Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_entropy_coder.h"
#include <cstddef>
#include <cstdint>
#include <vector>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/enc_entropy_coder.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/ac_context.h"
#include "lib/jxl/ac_strategy.h"
#include "lib/jxl/base/bits.h"
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/coeff_order.h"
#include "lib/jxl/coeff_order_fwd.h"
#include "lib/jxl/entropy_coder.h"
#include "lib/jxl/image.h"
#include "lib/jxl/pack_signed.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::AndNot;
using hwy::HWY_NAMESPACE::Eq;
using hwy::HWY_NAMESPACE::GetLane;
// Returns number of non-zero coefficients (but skip LLF).
// We cannot rely on block[] being all-zero bits, so first truncate to integer.
// Also writes the per-8x8 block nzeros starting at nzeros_pos.
int32_t NumNonZeroExceptLLF(const size_t cx, const size_t cy,
const AcStrategy acs, const size_t covered_blocks,
const size_t log2_covered_blocks,
const int32_t* JXL_RESTRICT block,
const size_t nzeros_stride,
int32_t* JXL_RESTRICT nzeros_pos) {
const HWY_CAPPED(int32_t, kBlockDim) di;
const auto zero = Zero(di);
// Add FF..FF for every zero coefficient, negate to get #zeros.
auto neg_sum_zero = zero;
{
// Mask sufficient for one row of coefficients.
HWY_ALIGN const int32_t
llf_mask_lanes[AcStrategy::kMaxCoeffBlocks * (1 + kBlockDim)] = {
-1, -1, -1, -1};
// First cx=1,2,4 elements are FF..FF, others 0.
const int32_t* llf_mask_pos =
llf_mask_lanes + AcStrategy::kMaxCoeffBlocks - cx;
// Rows with LLF: mask out the LLF
for (size_t y = 0; y < cy; y++) {
for (size_t x = 0; x < cx * kBlockDim; x += Lanes(di)) {
const auto llf_mask = LoadU(di, llf_mask_pos + x);
// LLF counts as zero so we don't include it in nzeros.
const auto coef =
AndNot(llf_mask, Load(di, &block[y * cx * kBlockDim + x]));
neg_sum_zero = Add(neg_sum_zero, VecFromMask(di, Eq(coef, zero)));
}
}
}
// Remaining rows: no mask
for (size_t y = cy; y < cy * kBlockDim; y++) {
for (size_t x = 0; x < cx * kBlockDim; x += Lanes(di)) {
const auto coef = Load(di, &block[y * cx * kBlockDim + x]);
neg_sum_zero = Add(neg_sum_zero, VecFromMask(di, Eq(coef, zero)));
}
}
// We want area - sum_zero, add because neg_sum_zero is already negated.
const int32_t nzeros = static_cast<int32_t>(cx * cy * kDCTBlockSize) +
GetLane(SumOfLanes(di, neg_sum_zero));
const int32_t shifted_nzeros = static_cast<int32_t>(
(nzeros + covered_blocks - 1) >> log2_covered_blocks);
// Need non-canonicalized dimensions!
for (size_t y = 0; y < acs.covered_blocks_y(); y++) {
for (size_t x = 0; x < acs.covered_blocks_x(); x++) {
nzeros_pos[x + y * nzeros_stride] = shifted_nzeros;
}
}
return nzeros;
}
// Specialization for 8x8, where only top-left is LLF/DC.
// About 1% overall speedup vs. NumNonZeroExceptLLF.
int32_t NumNonZero8x8ExceptDC(const int32_t* JXL_RESTRICT block,
int32_t* JXL_RESTRICT nzeros_pos) {
const HWY_CAPPED(int32_t, kBlockDim) di;
const auto zero = Zero(di);
// Add FF..FF for every zero coefficient, negate to get #zeros.
auto neg_sum_zero = zero;
{
// First row has DC, so mask
const size_t y = 0;
HWY_ALIGN const int32_t dc_mask_lanes[kBlockDim] = {-1};
for (size_t x = 0; x < kBlockDim; x += Lanes(di)) {
const auto dc_mask = Load(di, dc_mask_lanes + x);
// DC counts as zero so we don't include it in nzeros.
const auto coef = AndNot(dc_mask, Load(di, &block[y * kBlockDim + x]));
neg_sum_zero = Add(neg_sum_zero, VecFromMask(di, Eq(coef, zero)));
}
}
// Remaining rows: no mask
for (size_t y = 1; y < kBlockDim; y++) {
for (size_t x = 0; x < kBlockDim; x += Lanes(di)) {
const auto coef = Load(di, &block[y * kBlockDim + x]);
neg_sum_zero = Add(neg_sum_zero, VecFromMask(di, Eq(coef, zero)));
}
}
// We want 64 - sum_zero, add because neg_sum_zero is already negated.
const int32_t nzeros = static_cast<int32_t>(kDCTBlockSize) +
GetLane(SumOfLanes(di, neg_sum_zero));
*nzeros_pos = nzeros;
return nzeros;
}
// The number of nonzeros of each block is predicted from the top and the left
// blocks, with opportune scaling to take into account the number of blocks of
// each strategy. The predicted number of nonzeros divided by two is used as a
// context; if this number is above 63, a specific context is used. If the
// number of nonzeros of a strategy is above 63, it is written directly using a
// fixed number of bits (that depends on the size of the strategy).
