Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_ans.h"
#include <jxl/memory_manager.h>
#include <jxl/types.h>
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <limits>
#include <unordered_map>
#include <utility>
#include <vector>
#include "lib/jxl/ans_common.h"
#include "lib/jxl/base/bits.h"
#include "lib/jxl/base/fast_math-inl.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/dec_ans.h"
#include "lib/jxl/enc_ans_params.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_cluster.h"
#include "lib/jxl/enc_context_map.h"
#include "lib/jxl/enc_fields.h"
#include "lib/jxl/enc_huffman.h"
#include "lib/jxl/enc_params.h"
#include "lib/jxl/fields.h"
namespace jxl {
namespace {
#if (!JXL_IS_DEBUG_BUILD)
constexpr
#endif
bool ans_fuzzer_friendly_ = false;
const int kMaxNumSymbolsForSmallCode = 4;
void ANSBuildInfoTable(const ANSHistBin* counts, const AliasTable::Entry* table,
size_t alphabet_size, size_t log_alpha_size,
ANSEncSymbolInfo* info) {
size_t log_entry_size = ANS_LOG_TAB_SIZE - log_alpha_size;
size_t entry_size_minus_1 = (1 << log_entry_size) - 1;
// create valid alias table for empty streams.
for (size_t s = 0; s < std::max<size_t>(1, alphabet_size); ++s) {
const ANSHistBin freq = s == alphabet_size ? ANS_TAB_SIZE : counts[s];
info[s].freq_ = static_cast<uint16_t>(freq);
#ifdef USE_MULT_BY_RECIPROCAL
if (freq != 0) {
info[s].ifreq_ =
((1ull << RECIPROCAL_PRECISION) + info[s].freq_ - 1) / info[s].freq_;
} else {
info[s].ifreq_ = 1; // shouldn't matter (symbol shouldn't occur), but...
}
#endif
info[s].reverse_map_.resize(freq);
}
for (int i = 0; i < ANS_TAB_SIZE; i++) {
AliasTable::Symbol s =
AliasTable::Lookup(table, i, log_entry_size, entry_size_minus_1);
info[s.value].reverse_map_[s.offset] = i;
}
}
float EstimateDataBits(const ANSHistBin* histogram, const ANSHistBin* counts,
size_t len) {
float sum = 0.0f;
int total_histogram = 0;
int total_counts = 0;
for (size_t i = 0; i < len; ++i) {
total_histogram += histogram[i];
total_counts += counts[i];
if (histogram[i] > 0) {
JXL_DASSERT(counts[i] > 0);
// += histogram[i] * -log(counts[i]/total_counts)
sum += histogram[i] *
std::max(0.0f, ANS_LOG_TAB_SIZE - FastLog2f(counts[i]));
}
}
if (total_histogram > 0) {
// Used only in assert.
(void)total_counts;
JXL_DASSERT(total_counts == ANS_TAB_SIZE);
}
return sum;
}
float EstimateDataBitsFlat(const ANSHistBin* histogram, size_t len) {
const float flat_bits = std::max(FastLog2f(len), 0.0f);
float total_histogram = 0;
for (size_t i = 0; i < len; ++i) {
total_histogram += histogram[i];
}
return total_histogram * flat_bits;
}
// Static Huffman code for encoding logcounts. The last symbol is used as RLE
// sequence.
const uint8_t kLogCountBitLengths[ANS_LOG_TAB_SIZE + 2] = {
5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 6, 7, 7,
};
const uint8_t kLogCountSymbols[ANS_LOG_TAB_SIZE + 2] = {
17, 11, 15, 3, 9, 7, 4, 2, 5, 6, 0, 33, 1, 65,
};
// Returns the difference between largest count that can be represented and is
// smaller than "count" and smallest representable count larger than "count".
