams& cparams_orig,
bool streaming_mode) {
frame_dim_ = frame_header.ToFrameDimensions();
cparams_ = cparams_orig;
size_t num_streams =
ModularStreamId::Num(frame_dim_, frame_header.passes.num_passes);
if (cparams_.ModularPartIsLossless()) {
switch (cparams_.decoding_speed_tier) {
case 0:
break;
case 1:
cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kWPOnly;
break;
case 2: {
cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kGradientOnly;
cparams_.options.predictor = Predictor::Gradient;
break;
}
case 3: { // LZ77, no Gradient.
cparams_.options.nb_repeats = 0;
cparams_.options.predictor = Predictor::Gradient;
break;
}
default: { // LZ77, no predictor.
cparams_.options.nb_repeats = 0;
cparams_.options.predictor = Predictor::Zero;
break;
}
}
}
if (cparams_.decoding_speed_tier >= 1 && cparams_.responsive &&
cparams_.ModularPartIsLossless()) {
cparams_.options.tree_kind =
ModularOptions::TreeKind::kTrivialTreeNoPredictor;
cparams_.options.nb_repeats = 0;
}
for (size_t i = 0; i < num_streams; ++i) {
stream_images_.emplace_back(memory_manager_);
}
// use a sensible default if nothing explicit is specified:
// Squeeze for lossy, no squeeze for lossless
if (cparams_.responsive < 0) {
if (cparams_.ModularPartIsLossless()) {
cparams_.responsive = 0;
} else {
cparams_.responsive = 1;
}
}
cparams_.options.splitting_heuristics_node_threshold =
82 + 14 * static_cast<int>(cparams_.speed_tier);
{
// Set properties.
std::vector<uint32_t> prop_order;
if (cparams_.responsive) {
// Properties in order of their likelihood of being useful for Squeeze
// residuals.
prop_order = {0, 1, 4, 5, 6, 7, 8, 15, 9, 10, 11, 12, 13, 14, 2, 3};
} else {
// Same, but for the non-Squeeze case.
prop_order = {0, 1, 15, 9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 7, 8};
// if few groups, don't use group as a property
if (num_streams < 30 && cparams_.speed_tier > SpeedTier::kTortoise &&
cparams_orig.ModularPartIsLossless()) {
prop_order.erase(prop_order.begin() + 1);
}
}
int max_properties = std::min<int>(
cparams_.options.max_properties,
static_cast<int>(
frame_header.nonserialized_metadata->m.num_extra_channels) +
(frame_header.encoding == FrameEncoding::kModular ? 2 : -1));
switch (cparams_.speed_tier) {
case SpeedTier::kHare:
cparams_.options.splitting_heuristics_properties.assign(
prop_order.begin(), prop_order.begin() + 4);
cparams_.options.max_property_values = 24;
break;
case SpeedTier::kWombat:
cparams_.options.splitting_heuristics_properties.assign(
prop_order.begin(), prop_order.begin() + 5);
cparams_.options.max_property_values = 32;
break;
case SpeedTier::kSquirrel:
cparams_.options.splitting_heuristics_properties.assign(
prop_order.begin(), prop_order.begin() + 7);
cparams_.options.max_property_values = 48;
break;
case SpeedTier::kKitten:
cparams_.options.splitting_heuristics_properties.assign(
prop_order.begin(), prop_order.begin() + 10);
cparams_.options.max_property_values = 96;
break;
case SpeedTier::kGlacier:
case SpeedTier::kTortoise:
cparams_.options.splitting_heuristics_properties = prop_order;
cparams_.options.max_property_values = 256;
break;
default:
cparams_.options.splitting_heuristics_properties.assign(
prop_order.begin(), prop_order.begin() + 3);
cparams_.options.max_property_values = 16;
break;
}
if (cparams_.speed_tier > SpeedTier::kTortoise) {
// Gradient in previous channels.
for (int i = 0; i < max_properties; i++) {
cparams_.options.splitting_heuristics_properties.push_back(
kNumNonrefProperties + i * 4 + 3);
}
} else {
// All the extra properties in Tortoise mode.
for (int i = 0; i < max_properties * 4; i++) {
cparams_.options.splitting_heuristics_properties.push_back(
kNumNonrefProperties + i);
}
}
}
if ((cparams_.options.predictor == Predictor::Average0 ||
cparams_.options.predictor == Predictor::Average1 ||
cparams_.options.predictor == Predictor::Average2 ||
cparams_.options.predictor == Predictor::Average3 ||
cparams_.options.predictor == Predictor::Average4 ||
cparams_.options.predictor == Predictor::Weighted) &&
!cparams_.ModularPartIsLossless()) {
// Lossy + Average/Weighted predictors does not work, so switch to default
// predictors.
cparams_.options.predictor = kUndefinedPredictor;
}
if (cparams_.options.predictor == kUndefinedPredictor) {
// no explicit predictor(s) given, set a good default
if ((cparams_.speed_tier <= SpeedTier::kGlacier ||
cparams_.modular_mode == false) &&
cparams_.IsLossless() && cparams_.responsive == JXL_FALSE) {
// TODO(veluca): allow all predictors that don't break residual
// multipliers in lossy mode.
cparams_.options.predictor = Predictor::Variable;
} else if (cparams_.responsive || cparams_.lossy_palette) {
// zero predictor for Squeeze residues and lossy palette
cparams_.options.predictor = Predictor::Zero;
} else if (!cparams_.IsLossless()) {
// If not responsive and lossy. TODO(veluca): use near_lossless instead?
cparams_.options.predictor = Predictor::Gradient;
} else if (cparams_.speed_tier < SpeedTier::kFalcon) {
// try median and weighted predictor for anything else
cparams_.options.predictor = Predictor::Best;
} else if (cparams_.speed_tier == SpeedTier::kFalcon) {
// just weighted predictor in falcon mode
cparams_.options.predictor = Predictor::Weighted;
} else if (cparams_.speed_tier > SpeedTier::kFalcon) {
// just gradient predictor in thunder mode
cparams_.options.predictor = Predictor::Gradient;
}
} else {
if (cparams_.lossy_palette) cparams_.options.predictor = Predictor::Zero;
}
if (!cparams_.ModularPartIsLossless()) {
if (cparams_.options.predictor == Predictor::Weighted ||
cparams_.options.predictor == Predictor::Variable ||
cparams_.options.predictor == Predictor::Best)
cparams_.options.predictor = Predictor::Zero;
}
tree_splits_.push_back(0);
if (cparams_.modular_mode == false) {
JXL_ASSIGN_OR_RETURN(ModularStreamId qt0, ModularStreamId::QuantTable(0));
cparams_.options.fast_decode_multiplier = 1.0f;
tree_splits_.push_back(ModularStreamId::VarDCTDC(0).ID(frame_dim_));
tree_splits_.push_back(ModularStreamId::ModularDC(0).ID(frame_dim_));
tree_splits_.push_back(ModularStreamId::ACMetadata(0).ID(frame_dim_));
tree_splits_.push_back(qt0.ID(frame_dim_));
tree_splits_.push_back(ModularStreamId::ModularAC(0, 0).ID(frame_dim_));
ac_metadata_size.resize(frame_dim_.num_dc_groups);
extra_dc_precision.resize(frame_dim_.num_dc_groups);
}
tree_splits_.push_back(num_streams);
cparams_.options.max_chan_size = frame_dim_.group_dim;
cparams_.options.group_dim = frame_dim_.group_dim;
// TODO(veluca): figure out how to use different predictor sets per channel.