Status TokenizeCoefficients(const coeff_order_t* JXL_RESTRICT orders,
const Rect& rect,
const int32_t* JXL_RESTRICT* JXL_RESTRICT ac_rows,
const AcStrategyImage& ac_strategy,
const YCbCrChromaSubsampling& cs,
Image3I* JXL_RESTRICT tmp_num_nzeroes,
std::vector<Token>* JXL_RESTRICT output,
const ImageB& qdc, const ImageI& qf,
const BlockCtxMap& block_ctx_map) {
const size_t xsize_blocks = rect.xsize();
const size_t ysize_blocks = rect.ysize();
output->clear();
// TODO(user): update the estimate: usually less coefficients are used.
output->reserve(3 * xsize_blocks * ysize_blocks * kDCTBlockSize);
size_t offset[3] = {};
const size_t nzeros_stride = tmp_num_nzeroes->PixelsPerRow();
for (size_t by = 0; by < ysize_blocks; ++by) {
size_t sby[3] = {by >> cs.VShift(0), by >> cs.VShift(1),
by >> cs.VShift(2)};
int32_t* JXL_RESTRICT row_nzeros[3] = {
tmp_num_nzeroes->PlaneRow(0, sby[0]),
tmp_num_nzeroes->PlaneRow(1, sby[1]),
tmp_num_nzeroes->PlaneRow(2, sby[2]),
};
const int32_t* JXL_RESTRICT row_nzeros_top[3] = {
sby[0] == 0 ? nullptr : tmp_num_nzeroes->ConstPlaneRow(0, sby[0] - 1),
sby[1] == 0 ? nullptr : tmp_num_nzeroes->ConstPlaneRow(1, sby[1] - 1),
sby[2] == 0 ? nullptr : tmp_num_nzeroes->ConstPlaneRow(2, sby[2] - 1),
};
const uint8_t* JXL_RESTRICT row_qdc =
qdc.ConstRow(rect.y0() + by) + rect.x0();
const int32_t* JXL_RESTRICT row_qf = rect.ConstRow(qf, by);
AcStrategyRow acs_row = ac_strategy.ConstRow(rect, by);
for (size_t bx = 0; bx < xsize_blocks; ++bx) {
AcStrategy acs = acs_row[bx];
if (!acs.IsFirstBlock()) continue;
size_t sbx[3] = {bx >> cs.HShift(0), bx >> cs.HShift(1),
bx >> cs.HShift(2)};
size_t cx = acs.covered_blocks_x();
size_t cy = acs.covered_blocks_y();
const size_t covered_blocks = cx * cy; // = #LLF coefficients
const size_t log2_covered_blocks =
Num0BitsBelowLS1Bit_Nonzero(covered_blocks);
const size_t size = covered_blocks * kDCTBlockSize;
CoefficientLayout(&cy, &cx); // swap cx/cy to canonical order
for (int c : {1, 0, 2}) {
if (sbx[c] << cs.HShift(c) != bx) continue;
if (sby[c] << cs.VShift(c) != by) continue;
const int32_t* JXL_RESTRICT block = ac_rows[c] + offset[c];
int32_t nzeros =
(covered_blocks == 1)
? NumNonZero8x8ExceptDC(block, row_nzeros[c] + sbx[c])
: NumNonZeroExceptLLF(cx, cy, acs, covered_blocks,
log2_covered_blocks, block, nzeros_stride,
row_nzeros[c] + sbx[c]);
int ord = kStrategyOrder[acs.RawStrategy()];
const coeff_order_t* JXL_RESTRICT order =
&orders[CoeffOrderOffset(ord, c)];
int32_t predicted_nzeros =
PredictFromTopAndLeft(row_nzeros_top[c], row_nzeros[c], sbx[c], 32);
size_t block_ctx =
block_ctx_map.Context(row_qdc[bx], row_qf[sbx[c]], ord, c);
const int32_t nzero_ctx =
block_ctx_map.NonZeroContext(predicted_nzeros, block_ctx);
output->emplace_back(nzero_ctx, nzeros);
const size_t histo_offset =
block_ctx_map.ZeroDensityContextsOffset(block_ctx);
// Skip LLF.
size_t prev = (nzeros > static_cast<ssize_t>(size / 16) ? 0 : 1);
for (size_t k = covered_blocks; k < size && nzeros != 0; ++k) {
int32_t coeff = block[order[k]];
size_t ctx =
histo_offset + ZeroDensityContext(nzeros, k, covered_blocks,
log2_covered_blocks, prev);
uint32_t u_coeff = PackSigned(coeff);
output->emplace_back(ctx, u_coeff);
prev = (coeff != 0) ? 1 : 0;
nzeros -= prev;
}
JXL_ENSURE(nzeros == 0);
offset[c] += size;
}
}
}
return true;
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(TokenizeCoefficients);
Status TokenizeCoefficients(const coeff_order_t* JXL_RESTRICT orders,
const Rect& rect,
const int32_t* JXL_RESTRICT* JXL_RESTRICT ac_rows,
const AcStrategyImage& ac_strategy,
const YCbCrChromaSubsampling& cs,
Image3I* JXL_RESTRICT tmp_num_nzeroes,
std::vector<Token>* JXL_RESTRICT output,
const ImageB& qdc, const ImageI& qf,
const BlockCtxMap& block_ctx_map) {
return HWY_DYNAMIC_DISPATCH(TokenizeCoefficients)(
orders, rect, ac_rows, ac_strategy, cs, tmp_num_nzeroes, output, qdc, qf,
block_ctx_map);
}
} // namespace jxl
#endif // HWY_ONCE