int SmallestIncrement(uint32_t count, uint32_t shift) {
int bits = count == 0 ? -1 : FloorLog2Nonzero(count);
int drop_bits = bits - GetPopulationCountPrecision(bits, shift);
return drop_bits < 0 ? 1 : (1 << drop_bits);
}
template <bool minimize_error_of_sum>
bool RebalanceHistogram(const float* targets, int max_symbol, int table_size,
uint32_t shift, int* omit_pos, ANSHistBin* counts) {
int sum = 0;
float sum_nonrounded = 0.0;
int remainder_pos = 0; // if all of them are handled in first loop
int remainder_log = -1;
for (int n = 0; n < max_symbol; ++n) {
if (targets[n] > 0 && targets[n] < 1.0f) {
counts[n] = 1;
sum_nonrounded += targets[n];
sum += counts[n];
}
}
const float discount_ratio =
(table_size - sum) / (table_size - sum_nonrounded);
JXL_ENSURE(discount_ratio > 0);
JXL_ENSURE(discount_ratio <= 1.0f);
// Invariant for minimize_error_of_sum == true:
// abs(sum - sum_nonrounded)
// <= SmallestIncrement(max(targets[])) + max_symbol
for (int n = 0; n < max_symbol; ++n) {
if (targets[n] >= 1.0f) {
sum_nonrounded += targets[n];
counts[n] =
static_cast<ANSHistBin>(targets[n] * discount_ratio); // truncate
if (counts[n] == 0) counts[n] = 1;
if (counts[n] == table_size) counts[n] = table_size - 1;
// Round the count to the closest nonzero multiple of SmallestIncrement
// (when minimize_error_of_sum is false) or one of two closest so as to
// keep the sum as close as possible to sum_nonrounded.
int inc = SmallestIncrement(counts[n], shift);
counts[n] -= counts[n] & (inc - 1);
// TODO(robryk): Should we rescale targets[n]?
const int target = minimize_error_of_sum
? (static_cast<int>(sum_nonrounded) - sum)
: static_cast<int>(targets[n]);
if (counts[n] == 0 ||
(target >= counts[n] + inc / 2 && counts[n] + inc < table_size)) {
counts[n] += inc;
}
sum += counts[n];
const int count_log = FloorLog2Nonzero(static_cast<uint32_t>(counts[n]));
if (count_log > remainder_log) {
remainder_pos = n;
remainder_log = count_log;
}
}
}
JXL_ENSURE(remainder_pos != -1);
// NOTE: This is the only place where counts could go negative. We could
// detect that, return false and make ANSHistBin uint32_t.
counts[remainder_pos] -= sum - table_size;
*omit_pos = remainder_pos;
return counts[remainder_pos] > 0;
}
Status NormalizeCounts(ANSHistBin* counts, int* omit_pos, const int length,
const int precision_bits, uint32_t shift,
int* num_symbols, int* symbols) {
const int32_t table_size = 1 << precision_bits; // target sum / table size
uint64_t total = 0;
int max_symbol = 0;
int symbol_count = 0;
for (int n = 0; n < length; ++n) {
total += counts[n];
if (counts[n] > 0) {
if (symbol_count < kMaxNumSymbolsForSmallCode) {
symbols[symbol_count] = n;
}
++symbol_count;
max_symbol = n + 1;
}
}
*num_symbols = symbol_count;
if (symbol_count == 0) {
return true;
}
if (symbol_count == 1) {
counts[symbols[0]] = table_size;
return true;
}
if (symbol_count > table_size)
return JXL_FAILURE("Too many entries in an ANS histogram");
const float norm = 1.f * table_size / total;
std::vector<float> targets(max_symbol);
for (size_t n = 0; n < targets.size(); ++n) {
targets[n] = norm * counts[n];
}
if (!RebalanceHistogram<false>(targets.data(), max_symbol, table_size, shift,
omit_pos, counts)) {
// Use an alternative rebalancing mechanism if the one above failed
// to create a histogram that is positive wherever the original one was.