stream_options_.resize(num_streams, cparams_.options);
stream_options_[0] = cparams_.options;
if (cparams_.speed_tier == SpeedTier::kFalcon) {
stream_options_[0].tree_kind = ModularOptions::TreeKind::kWPFixedDC;
} else if (cparams_.speed_tier == SpeedTier::kThunder) {
stream_options_[0].tree_kind = ModularOptions::TreeKind::kGradientFixedDC;
}
stream_options_[0].histogram_params =
HistogramParams::ForModular(cparams_, {}, streaming_mode);
return true;
}
Status ModularFrameEncoder::ComputeEncodingData(
const FrameHeader& frame_header, const ImageMetadata& metadata,
Image3F* JXL_RESTRICT color, const std::vector<ImageF>& extra_channels,
const Rect& group_rect, const FrameDimensions& patch_dim,
const Rect& frame_area_rect, PassesEncoderState* JXL_RESTRICT enc_state,
const JxlCmsInterface& cms, ThreadPool* pool, AuxOut* aux_out,
bool do_color) {
JxlMemoryManager* memory_manager = enc_state->memory_manager();
JXL_DEBUG_V(6, "Computing modular encoding data for frame %s",
frame_header.DebugString().c_str());
bool groupwise = enc_state->streaming_mode;
if (do_color && frame_header.loop_filter.gab && !groupwise) {
float w = 0.9908511000000001f;
float weights[3] = {w, w, w};
JXL_RETURN_IF_ERROR(GaborishInverse(color, Rect(*color), weights, pool));
}
if (do_color && metadata.bit_depth.bits_per_sample <= 16 &&
cparams_.speed_tier < SpeedTier::kCheetah &&
cparams_.decoding_speed_tier < 2 && !groupwise) {
JXL_RETURN_IF_ERROR(FindBestPatchDictionary(
*color, enc_state, cms, nullptr, aux_out,
cparams_.color_transform == ColorTransform::kXYB));
JXL_RETURN_IF_ERROR(PatchDictionaryEncoder::SubtractFrom(
enc_state->shared.image_features.patches, color));
}
if (cparams_.custom_splines.HasAny()) {
PassesSharedState& shared = enc_state->shared;
ImageFeatures& image_features = shared.image_features;
image_features.splines = cparams_.custom_splines;
}
// Convert ImageBundle to modular Image object
const size_t xsize = patch_dim.xsize;
const size_t ysize = patch_dim.ysize;
int nb_chans = 3;
if (metadata.color_encoding.IsGray() &&
cparams_.color_transform == ColorTransform::kNone) {
nb_chans = 1;
}
if (!do_color) nb_chans = 0;
nb_chans += extra_channels.size();
bool fp = metadata.bit_depth.floating_point_sample &&
cparams_.color_transform != ColorTransform::kXYB;
// bits_per_sample is just metadata for XYB images.
if (metadata.bit_depth.bits_per_sample >= 32 && do_color &&
cparams_.color_transform != ColorTransform::kXYB) {
if (metadata.bit_depth.bits_per_sample == 32 && fp == false) {
return JXL_FAILURE("uint32_t not supported in enc_modular");
} else if (metadata.bit_depth.bits_per_sample > 32) {
return JXL_FAILURE("bits_per_sample > 32 not supported");
}
}
// in the non-float case, there is an implicit 0 sign bit
int max_bitdepth =
do_color ? metadata.bit_depth.bits_per_sample + (fp ? 0 : 1) : 0;
Image& gi = stream_images_[0];
JXL_ASSIGN_OR_RETURN(
gi, Image::Create(memory_manager, xsize, ysize,
metadata.bit_depth.bits_per_sample, nb_chans));
int c = 0;
if (cparams_.color_transform == ColorTransform::kXYB &&
cparams_.modular_mode == true) {
float enc_factors[3] = {65536.0f, 4096.0f, 4096.0f};
if (cparams_.butteraugli_distance > 0 && !cparams_.responsive) {
// quantize XYB here and then treat it as a lossless image
enc_factors[0] *= 1.f / (1.f + 23.f * cparams_.butteraugli_distance);
enc_factors[1] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance);
enc_factors[2] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance);
cparams_.butteraugli_distance = 0;
}
if (cparams_.manual_xyb_factors.size() == 3) {
JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC(
memory_manager, &enc_state->shared.matrices,
cparams_.manual_xyb_factors.data()));
// TODO(jon): update max_bitdepth in this case
} else {
JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC(
memory_manager, &enc_state->shared.matrices, enc_factors));
max_bitdepth = 12;
}
}
pixel_type maxval = gi.bitdepth < 32 ? (1u << gi.bitdepth) - 1 : 0;
if (do_color) {
for (; c < 3; c++) {
if (metadata.color_encoding.IsGray() &&
cparams_.color_transform == ColorTransform::kNone &&
c != (cparams_.color_transform == ColorTransform::kXYB ? 1 : 0))
continue;
int c_out = c;
// XYB is encoded as YX(B-Y)
if (cparams_.color_transform == ColorTransform::kXYB && c < 2)
c_out = 1 - c_out;
double factor = maxval;
if (cparams_.color_transform == ColorTransform::kXYB)
factor = enc_state->shared.matrices.InvDCQuant(c);
if (c == 2 && cparams_.color_transform == ColorTransform::kXYB) {
JXL_ENSURE(!fp);
for (size_t y = 0; y < ysize; ++y) {
const float* const JXL_RESTRICT row_in = color->PlaneRow(c, y);
pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
pixel_type* const JXL_RESTRICT row_Y = gi.channel[0].Row(y);
for (size_t x = 0; x < xsize; ++x) {
// TODO(eustas): check if std::roundf is appropriate
row_out[x] = row_in[x] * factor + 0.5f;
row_out[x] -= row_Y[x];
}
}
} else {
int bits = metadata.bit_depth.bits_per_sample;
int exp_bits = metadata.bit_depth.exponent_bits_per_sample;
gi.channel[c_out].hshift = frame_header.chroma_subsampling.HShift(c);
gi.channel[c_out].vshift = frame_header.chroma_subsampling.VShift(c);
size_t xsize_shifted = DivCeil(xsize, 1 << gi.channel[c_out].hshift);
size_t ysize_shifted = DivCeil(ysize, 1 << gi.channel[c_out].vshift);
JXL_RETURN_IF_ERROR(
gi.channel[c_out].shrink(xsize_shifted, ysize_shifted));
const auto process_row = [&](const int task,
const int thread) -> Status {
const size_t y = task;
const float* const JXL_RESTRICT row_in =
color->PlaneRow(c, y + group_rect.y0()) + group_rect.x0();
pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
JXL_RETURN_IF_ERROR(float_to_int(row_in, row_out, xsize_shifted, bits,
exp_bits, fp, factor));
return true;
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, ysize_shifted,
ThreadPool::NoInit, process_row,
"float2int"));
}
}
if (metadata.color_encoding.IsGray() &&
cparams_.color_transform == ColorTransform::kNone)
c = 1;
}
for (size_t ec = 0; ec < extra_channels.size(); ec++, c++) {
const ExtraChannelInfo& eci = metadata.extra_channel_info[ec];
size_t ecups = frame_header.extra_channel_upsampling[ec];
JXL_RETURN_IF_ERROR(
gi.channel[c].shrink(DivCeil(patch_dim.xsize_upsampled, ecups),
DivCeil(patch_dim.ysize_upsampled, ecups)));
gi.channel[c].hshift = gi.channel[c].vshift =
CeilLog2Nonzero(ecups) - CeilLog2Nonzero(frame_header.upsampling);
int bits = eci.bit_depth.bits_per_sample;
int exp_bits = eci.bit_depth.exponent_bits_per_sample;
bool fp = eci.bit_depth.floating_point_sample;
double factor = (fp ? 1 : ((1u << eci.bit_depth.bits_per_sample) - 1));
if (bits + (fp ? 0 : 1) > max_bitdepth) max_bitdepth = bits + (fp ? 0 : 1);
const auto process_row = [&](const int task, const int thread) -> Status {
const size_t y = task;
const float* const JXL_RESTRICT row_in =
extra_channels[ec].Row(y + group_rect.y0()) + group_rect.x0();
pixel_type* const JXL_RESTRICT row_out = gi.channel[c].Row(y);
JXL_RETURN_IF_ERROR(float_to_int(row_in, row_out,
gi.channel[c].plane.xsize(), bits,
exp_bits, fp, factor));
return true;
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, gi.channel[c].plane.ysize(),
ThreadPool::NoInit, process_row,
"float2int"));
}
JXL_ENSURE(c == nb_chans);
int level_max_bitdepth = (cparams_.level == 5 ? 16 : 32);
if (max_bitdepth > level_max_bitdepth) {
return JXL_FAILURE(
"Bitdepth too high for level %i (need %i bits, have only %i in this "
"level)",
cparams_.level, max_bitdepth, level_max_bitdepth);
}
// Set options and apply transformations
if (!cparams_.ModularPartIsLossless()) {
if (cparams_.palette_colors != 0) {
JXL_DEBUG_V(3, "Lossy encode, not doing palette transforms");
}
if (cparams_.color_transform == ColorTransform::kXYB) {
cparams_.channel_colors_pre_transform_percent = 0;
}
cparams_.channel_colors_percent = 0;
cparams_.palette_colors = 0;
cparams_.lossy_palette = false;
}
// Global palette transforms
float channel_colors_percent = 0;
if (!cparams_.lossy_palette &&
(cparams_.speed_tier <= SpeedTier::kThunder ||
(do_color && metadata.bit_depth.bits_per_sample > 8))) {
channel_colors_percent = cparams_.channel_colors_pre_transform_percent;
}
if (!groupwise) {
try_palettes(gi, max_bitdepth, maxval, cparams_, channel_colors_percent,
pool);
}
// don't do an RCT if we're short on bits
if (cparams_.color_transform == ColorTransform::kNone && do_color &&
gi.channel.size() - gi.nb_meta_channels >= 3 &&
max_bitdepth + 1 < level_max_bitdepth) {
if (cparams_.colorspace < 0 && (!cparams_.ModularPartIsLossless() ||
cparams_.speed_tier > SpeedTier::kHare)) {
Transform ycocg{TransformId::kRCT};
ycocg.rct_type = 6;
ycocg.begin_c = gi.nb_meta_channels;
do_transform(gi, ycocg, weighted::Header(), pool);
max_bitdepth++;
} else if (cparams_.colorspace > 0) {
Transform sg(TransformId::kRCT);
sg.begin_c = gi.nb_meta_channels;
sg.rct_type = cparams_.colorspace;
do_transform(gi, sg, weighted::Header(), pool);
max_bitdepth++;
}
}
if (cparams_.move_to_front_from_channel > 0) {
for (size_t tgt = 0;
tgt + cparams_.move_to_front_from_channel < gi.channel.size(); tgt++) {
size_t pos = cparams_.move_to_front_from_channel;
while (pos > 0) {
Transform move(TransformId::kRCT);
if (pos == 1) {
move.begin_c = tgt;
move.rct_type = 28; // RGB -> GRB
pos -= 1;
} else {
move.begin_c = tgt + pos - 2;
move.rct_type = 14; // RGB -> BRG
pos -= 2;
}
do_transform(gi, move, weighted::Header(), pool);
}
}
}
// don't do squeeze if we don't have some spare bits
if (!groupwise && cparams_.responsive && !gi.channel.empty() &&
max_bitdepth + 2 < level_max_bitdepth) {
Transform t(TransformId::kSqueeze);
do_transform(gi, t, weighted::Header(), pool);
max_bitdepth += 2;
}
if (max_bitdepth + 1 > level_max_bitdepth) {
// force no group RCTs if we don't have a spare bit
cparams_.colorspace = 0;
}
JXL_ENSURE(max_bitdepth <= level_max_bitdepth);
if (!cparams_.ModularPartIsLossless()) {
quants_.resize(gi.channel.size(), 1);
float quantizer = 0.25f;
if (!cparams_.responsive) {
JXL_DEBUG_V(1,
"Warning: lossy compression without Squeeze "
"transform is just color quantization.");
quantizer *= 0.1f;
}
float bitdepth_correction = 1.f;
if (cparams_.color_transform != ColorTransform::kXYB) {
bitdepth_correction = maxval / 255.f;
}
std::vector<float> quantizers;
for (size_t i = 0; i < 3; i++) {
float dist = cparams_.butteraugli_distance;
quantizers.push_back(quantizer * dist * bitdepth_correction);
}
for (size_t i = 0; i < extra_channels.size(); i++) {
int ec_bitdepth =
metadata.extra_channel_info[i].bit_depth.bits_per_sample;
pixel_type ec_maxval = ec_bitdepth < 32 ? (1u << ec_bitdepth) - 1 : 0;
bitdepth_correction = ec_maxval / 255.f;
float dist = 0;
if (i < cparams_.ec_distance.size()) dist = cparams_.ec_distance[i];
if (dist < 0) dist = cparams_.butteraugli_distance;
quantizers.push_back(quantizer * dist * bitdepth_correction);
}
if (cparams_.options.nb_repeats == 0) {
return JXL_FAILURE("nb_repeats = 0 not supported with modular lossy!");
}
for (uint32_t i = gi.nb_meta_channels; i < gi.channel.size(); i++) {
Channel& ch = gi.channel[i];
int shift = ch.hshift + ch.vshift; // number of pixel halvings
if (shift > 16) shift = 16;
if (shift > 0) shift--;
int q;
// assuming default Squeeze here
int component =
(do_color ? 0 : 3) + ((i - gi.nb_meta_channels) % nb_chans);
// last 4 channels are final chroma residuals
if (nb_chans > 2 && i >= gi.channel.size() - 4 && cparams_.responsive) {
component = 1;
}
if (cparams_.color_transform == ColorTransform::kXYB && component < 3) {
q = quantizers[component] * squeeze_quality_factor_xyb *
squeeze_xyb_qtable[component][shift];
} else {
if (cparams_.colorspace != 0 && component > 0 && component < 3) {
q = quantizers[component] * squeeze_quality_factor *
squeeze_chroma_qtable[shift];
} else {
q = quantizers[component] * squeeze_quality_factor *
squeeze_luma_factor * squeeze_luma_qtable[shift];
}
}
if (q < 1) q = 1;
QuantizeChannel(gi.channel[i], q);
quants_[i] = q;
}
}
// Fill other groups.