if (!RebalanceHistogram<true>(targets.data(), max_symbol, table_size, shift,
omit_pos, counts)) {
return JXL_FAILURE("Logic error: couldn't rebalance a histogram");
}
}
return true;
}
struct SizeWriter {
size_t size = 0;
void Write(size_t num, size_t bits) { size += num; }
};
template <typename Writer>
void StoreVarLenUint8(size_t n, Writer* writer) {
JXL_DASSERT(n <= 255);
if (n == 0) {
writer->Write(1, 0);
} else {
writer->Write(1, 1);
size_t nbits = FloorLog2Nonzero(n);
writer->Write(3, nbits);
writer->Write(nbits, n - (1ULL << nbits));
}
}
template <typename Writer>
void StoreVarLenUint16(size_t n, Writer* writer) {
JXL_DASSERT(n <= 65535);
if (n == 0) {
writer->Write(1, 0);
} else {
writer->Write(1, 1);
size_t nbits = FloorLog2Nonzero(n);
writer->Write(4, nbits);
writer->Write(nbits, n - (1ULL << nbits));
}
}
template <typename Writer>
bool EncodeCounts(const ANSHistBin* counts, const int alphabet_size,
const int omit_pos, const int num_symbols, uint32_t shift,
const int* symbols, Writer* writer) {
bool ok = true;
if (num_symbols <= 2) {
// Small tree marker to encode 1-2 symbols.
writer->Write(1, 1);
if (num_symbols == 0) {
writer->Write(1, 0);
StoreVarLenUint8(0, writer);
} else {
writer->Write(1, num_symbols - 1);
for (int i = 0; i < num_symbols; ++i) {
StoreVarLenUint8(symbols[i], writer);
}
}
if (num_symbols == 2) {
writer->Write(ANS_LOG_TAB_SIZE, counts[symbols[0]]);
}
} else {
// Mark non-small tree.
writer->Write(1, 0);
// Mark non-flat histogram.
writer->Write(1, 0);
// Precompute sequences for RLE encoding. Contains the number of identical
// values starting at a given index. Only contains the value at the first
// element of the series.
std::vector<uint32_t> same(alphabet_size, 0);
int last = 0;
for (int i = 1; i < alphabet_size; i++) {
// Store the sequence length once different symbol reached, or we're at
// the end, or the length is longer than we can encode, or we are at
// the omit_pos. We don't support including the omit_pos in an RLE
// sequence because this value may use a different amount of log2 bits
// than standard, it is too complex to handle in the decoder.
if (counts[i] != counts[last] || i + 1 == alphabet_size ||
(i - last) >= 255 || i == omit_pos || i == omit_pos + 1) {
same[last] = (i - last);
last = i + 1;
}
}
int length = 0;
std::vector<int> logcounts(alphabet_size);
int omit_log = 0;
for (int i = 0; i < alphabet_size; ++i) {
JXL_ENSURE(counts[i] <= ANS_TAB_SIZE);
JXL_ENSURE(counts[i] >= 0);
if (i == omit_pos) {
length = i + 1;
} else if (counts[i] > 0) {
logcounts[i] = FloorLog2Nonzero(static_cast<uint32_t>(counts[i])) + 1;
length = i + 1;
if (i < omit_pos) {
omit_log = std::max(omit_log, logcounts[i] + 1);
} else {
omit_log = std::max(omit_log, logcounts[i]);
}
}
}
logcounts[omit_pos] = omit_log;
// Elias gamma-like code for shift. Only difference is that if the number
// of bits to be encoded is equal to FloorLog2(ANS_LOG_TAB_SIZE+1), we skip
// the terminating 0 in unary coding.
int upper_bound_log = FloorLog2Nonzero(ANS_LOG_TAB_SIZE + 1);
int log = FloorLog2Nonzero(shift + 1);
writer->Write(log, (1 << log) - 1);
if (log != upper_bound_log) writer->Write(1, 0);
writer->Write(log, ((1 << log) - 1) & (shift + 1));
// Since num_symbols >= 3, we know that length >= 3, therefore we encode
// length - 3.
if (length - 3 > 255) {
// Pretend that everything is OK, but complain about correctness later.