// DC
for (size_t group_id = 0; group_id < patch_dim.num_dc_groups; group_id++) {
const size_t rgx = group_id % patch_dim.xsize_dc_groups;
const size_t rgy = group_id / patch_dim.xsize_dc_groups;
const Rect rect(rgx * patch_dim.dc_group_dim, rgy * patch_dim.dc_group_dim,
patch_dim.dc_group_dim, patch_dim.dc_group_dim);
size_t gx = rgx + frame_area_rect.x0() / 2048;
size_t gy = rgy + frame_area_rect.y0() / 2048;
size_t real_group_id = gy * frame_dim_.xsize_dc_groups + gx;
// minShift==3 because (frame_dim.dc_group_dim >> 3) == frame_dim.group_dim
// maxShift==1000 is infinity
stream_params_.push_back(
GroupParams{rect, 3, 1000, ModularStreamId::ModularDC(real_group_id)});
}
// AC global -> nothing.
// AC
for (size_t group_id = 0; group_id < patch_dim.num_groups; group_id++) {
const size_t rgx = group_id % patch_dim.xsize_groups;
const size_t rgy = group_id / patch_dim.xsize_groups;
const Rect mrect(rgx * patch_dim.group_dim, rgy * patch_dim.group_dim,
patch_dim.group_dim, patch_dim.group_dim);
size_t gx = rgx + frame_area_rect.x0() / (frame_dim_.group_dim);
size_t gy = rgy + frame_area_rect.y0() / (frame_dim_.group_dim);
size_t real_group_id = gy * frame_dim_.xsize_groups + gx;
for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses();
i++) {
int maxShift;
int minShift;
frame_header.passes.GetDownsamplingBracket(i, minShift, maxShift);
stream_params_.push_back(
GroupParams{mrect, minShift, maxShift,
ModularStreamId::ModularAC(real_group_id, i)});
}
}
// if there's only one group, everything ends up in GlobalModular
// in that case, also try RCTs/WP params for the one group
if (stream_params_.size() == 2) {
stream_params_.push_back(GroupParams{Rect(0, 0, xsize, ysize), 0, 1000,
ModularStreamId::Global()});
}
gi_channel_.resize(stream_images_.size());
const auto process_row = [&](const uint32_t i,
size_t /* thread */) -> Status {
size_t stream = stream_params_[i].id.ID(frame_dim_);
if (stream != 0) {
stream_options_[stream] = stream_options_[0];
}
JXL_RETURN_IF_ERROR(PrepareStreamParams(
stream_params_[i].rect, cparams_, stream_params_[i].minShift,
stream_params_[i].maxShift, stream_params_[i].id, do_color, groupwise));
return true;
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, stream_params_.size(),
ThreadPool::NoInit, process_row,
"ChooseParams"));
{
// Clear out channels that have been copied to groups.
Image& full_image = stream_images_[0];
size_t c = full_image.nb_meta_channels;
for (; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
}
for (; c < full_image.channel.size(); c++) {
full_image.channel[c].plane = ImageI();
}
}
JXL_RETURN_IF_ERROR(ValidateChannelDimensions(gi, stream_options_[0]));
return true;
}
Status ModularFrameEncoder::ComputeTree(ThreadPool* pool) {
std::vector<ModularMultiplierInfo> multiplier_info;
if (!quants_.empty()) {
for (uint32_t stream_id = 0; stream_id < stream_images_.size();
stream_id++) {
// skip non-modular stream_ids
if (stream_id > 0 && gi_channel_[stream_id].empty()) continue;
const Image& image = stream_images_[stream_id];
const ModularOptions& options = stream_options_[stream_id];
for (uint32_t i = image.nb_meta_channels; i < image.channel.size(); i++) {
if (i >= image.nb_meta_channels &&
(image.channel[i].w > options.max_chan_size ||
image.channel[i].h > options.max_chan_size)) {
continue;
}
if (stream_id > 0 && gi_channel_[stream_id].empty()) continue;
size_t ch_id = stream_id == 0
? i
: gi_channel_[stream_id][i - image.nb_meta_channels];
uint32_t q = quants_[ch_id];
// Inform the tree splitting heuristics that each channel in each group
// used this quantization factor. This will produce a tree with the
// given multipliers.
if (multiplier_info.empty() ||
multiplier_info.back().range[1][0] != stream_id ||
multiplier_info.back().multiplier != q) {
StaticPropRange range;
range[0] = {{i, i + 1}};
range[1] = {{stream_id, stream_id + 1}};
multiplier_info.push_back({range, static_cast<uint32_t>(q)});
} else {
// Previous channel in the same group had the same quantization
// factor. Don't provide two different ranges, as that creates
// unnecessary nodes.
multiplier_info.back().range[0][1] = i + 1;
}
}
}
// Merge group+channel settings that have the same channels and quantization
// factors, to avoid unnecessary nodes.
std::sort(multiplier_info.begin(), multiplier_info.end(),
[](ModularMultiplierInfo a, ModularMultiplierInfo b) {
return std::make_tuple(a.range, a.multiplier) <
std::make_tuple(b.range, b.multiplier);
});
size_t new_num = 1;
for (size_t i = 1; i < multiplier_info.size(); i++) {
ModularMultiplierInfo& prev = multiplier_info[new_num - 1];
ModularMultiplierInfo& cur = multiplier_info[i];
if (prev.range[0] == cur.range[0] && prev.multiplier == cur.multiplier &&
prev.range[1][1] == cur.range[1][0]) {
prev.range[1][1] = cur.range[1][1];
} else {
multiplier_info[new_num++] = multiplier_info[i];
}
}
multiplier_info.resize(new_num);
}
if (!cparams_.custom_fixed_tree.empty()) {
tree_ = cparams_.custom_fixed_tree;
} else if (cparams_.speed_tier < SpeedTier::kFalcon ||
!cparams_.modular_mode) {
// Avoid creating a tree with leaves that don't correspond to any pixels.
std::vector<size_t> useful_splits;
useful_splits.reserve(tree_splits_.size());
for (size_t chunk = 0; chunk < tree_splits_.size() - 1; chunk++) {
bool has_pixels = false;
size_t start = tree_splits_[chunk];
size_t stop = tree_splits_[chunk + 1];
for (size_t i = start; i < stop; i++) {
if (!stream_images_[i].empty()) has_pixels = true;
}
if (has_pixels) {
useful_splits.push_back(tree_splits_[chunk]);
}
}
// Don't do anything if modular mode does not have any pixels in this image
if (useful_splits.empty()) return true;
useful_splits.push_back(tree_splits_.back());
std::vector<Tree> trees(useful_splits.size() - 1);
const auto process_chunk = [&](const uint32_t chunk,
size_t /* thread */) -> Status {
// TODO(veluca): parallelize more.
size_t total_pixels = 0;
uint32_t start = useful_splits[chunk];
uint32_t stop = useful_splits[chunk + 1];
while (start < stop && stream_images_[start].empty()) ++start;
while (start < stop && stream_images_[stop - 1].empty()) --stop;
if (stream_options_[start].tree_kind !=
ModularOptions::TreeKind::kLearn) {
for (size_t i = start; i < stop; i++) {
for (const Channel& ch : stream_images_[i].channel) {
total_pixels += ch.w * ch.h;
}
}
trees[chunk] = PredefinedTree(stream_options_[start].tree_kind,
total_pixels, 8, 0);
return true;
}
TreeSamples tree_samples;
JXL_RETURN_IF_ERROR(
tree_samples.SetPredictor(stream_options_[start].predictor,
stream_options_[start].wp_tree_mode));
JXL_RETURN_IF_ERROR(tree_samples.SetProperties(
stream_options_[start].splitting_heuristics_properties,
stream_options_[start].wp_tree_mode));
uint32_t max_c = 0;
std::vector<pixel_type> pixel_samples;
std::vector<pixel_type> diff_samples;
std::vector<uint32_t> group_pixel_count;
std::vector<uint32_t> channel_pixel_count;
for (uint32_t i = start; i < stop; i++) {
max_c = std::max<uint32_t>(stream_images_[i].channel.size(), max_c);
CollectPixelSamples(stream_images_[i], stream_options_[i], i,
group_pixel_count, channel_pixel_count,
pixel_samples, diff_samples);
}
StaticPropRange range;
range[0] = {{0, max_c}};
range[1] = {{start, stop}};
tree_samples.PreQuantizeProperties(
range, multiplier_info, group_pixel_count, channel_pixel_count,
pixel_samples, diff_samples,
stream_options_[start].max_property_values);
for (size_t i = start; i < stop; i++) {
JXL_RETURN_IF_ERROR(
ModularGenericCompress(stream_images_[i], stream_options_[i],
/*writer=*/nullptr,
/*aux_out=*/nullptr, LayerType::Header, i,
&tree_samples, &total_pixels));
}
// TODO(veluca): parallelize more.
JXL_ASSIGN_OR_RETURN(
trees[chunk],
LearnTree(std::move(tree_samples), total_pixels,
stream_options_[start], multiplier_info, range));
return true;
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, useful_splits.size() - 1,
ThreadPool::NoInit, process_chunk,
"LearnTrees"));
tree_.clear();
JXL_RETURN_IF_ERROR(
MergeTrees(trees, useful_splits, 0, useful_splits.size() - 1, &tree_));
} else {
// Fixed tree.
size_t total_pixels = 0;
int max_bitdepth = 0;
for (const Image& img : stream_images_) {
max_bitdepth = std::max(max_bitdepth, img.bitdepth);
for (const Channel& ch : img.channel) {
total_pixels += ch.w * ch.h;
}
}
if (cparams_.speed_tier <= SpeedTier::kFalcon) {
tree_ = PredefinedTree(ModularOptions::TreeKind::kWPFixedDC, total_pixels,
max_bitdepth, stream_options_[0].max_properties);
} else if (cparams_.speed_tier <= SpeedTier::kThunder) {
tree_ = PredefinedTree(ModularOptions::TreeKind::kGradientFixedDC,
total_pixels, max_bitdepth,
stream_options_[0].max_properties);
} else {
tree_ = {PropertyDecisionNode::Leaf(Predictor::Gradient)};
}
}
tree_tokens_.resize(1);
tree_tokens_[0].clear();
Tree decoded_tree;
JXL_RETURN_IF_ERROR(TokenizeTree(tree_, tree_tokens_.data(), &decoded_tree));
JXL_ENSURE(tree_.size() == decoded_tree.size());
tree_ = std::move(decoded_tree);
/* TODO(szabadka) Add text output callback to cparams
if (kPrintTree && WantDebugOutput(aux_out)) {
if (frame_header.dc_level > 0) {
PrintTree(tree_, aux_out->debug_prefix + "/dc_frame_level" +
std::to_string(frame_header.dc_level) + "_tree");
} else {
PrintTree(tree_, aux_out->debug_prefix + "/global_tree");
}
} */
return true;
}
Status ModularFrameEncoder::ComputeTokens(ThreadPool* pool) {
size_t num_streams = stream_images_.size();
stream_headers_.resize(num_streams);
tokens_.resize(num_streams);
image_widths_.resize(num_streams);
const auto process_stream = [&](const uint32_t stream_id,
size_t /* thread */) -> Status {
AuxOut my_aux_out;
tokens_[stream_id].clear();
JXL_RETURN_IF_ERROR(ModularGenericCompress(
stream_images_[stream_id], stream_options_[stream_id],
/*writer=*/nullptr, &my_aux_out, LayerType::Header, stream_id,
/*tree_samples=*/nullptr,
/*total_pixels=*/nullptr,
/*tree=*/&tree_, /*header=*/&stream_headers_[stream_id],
/*tokens=*/&tokens_[stream_id],
/*widths=*/&image_widths_[stream_id]));
return true;
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, num_streams, ThreadPool::NoInit,
process_stream, "ComputeTokens"));
return true;
}
Status ModularFrameEncoder::EncodeGlobalInfo(bool streaming_mode,
BitWriter* writer,
AuxOut* aux_out) {
JxlMemoryManager* memory_manager = writer->memory_manager();
bool skip_rest = false;
JXL_RETURN_IF_ERROR(
writer->WithMaxBits(1, LayerType::ModularTree, aux_out, [&] {
// If we are using brotli, or not using modular mode.
if (tree_tokens_.empty() || tree_tokens_[0].empty()) {
writer->Write(1, 0);
skip_rest = true;
} else {
writer->Write(1, 1);
}
return true;
}));
if (skip_rest) return true;
// Write tree
HistogramParams params =
HistogramParams::ForModular(cparams_, extra_dc_precision, streaming_mode);
{
EntropyEncodingData tree_code;
std::vector<uint8_t> tree_context_map;
JXL_ASSIGN_OR_RETURN(
size_t cost,
BuildAndEncodeHistograms(memory_manager, params, kNumTreeContexts,
tree_tokens_, &tree_code, &tree_context_map,
writer, LayerType::ModularTree, aux_out));
(void)cost;
JXL_RETURN_IF_ERROR(WriteTokens(tree_tokens_[0], tree_code,
tree_context_map, 0, writer,
LayerType::ModularTree, aux_out));
}
params.streaming_mode = streaming_mode;
params.add_missing_symbols = streaming_mode;
params.image_widths = image_widths_;
// Write histograms.