StoreVarLenUint8(255, writer);
ok = false;
} else {
StoreVarLenUint8(length - 3, writer);
}
// The logcount values are encoded with a static Huffman code.
static const size_t kMinReps = 4;
size_t rep = ANS_LOG_TAB_SIZE + 1;
for (int i = 0; i < length; ++i) {
if (i > 0 && same[i - 1] > kMinReps) {
// Encode the RLE symbol and skip the repeated ones.
writer->Write(kLogCountBitLengths[rep], kLogCountSymbols[rep]);
StoreVarLenUint8(same[i - 1] - kMinReps - 1, writer);
i += same[i - 1] - 2;
continue;
}
writer->Write(kLogCountBitLengths[logcounts[i]],
kLogCountSymbols[logcounts[i]]);
}
for (int i = 0; i < length; ++i) {
if (i > 0 && same[i - 1] > kMinReps) {
// Skip symbols encoded by RLE.
i += same[i - 1] - 2;
continue;
}
if (logcounts[i] > 1 && i != omit_pos) {
int bitcount = GetPopulationCountPrecision(logcounts[i] - 1, shift);
int drop_bits = logcounts[i] - 1 - bitcount;
JXL_ENSURE((counts[i] & ((1 << drop_bits) - 1)) == 0);
writer->Write(bitcount, (counts[i] >> drop_bits) - (1 << bitcount));
}
}
}
return ok;
}
void EncodeFlatHistogram(const int alphabet_size, BitWriter* writer) {
// Mark non-small tree.
writer->Write(1, 0);
// Mark uniform histogram.
writer->Write(1, 1);
JXL_DASSERT(alphabet_size > 0);
// Encode alphabet size.
StoreVarLenUint8(alphabet_size - 1, writer);
}
StatusOr<float> ComputeHistoAndDataCost(const ANSHistBin* histogram,
size_t alphabet_size, uint32_t method) {
if (method == 0) { // Flat code
return ANS_LOG_TAB_SIZE + 2 +
EstimateDataBitsFlat(histogram, alphabet_size);
}
// Non-flat: shift = method-1.
uint32_t shift = method - 1;
std::vector<ANSHistBin> counts(histogram, histogram + alphabet_size);
int omit_pos = 0;
int num_symbols;
int symbols[kMaxNumSymbolsForSmallCode] = {};
JXL_RETURN_IF_ERROR(NormalizeCounts(counts.data(), &omit_pos, alphabet_size,
ANS_LOG_TAB_SIZE, shift, &num_symbols,
symbols));
SizeWriter writer;
// Ignore the correctness, no real encoding happens at this stage.
(void)EncodeCounts(counts.data(), alphabet_size, omit_pos, num_symbols, shift,
symbols, &writer);
return writer.size +
EstimateDataBits(histogram, counts.data(), alphabet_size);
}
StatusOr<uint32_t> ComputeBestMethod(
const ANSHistBin* histogram, size_t alphabet_size, float* cost,
HistogramParams::ANSHistogramStrategy ans_histogram_strategy) {
uint32_t method = 0;
JXL_ASSIGN_OR_RETURN(float fcost,
ComputeHistoAndDataCost(histogram, alphabet_size, 0));
auto try_shift = [&](size_t shift) -> Status {
JXL_ASSIGN_OR_RETURN(
float c, ComputeHistoAndDataCost(histogram, alphabet_size, shift + 1));
if (c < fcost) {
method = shift + 1;
fcost = c;
}
return true;
};
switch (ans_histogram_strategy) {
case HistogramParams::ANSHistogramStrategy::kPrecise: {
for (uint32_t shift = 0; shift <= ANS_LOG_TAB_SIZE; shift++) {
JXL_RETURN_IF_ERROR(try_shift(shift));
}
break;
}
case HistogramParams::ANSHistogramStrategy::kApproximate: {
for (uint32_t shift = 0; shift <= ANS_LOG_TAB_SIZE; shift += 2) {
JXL_RETURN_IF_ERROR(try_shift(shift));
}
break;
}
case HistogramParams::ANSHistogramStrategy::kFast: {
JXL_RETURN_IF_ERROR(try_shift(0));
JXL_RETURN_IF_ERROR(try_shift(ANS_LOG_TAB_SIZE / 2));
JXL_RETURN_IF_ERROR(try_shift(ANS_LOG_TAB_SIZE));
break;
}
};
*cost = fcost;
return method;
}
} // namespace
// Returns an estimate of the cost of encoding this histogram and the
// corresponding data.