JXL_ASSIGN_OR_RETURN(
size_t cost,
BuildAndEncodeHistograms(memory_manager, params, (tree_.size() + 1) / 2,
tokens_, &code_, &context_map_, writer,
LayerType::ModularGlobal, aux_out));
(void)cost;
return true;
}
Status ModularFrameEncoder::EncodeStream(BitWriter* writer, AuxOut* aux_out,
LayerType layer,
const ModularStreamId& stream) {
size_t stream_id = stream.ID(frame_dim_);
if (stream_images_[stream_id].channel.empty()) {
JXL_DEBUG_V(10, "Modular stream %" PRIuS " is empty.", stream_id);
return true; // Image with no channels, header never gets decoded.
}
if (tokens_.empty()) {
JXL_RETURN_IF_ERROR(ModularGenericCompress(
stream_images_[stream_id], stream_options_[stream_id], writer, aux_out,
layer, stream_id));
} else {
JXL_RETURN_IF_ERROR(
Bundle::Write(stream_headers_[stream_id], writer, layer, aux_out));
JXL_RETURN_IF_ERROR(WriteTokens(tokens_[stream_id], code_, context_map_, 0,
writer, layer, aux_out));
}
return true;
}
void ModularFrameEncoder::ClearStreamData(const ModularStreamId& stream) {
size_t stream_id = stream.ID(frame_dim_);
Image empty_image(stream_images_[stream_id].memory_manager());
std::swap(stream_images_[stream_id], empty_image);
}
void ModularFrameEncoder::ClearModularStreamData() {
for (const auto& group : stream_params_) {
ClearStreamData(group.id);
}
stream_params_.clear();
}
size_t ModularFrameEncoder::ComputeStreamingAbsoluteAcGroupId(
size_t dc_group_id, size_t ac_group_id,
const FrameDimensions& patch_dim) const {
size_t dc_group_x = dc_group_id % frame_dim_.xsize_dc_groups;
size_t dc_group_y = dc_group_id / frame_dim_.xsize_dc_groups;
size_t ac_group_x = ac_group_id % patch_dim.xsize_groups;
size_t ac_group_y = ac_group_id / patch_dim.xsize_groups;
return (dc_group_x * 8 + ac_group_x) +
(dc_group_y * 8 + ac_group_y) * frame_dim_.xsize_groups;
}
Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
const CompressParams& cparams_,
int minShift, int maxShift,
const ModularStreamId& stream,
bool do_color, bool groupwise) {
size_t stream_id = stream.ID(frame_dim_);
if (stream_id == 0 && frame_dim_.num_groups != 1) {
// If we have multiple groups, then the stream with ID 0 holds the full
// image and we do not want to apply transforms or in general change the
// pixel values.
return true;
}
Image& full_image = stream_images_[0];
JxlMemoryManager* memory_manager = full_image.memory_manager();
const size_t xsize = rect.xsize();
const size_t ysize = rect.ysize();
Image& gi = stream_images_[stream_id];
if (stream_id > 0) {
JXL_ASSIGN_OR_RETURN(gi, Image::Create(memory_manager, xsize, ysize,
full_image.bitdepth, 0));
// start at the first bigger-than-frame_dim.group_dim non-metachannel
size_t c = full_image.nb_meta_channels;
if (!groupwise) {
for (; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
}
}
for (; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
int shift = std::min(fc.hshift, fc.vshift);
if (shift > maxShift) continue;
if (shift < minShift) continue;
Rect r(rect.x0() >> fc.hshift, rect.y0() >> fc.vshift,
rect.xsize() >> fc.hshift, rect.ysize() >> fc.vshift, fc.w, fc.h);
if (r.xsize() == 0 || r.ysize() == 0) continue;
gi_channel_[stream_id].push_back(c);
JXL_ASSIGN_OR_RETURN(
Channel gc, Channel::Create(memory_manager, r.xsize(), r.ysize()));
gc.hshift = fc.hshift;
gc.vshift = fc.vshift;
for (size_t y = 0; y < r.ysize(); ++y) {
memcpy(gc.Row(y), r.ConstRow(fc.plane, y),
r.xsize() * sizeof(pixel_type));
}
gi.channel.emplace_back(std::move(gc));
}
if (gi.channel.empty()) return true;
// Do some per-group transforms
// Local palette transforms
// TODO(veluca): make this work with quantize-after-prediction in lossy
// mode.
if (cparams_.butteraugli_distance == 0.f && !cparams_.lossy_palette &&
cparams_.speed_tier < SpeedTier::kCheetah) {
int max_bitdepth = 0, maxval = 0; // don't care about that here
float channel_color_percent = 0;
if (!(cparams_.responsive && cparams_.decoding_speed_tier >= 1)) {
channel_color_percent = cparams_.channel_colors_percent;
}
try_palettes(gi, max_bitdepth, maxval, cparams_, channel_color_percent);
}
}
// lossless and no specific color transform specified: try Nothing, YCoCg,
// and 17 RCTs
if (cparams_.color_transform == ColorTransform::kNone &&
cparams_.IsLossless() && cparams_.colorspace < 0 &&
gi.channel.size() - gi.nb_meta_channels >= 3 &&
cparams_.responsive == JXL_FALSE && do_color &&
cparams_.speed_tier <= SpeedTier::kHare) {
Transform sg(TransformId::kRCT);
sg.begin_c = gi.nb_meta_channels;
size_t nb_rcts_to_try = 0;
switch (cparams_.speed_tier) {
case SpeedTier::kLightning:
case SpeedTier::kThunder:
case SpeedTier::kFalcon:
case SpeedTier::kCheetah:
nb_rcts_to_try = 0; // Just do global YCoCg
break;
case SpeedTier::kHare:
nb_rcts_to_try = 4;
break;
case SpeedTier::kWombat:
nb_rcts_to_try = 5;
break;
case SpeedTier::kSquirrel:
nb_rcts_to_try = 7;
break;
case SpeedTier::kKitten:
nb_rcts_to_try = 9;
break;
case SpeedTier::kTectonicPlate:
case SpeedTier::kGlacier:
case SpeedTier::kTortoise:
nb_rcts_to_try = 19;
break;
}
float best_cost = std::numeric_limits<float>::max();
size_t best_rct = 0;
// These should be 19 actually different transforms; the remaining ones
// are equivalent to one of these (note that the first two are do-nothing
// and YCoCg) modulo channel reordering (which only matters in the case of
// MA-with-prev-channels-properties) and/or sign (e.g. RmG vs GmR)
for (int i : {0 * 7 + 0, 0 * 7 + 6, 0 * 7 + 5, 1 * 7 + 3, 3 * 7 + 5,
5 * 7 + 5, 1 * 7 + 5, 2 * 7 + 5, 1 * 7 + 1, 0 * 7 + 4,
1 * 7 + 2, 2 * 7 + 1, 2 * 7 + 2, 2 * 7 + 3, 4 * 7 + 4,
4 * 7 + 5, 0 * 7 + 2, 0 * 7 + 1, 0 * 7 + 3}) {
if (nb_rcts_to_try == 0) break;
sg.rct_type = i;
nb_rcts_to_try--;
if (do_transform(gi, sg, weighted::Header())) {
float cost = EstimateCost(gi);
if (cost < best_cost) {
best_rct = i;
best_cost = cost;
}
Transform t = gi.transform.back();
JXL_RETURN_IF_ERROR(t.Inverse(gi, weighted::Header(), nullptr));
gi.transform.pop_back();
}
}
// Apply the best RCT to the image for future encoding.
sg.rct_type = best_rct;
do_transform(gi, sg, weighted::Header());
} else {
// No need to try anything, just use the default options.
}
size_t nb_wp_modes = 1;
if (cparams_.speed_tier <= SpeedTier::kTortoise) {
nb_wp_modes = 5;
} else if (cparams_.speed_tier <= SpeedTier::kKitten) {
nb_wp_modes = 2;
}
if (nb_wp_modes > 1 &&
(stream_options_[stream_id].predictor == Predictor::Weighted ||
stream_options_[stream_id].predictor == Predictor::Best ||
stream_options_[stream_id].predictor == Predictor::Variable)) {
float best_cost = std::numeric_limits<float>::max();
stream_options_[stream_id].wp_mode = 0;
for (size_t i = 0; i < nb_wp_modes; i++) {
float cost = EstimateWPCost(gi, i);
if (cost < best_cost) {
best_cost = cost;
stream_options_[stream_id].wp_mode = i;
}
}
}
return true;
}
constexpr float q_deadzone = 0.62f;
int QuantizeWP(const int32_t* qrow, size_t onerow, size_t c, size_t x, size_t y,
size_t w, weighted::State* wp_state, float value,
float inv_factor) {
float svalue = value * inv_factor;
PredictionResult pred =
PredictNoTreeWP(w, qrow + x, onerow, x, y, Predictor::Weighted, wp_state);
svalue -= pred.guess;
if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0;
int residual = roundf(svalue);
if (residual > 2 || residual < -2) residual = roundf(svalue * 0.5) * 2;
return residual + pred.guess;
}
int QuantizeGradient(const int32_t* qrow, size_t onerow, size_t c, size_t x,
size_t y, size_t w, float value, float inv_factor) {
float svalue = value * inv_factor;
PredictionResult pred =
PredictNoTreeNoWP(w, qrow + x, onerow, x, y, Predictor::Gradient);
svalue -= pred.guess;
if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0;
int residual = roundf(svalue);
if (residual > 2 || residual < -2) residual = roundf(svalue * 0.5) * 2;
return residual + pred.guess;
}
Status ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header,
const Image3F& dc, const Rect& r,
size_t group_index, bool nl_dc,
PassesEncoderState* enc_state,
bool jpeg_transcode) {
JxlMemoryManager* memory_manager = dc.memory_manager();
extra_dc_precision[group_index] = nl_dc ? 1 : 0;
float mul = 1 << extra_dc_precision[group_index];
size_t stream_id = ModularStreamId::VarDCTDC(group_index).ID(frame_dim_);
stream_options_[stream_id].max_chan_size = 0xFFFFFF;
stream_options_[stream_id].predictor = Predictor::Weighted;
stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kWPOnly;
if (cparams_.speed_tier >= SpeedTier::kSquirrel) {
stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kWPFixedDC;
}
if (cparams_.speed_tier < SpeedTier::kSquirrel && !nl_dc) {
stream_options_[stream_id].predictor =
(cparams_.speed_tier < SpeedTier::kKitten ? Predictor::Variable
: Predictor::Best);
stream_options_[stream_id].wp_tree_mode =
ModularOptions::TreeMode::kDefault;
stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn;
}
if (cparams_.decoding_speed_tier >= 1) {
stream_options_[stream_id].tree_kind =
ModularOptions::TreeKind::kGradientFixedDC;
}
stream_options_[stream_id].histogram_params =
stream_options_[0].histogram_params;
JXL_ASSIGN_OR_RETURN(
stream_images_[stream_id],
Image::Create(memory_manager, r.xsize(), r.ysize(), 8, 3));
const ColorCorrelation& color_correlation = enc_state->shared.cmap.base();
if (nl_dc && stream_options_[stream_id].tree_kind ==
ModularOptions::TreeKind::kGradientFixedDC) {
JXL_ENSURE(frame_header.chroma_subsampling.Is444());
for (size_t c : {1, 0, 2}) {
float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
float cfl_factor = color_correlation.DCFactors()[c];
for (size_t y = 0; y < r.ysize(); y++) {
int32_t* quant_row =
stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
size_t stride = stream_images_[stream_id]
.channel[c < 2 ? c ^ 1 : c]
.plane.PixelsPerRow();
const float* row = r.ConstPlaneRow(dc, c, y);
if (c == 1) {
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = QuantizeGradient(quant_row, stride, c, x, y,
r.xsize(), row[x], inv_factor);
}
} else {
int32_t* quant_row_y =
stream_images_[stream_id].channel[0].plane.Row(y);
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = QuantizeGradient(
quant_row, stride, c, x, y, r.xsize(),
row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor);
}
}
}
}
} else if (nl_dc) {
JXL_ENSURE(frame_header.chroma_subsampling.Is444());
for (size_t c : {1, 0, 2}) {
float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
float cfl_factor = color_correlation.DCFactors()[c];
weighted::Header header;
weighted::State wp_state(header, r.xsize(), r.ysize());
for (size_t y = 0; y < r.ysize(); y++) {
int32_t* quant_row =
stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
size_t stride = stream_images_[stream_id]
.channel[c < 2 ? c ^ 1 : c]
.plane.PixelsPerRow();
const float* row = r.ConstPlaneRow(dc, c, y);
if (c == 1) {
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = QuantizeWP(quant_row, stride, c, x, y, r.xsize(),
&wp_state, row[x], inv_factor);
wp_state.UpdateErrors(quant_row[x], x, y, r.xsize());
}
} else {
int32_t* quant_row_y =
stream_images_[stream_id].channel[0].plane.Row(y);
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = QuantizeWP(
quant_row, stride, c, x, y, r.xsize(), &wp_state,
row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor);
wp_state.UpdateErrors(quant_row[x], x, y, r.xsize());
}
}
}
}
} else if (frame_header.chroma_subsampling.Is444()) {
for (size_t c : {1, 0, 2}) {
float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
float cfl_factor = color_correlation.DCFactors()[c];
for (size_t y = 0; y < r.ysize(); y++) {
int32_t* quant_row =
stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
const float* row = r.ConstPlaneRow(dc, c, y);
if (c == 1) {
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = roundf(row[x] * inv_factor);
}
} else {
int32_t* quant_row_y =
stream_images_[stream_id].channel[0].plane.Row(y);
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] =