StatusOr<size_t> BuildAndStoreANSEncodingData(
JxlMemoryManager* memory_manager,
HistogramParams::ANSHistogramStrategy ans_histogram_strategy,
const ANSHistBin* histogram, size_t alphabet_size, size_t log_alpha_size,
bool use_prefix_code, ANSEncSymbolInfo* info, BitWriter* writer) {
if (use_prefix_code) {
size_t cost = 0;
if (alphabet_size <= 1) return 0;
std::vector<uint32_t> histo(alphabet_size);
for (size_t i = 0; i < alphabet_size; i++) {
histo[i] = histogram[i];
JXL_ENSURE(histogram[i] >= 0);
}
{
std::vector<uint8_t> depths(alphabet_size);
std::vector<uint16_t> bits(alphabet_size);
if (writer == nullptr) {
BitWriter tmp_writer{memory_manager};
JXL_RETURN_IF_ERROR(tmp_writer.WithMaxBits(
8 * alphabet_size + 8, // safe upper bound
LayerType::Header, /*aux_out=*/nullptr, [&] {
return BuildAndStoreHuffmanTree(histo.data(), alphabet_size,
depths.data(), bits.data(),
&tmp_writer);
}));
cost = tmp_writer.BitsWritten();
} else {
size_t start = writer->BitsWritten();
JXL_RETURN_IF_ERROR(BuildAndStoreHuffmanTree(
histo.data(), alphabet_size, depths.data(), bits.data(), writer));
cost = writer->BitsWritten() - start;
}
for (size_t i = 0; i < alphabet_size; i++) {
info[i].bits = depths[i] == 0 ? 0 : bits[i];
info[i].depth = depths[i];
}
}
// Estimate data cost.
for (size_t i = 0; i < alphabet_size; i++) {
cost += histogram[i] * info[i].depth;
}
return cost;
}
JXL_ENSURE(alphabet_size <= ANS_TAB_SIZE);
float fcost;
JXL_ASSIGN_OR_RETURN(uint32_t method,
ComputeBestMethod(histogram, alphabet_size, &fcost,
ans_histogram_strategy));
JXL_ENSURE(fcost >= 0);
int num_symbols;
int symbols[kMaxNumSymbolsForSmallCode] = {};
std::vector<ANSHistBin> counts(histogram, histogram + alphabet_size);
if (!counts.empty()) {
size_t sum = 0;
for (int count : counts) {
sum += count;
}
if (sum == 0) {
counts[0] = ANS_TAB_SIZE;
}
}
int omit_pos = 0;
uint32_t shift = method - 1;
if (method == 0) {
JXL_ENSURE(alphabet_size > 0);
counts = CreateFlatHistogram(alphabet_size, ANS_TAB_SIZE);
} else {
JXL_RETURN_IF_ERROR(NormalizeCounts(counts.data(), &omit_pos, alphabet_size,
ANS_LOG_TAB_SIZE, shift, &num_symbols,
symbols));
}
AliasTable::Entry a[ANS_MAX_ALPHABET_SIZE];
JXL_RETURN_IF_ERROR(
InitAliasTable(counts, ANS_LOG_TAB_SIZE, log_alpha_size, a));
ANSBuildInfoTable(counts.data(), a, alphabet_size, log_alpha_size, info);
if (writer != nullptr) {
if (method == 0) {
JXL_ENSURE(alphabet_size > 0);
EncodeFlatHistogram(alphabet_size, writer);
} else {
if (!EncodeCounts(counts.data(), alphabet_size, omit_pos, num_symbols,
method - 1, symbols, writer)) {
return JXL_FAILURE("EncodeCounts failed");
}
}
}
return static_cast<size_t>(fcost);
}
StatusOr<float> ANSPopulationCost(const ANSHistBin* data,
size_t alphabet_size) {
float cost = 0.0f;
JXL_ASSIGN_OR_RETURN(
uint32_t method,
ComputeBestMethod(data, alphabet_size, &cost,
HistogramParams::ANSHistogramStrategy::kFast));
(void)method;
return cost;
}
template <typename Writer>
void EncodeUintConfig(const HybridUintConfig uint_config, Writer* writer,
size_t log_alpha_size) {
writer->Write(CeilLog2Nonzero(log_alpha_size + 1),
uint_config.split_exponent);
if (uint_config.split_exponent == log_alpha_size) {
return; // msb/lsb don't matter.