roundf((row[x] - quant_row_y[x] * (y_factor * cfl_factor)) *
inv_factor);
}
}
}
}
} else {
for (size_t c : {1, 0, 2}) {
Rect rect(r.x0() >> frame_header.chroma_subsampling.HShift(c),
r.y0() >> frame_header.chroma_subsampling.VShift(c),
r.xsize() >> frame_header.chroma_subsampling.HShift(c),
r.ysize() >> frame_header.chroma_subsampling.VShift(c));
float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
size_t ys = rect.ysize();
size_t xs = rect.xsize();
Channel& ch = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c];
ch.w = xs;
ch.h = ys;
JXL_RETURN_IF_ERROR(ch.shrink());
for (size_t y = 0; y < ys; y++) {
int32_t* quant_row = ch.plane.Row(y);
const float* row = rect.ConstPlaneRow(dc, c, y);
for (size_t x = 0; x < xs; x++) {
quant_row[x] = roundf(row[x] * inv_factor);
}
}
}
}
DequantDC(r, &enc_state->shared.dc_storage, &enc_state->shared.quant_dc,
stream_images_[stream_id], enc_state->shared.quantizer.MulDC(),
1.0 / mul, color_correlation.DCFactors(),
frame_header.chroma_subsampling, enc_state->shared.block_ctx_map);
return true;
}
Status ModularFrameEncoder::AddACMetadata(const Rect& r, size_t group_index,
bool jpeg_transcode,
PassesEncoderState* enc_state) {
JxlMemoryManager* memory_manager = enc_state->memory_manager();
size_t stream_id = ModularStreamId::ACMetadata(group_index).ID(frame_dim_);
stream_options_[stream_id].max_chan_size = 0xFFFFFF;
if (stream_options_[stream_id].predictor != Predictor::Weighted) {
stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kNoWP;
}
if (jpeg_transcode) {
stream_options_[stream_id].tree_kind =
ModularOptions::TreeKind::kJpegTranscodeACMeta;
} else if (cparams_.speed_tier >= SpeedTier::kFalcon) {
stream_options_[stream_id].tree_kind =
ModularOptions::TreeKind::kFalconACMeta;
} else if (cparams_.speed_tier > SpeedTier::kKitten) {
stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kACMeta;
}
// If we are using a non-constant CfL field, and are in a slow enough mode,
// re-enable tree computation for it.
if (cparams_.speed_tier < SpeedTier::kSquirrel &&
cparams_.force_cfl_jpeg_recompression) {
stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn;
}
stream_options_[stream_id].histogram_params =
stream_options_[0].histogram_params;
// YToX, YToB, ACS + QF, EPF
Image& image = stream_images_[stream_id];
JXL_ASSIGN_OR_RETURN(
image, Image::Create(memory_manager, r.xsize(), r.ysize(), 8, 4));
static_assert(kColorTileDimInBlocks == 8, "Color tile size changed");
Rect cr(r.x0() >> 3, r.y0() >> 3, (r.xsize() + 7) >> 3, (r.ysize() + 7) >> 3);
JXL_ASSIGN_OR_RETURN(
image.channel[0],
Channel::Create(memory_manager, cr.xsize(), cr.ysize(), 3, 3));
JXL_ASSIGN_OR_RETURN(
image.channel[1],
Channel::Create(memory_manager, cr.xsize(), cr.ysize(), 3, 3));
JXL_ASSIGN_OR_RETURN(
image.channel[2],
Channel::Create(memory_manager, r.xsize() * r.ysize(), 2, 0, 0));
JXL_RETURN_IF_ERROR(ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytox_map,
Rect(image.channel[0].plane),
&image.channel[0].plane));
JXL_RETURN_IF_ERROR(ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytob_map,
Rect(image.channel[1].plane),
&image.channel[1].plane));
size_t num = 0;
for (size_t y = 0; y < r.ysize(); y++) {
AcStrategyRow row_acs = enc_state->shared.ac_strategy.ConstRow(r, y);
const int32_t* row_qf = r.ConstRow(enc_state->shared.raw_quant_field, y);
const uint8_t* row_epf = r.ConstRow(enc_state->shared.epf_sharpness, y);
int32_t* out_acs = image.channel[2].plane.Row(0);
int32_t* out_qf = image.channel[2].plane.Row(1);
int32_t* row_out_epf = image.channel[3].plane.Row(y);
for (size_t x = 0; x < r.xsize(); x++) {
row_out_epf[x] = row_epf[x];
if (!row_acs[x].IsFirstBlock()) continue;
out_acs[num] = row_acs[x].RawStrategy();
out_qf[num] = row_qf[x] - 1;
num++;
}
}
image.channel[2].w = num;
ac_metadata_size[group_index] = num;
return true;
}
Status ModularFrameEncoder::EncodeQuantTable(
JxlMemoryManager* memory_manager, size_t size_x, size_t size_y,
BitWriter* writer, const QuantEncoding& encoding, size_t idx,
ModularFrameEncoder* modular_frame_encoder) {
JXL_ENSURE(encoding.qraw.qtable);
JXL_ENSURE(size_x * size_y * 3 == encoding.qraw.qtable->size());
JXL_ENSURE(idx < kNumQuantTables);
int* qtable = encoding.qraw.qtable->data();
JXL_RETURN_IF_ERROR(F16Coder::Write(encoding.qraw.qtable_den, writer));
if (modular_frame_encoder) {
JXL_ASSIGN_OR_RETURN(ModularStreamId qt, ModularStreamId::QuantTable(idx));
JXL_RETURN_IF_ERROR(modular_frame_encoder->EncodeStream(
writer, nullptr, LayerType::Header, qt));
return true;
}
JXL_ASSIGN_OR_RETURN(Image image,
Image::Create(memory_manager, size_x, size_y, 8, 3));
for (size_t c = 0; c < 3; c++) {
for (size_t y = 0; y < size_y; y++) {
int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
for (size_t x = 0; x < size_x; x++) {
row[x] = qtable[c * size_x * size_y + y * size_x + x];
}
}
}
ModularOptions cfopts;
JXL_RETURN_IF_ERROR(ModularGenericCompress(image, cfopts, writer));
return true;
}
Status ModularFrameEncoder::AddQuantTable(size_t size_x, size_t size_y,
const QuantEncoding& encoding,
size_t idx) {
JXL_ENSURE(idx < kNumQuantTables);
JXL_ASSIGN_OR_RETURN(ModularStreamId qt, ModularStreamId::QuantTable(idx));
size_t stream_id = qt.ID(frame_dim_);
JXL_ENSURE(encoding.qraw.qtable);
JXL_ENSURE(size_x * size_y * 3 == encoding.qraw.qtable->size());
int* qtable = encoding.qraw.qtable->data();
Image& image = stream_images_[stream_id];
JxlMemoryManager* memory_manager = image.memory_manager();
JXL_ASSIGN_OR_RETURN(image,
Image::Create(memory_manager, size_x, size_y, 8, 3));
for (size_t c = 0; c < 3; c++) {
for (size_t y = 0; y < size_y; y++) {
int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
for (size_t x = 0; x < size_x; x++) {
row[x] = qtable[c * size_x * size_y + y * size_x + x];
}
}
}
return true;
}
} // namespace jxl