}
size_t nbits = CeilLog2Nonzero(uint_config.split_exponent + 1);
writer->Write(nbits, uint_config.msb_in_token);
nbits = CeilLog2Nonzero(uint_config.split_exponent -
uint_config.msb_in_token + 1);
writer->Write(nbits, uint_config.lsb_in_token);
}
template <typename Writer>
void EncodeUintConfigs(const std::vector<HybridUintConfig>& uint_config,
Writer* writer, size_t log_alpha_size) {
// TODO(veluca): RLE?
for (const auto& cfg : uint_config) {
EncodeUintConfig(cfg, writer, log_alpha_size);
}
}
template void EncodeUintConfigs(const std::vector<HybridUintConfig>&,
BitWriter*, size_t);
namespace {
Status ChooseUintConfigs(const HistogramParams& params,
const std::vector<std::vector<Token>>& tokens,
const std::vector<uint8_t>& context_map,
std::vector<Histogram>* clustered_histograms,
EntropyEncodingData* codes, size_t* log_alpha_size) {
codes->uint_config.resize(clustered_histograms->size());
if (params.uint_method == HistogramParams::HybridUintMethod::kNone) {
return true;
}
if (params.uint_method == HistogramParams::HybridUintMethod::k000) {
codes->uint_config.clear();
codes->uint_config.resize(clustered_histograms->size(),
HybridUintConfig(0, 0, 0));
return true;
}
if (params.uint_method == HistogramParams::HybridUintMethod::kContextMap) {
codes->uint_config.clear();
codes->uint_config.resize(clustered_histograms->size(),
HybridUintConfig(2, 0, 1));
return true;
}
// If the uint config is adaptive, just stick with the default in streaming
// mode.
if (params.streaming_mode) {
return true;
}
// Brute-force method that tries a few options.
std::vector<HybridUintConfig> configs;
if (params.uint_method == HistogramParams::HybridUintMethod::kBest) {
configs = {
HybridUintConfig(4, 2, 0), // default
HybridUintConfig(4, 1, 0), // less precise
HybridUintConfig(4, 2, 1), // add sign
HybridUintConfig(4, 2, 2), // add sign+parity
HybridUintConfig(4, 1, 2), // add parity but less msb
// Same as above, but more direct coding.
HybridUintConfig(5, 2, 0), HybridUintConfig(5, 1, 0),
HybridUintConfig(5, 2, 1), HybridUintConfig(5, 2, 2),
HybridUintConfig(5, 1, 2),
// Same as above, but less direct coding.
HybridUintConfig(3, 2, 0), HybridUintConfig(3, 1, 0),
HybridUintConfig(3, 2, 1), HybridUintConfig(3, 1, 2),
// For near-lossless.
HybridUintConfig(4, 1, 3), HybridUintConfig(5, 1, 4),
HybridUintConfig(5, 2, 3), HybridUintConfig(6, 1, 5),
HybridUintConfig(6, 2, 4), HybridUintConfig(6, 0, 0),
// Other
HybridUintConfig(0, 0, 0), // varlenuint
HybridUintConfig(2, 0, 1), // works well for ctx map
HybridUintConfig(7, 0, 0), // direct coding
HybridUintConfig(8, 0, 0), // direct coding
HybridUintConfig(9, 0, 0), // direct coding
HybridUintConfig(10, 0, 0), // direct coding
HybridUintConfig(11, 0, 0), // direct coding
HybridUintConfig(12, 0, 0), // direct coding
};
} else if (params.uint_method == HistogramParams::HybridUintMethod::kFast) {
configs = {
HybridUintConfig(4, 2, 0), // default
HybridUintConfig(4, 1, 2), // add parity but less msb
HybridUintConfig(0, 0, 0), // smallest histograms
HybridUintConfig(2, 0, 1), // works well for ctx map
};
}
std::vector<float> costs(clustered_histograms->size(),
std::numeric_limits<float>::max());
std::vector<uint32_t> extra_bits(clustered_histograms->size());
std::vector<uint8_t> is_valid(clustered_histograms->size());
size_t max_alpha =
codes->use_prefix_code ? PREFIX_MAX_ALPHABET_SIZE : ANS_MAX_ALPHABET_SIZE;
for (HybridUintConfig cfg : configs) {
std::fill(is_valid.begin(), is_valid.end(), true);
std::fill(extra_bits.begin(), extra_bits.end(), 0);
for (auto& histo : *clustered_histograms) {
histo.Clear();
}
for (const auto& stream : tokens) {
for (const auto& token : stream) {
// TODO(veluca): do not ignore lz77 commands.
if (token.is_lz77_length) continue;
size_t histo = context_map[token.context];
uint32_t tok, nbits, bits;
cfg.Encode(token.value, &tok, &nbits, &bits);
if (tok >= max_alpha ||
(codes->lz77.enabled && tok >= codes->lz77.min_symbol)) {
is_valid[histo] = JXL_FALSE;
continue;
}
extra_bits[histo] += nbits;
(*clustered_histograms)[histo].Add(tok);
}
}
for (size_t i = 0; i < clustered_histograms->size(); i++) {
if (!is_valid[i]) continue;
JXL_ASSIGN_OR_RETURN(float cost,
(*clustered_histograms)[i].PopulationCost());
cost += extra_bits[i];
// add signaling cost of the hybriduintconfig itself
cost += CeilLog2Nonzero(cfg.split_exponent + 1);
cost += CeilLog2Nonzero(cfg.split_exponent - cfg.msb_in_token + 1);
if (cost < costs[i]) {
codes->uint_config[i] = cfg;
costs[i] = cost;
}
}
}
// Rebuild histograms.
for (auto& histo : *clustered_histograms) {
histo.Clear();
}
*log_alpha_size = 4;
for (const auto& stream : tokens) {
for (const auto& token : stream) {
uint32_t tok, nbits, bits;
size_t histo = context_map[token.context];
(token.is_lz77_length ? codes->lz77.length_uint_config
: codes->uint_config[histo])
.Encode(token.value, &tok, &nbits, &bits);
tok += token.is_lz77_length ? codes->lz77.min_symbol : 0;
(*clustered_histograms)[histo].Add(tok);
while (tok >= (1u << *log_alpha_size)) (*log_alpha_size)++;
}
}
size_t max_log_alpha_size = codes->use_prefix_code ? PREFIX_MAX_BITS : 8;
JXL_ENSURE(*log_alpha_size <= max_log_alpha_size);
return true;
}
Histogram HistogramFromSymbolInfo(
const std::vector<ANSEncSymbolInfo>& encoding_info, bool use_prefix_code) {
Histogram histo;
histo.data_.resize(DivCeil(encoding_info.size(), Histogram::kRounding) *
Histogram::kRounding);
histo.total_count_ = 0;
for (size_t i = 0; i < encoding_info.size(); ++i) {
const ANSEncSymbolInfo& info = encoding_info[i];
int count = use_prefix_code
? (info.depth ? (1u << (PREFIX_MAX_BITS - info.depth)) : 0)
: info.freq_;
histo.data_[i] = count;
histo.total_count_ += count;
}
return histo;
}
class HistogramBuilder {
public:
explicit HistogramBuilder(const size_t num_contexts)
: histograms_(num_contexts) {}
void VisitSymbol(int symbol, size_t histo_idx) {
JXL_DASSERT(histo_idx < histograms_.size());
histograms_[histo_idx].Add(symbol);
}
// NOTE: `layer` is only for clustered_entropy; caller does ReclaimAndCharge.
// Returns cost (in bits).
StatusOr<size_t> BuildAndStoreEntropyCodes(
JxlMemoryManager* memory_manager, const HistogramParams& params,
const std::vector<std::vector<Token>>& tokens, EntropyEncodingData* codes,
std::vector<uint8_t>* context_map, BitWriter* writer, LayerType layer,
AuxOut* aux_out) const {
const size_t prev_histograms = codes->encoding_info.size();
std::vector<Histogram> clustered_histograms;
for (size_t i = 0; i < prev_histograms; ++i) {
clustered_histograms.push_back(HistogramFromSymbolInfo(
codes->encoding_info[i], codes->use_prefix_code));
}
size_t context_offset = context_map->size();
context_map->resize(context_offset + histograms_.size());
if (histograms_.size() > 1) {
if (!ans_fuzzer_friendly_) {
std::vector<uint32_t> histogram_symbols;
JXL_RETURN_IF_ERROR(
ClusterHistograms(params, histograms_, kClustersLimit,
&clustered_histograms, &histogram_symbols));
for (size_t c = 0; c < histograms_.size(); ++c) {
(*context_map)[context_offset + c] =
static_cast<uint8_t>(histogram_symbols[c]);
}
} else {
JXL_ENSURE(codes->encoding_info.empty());
fill(context_map->begin(), context_map->end(), 0);
size_t max_symbol = 0;
for (const Histogram& h : histograms_) {
max_symbol = std::max(h.data_.size(), max_symbol);
}
size_t num_symbols = 1 << CeilLog2Nonzero(max_symbol + 1);
clustered_histograms.resize(1);
clustered_histograms[0].Clear();
for (size_t i = 0; i < num_symbols; i++) {
clustered_histograms[0].Add(i);
}
}
if (writer != nullptr) {
JXL_RETURN_IF_ERROR(EncodeContextMap(
*context_map, clustered_histograms.size(), writer, layer, aux_out));
}
} else {
JXL_ENSURE(codes->encoding_info.empty());
clustered_histograms.push_back(histograms_[0]);
}
if (aux_out != nullptr) {
for (size_t i = prev_histograms; i < clustered_histograms.size(); ++i) {
aux_out->layer(layer).clustered_entropy +=
clustered_histograms[i].ShannonEntropy();
}
}
size_t log_alpha_size = codes->lz77.enabled ? 8 : 7; // Sane default.
if (ans_fuzzer_friendly_) {
codes->uint_config.clear();
codes->uint_config.resize(1, HybridUintConfig(7, 0, 0));
} else {
JXL_RETURN_IF_ERROR(ChooseUintConfigs(params, tokens, *context_map,
&clustered_histograms, codes,
&log_alpha_size));
}
if (log_alpha_size < 5) log_alpha_size = 5;
if (params.streaming_mode) {
// TODO(szabadka) Figure out if we can use lower values here.
log_alpha_size = 8;
}
SizeWriter size_writer; // Used if writer == nullptr to estimate costs.
size_t cost = 1;
if (writer) writer->Write(1, TO_JXL_BOOL(codes->use_prefix_code));
if (codes->use_prefix_code) {
log_alpha_size = PREFIX_MAX_BITS;
} else {
cost += 2;
}
if (writer == nullptr) {
EncodeUintConfigs(codes->uint_config, &size_writer, log_alpha_size);
} else {
if (!codes->use_prefix_code) writer->Write(2, log_alpha_size - 5);
EncodeUintConfigs(codes->uint_config, writer, log_alpha_size);
}
if (codes->use_prefix_code) {
for (const auto& histo : clustered_histograms) {
size_t alphabet_size = histo.alphabet_size();
if (writer) {
StoreVarLenUint16(alphabet_size - 1, writer);
} else {
StoreVarLenUint16(alphabet_size - 1, &size_writer);
}
}
}
cost += size_writer.size;
for (size_t c = prev_histograms; c < clustered_histograms.size(); ++c) {
size_t alphabet_size = clustered_histograms[c].alphabet_size();
codes->encoding_info.emplace_back();
codes->encoding_info.back().resize(alphabet_size);
BitWriter* histo_writer = writer;
if (params.streaming_mode) {
codes->encoded_histograms.emplace_back(memory_manager);
histo_writer = &codes->encoded_histograms.back();
}
const auto& body = [&]() -> Status {
JXL_ASSIGN_OR_RETURN(
size_t ans_cost,
BuildAndStoreANSEncodingData(
memory_manager, params.ans_histogram_strategy,
clustered_histograms[c].data_.data(), alphabet_size,
log_alpha_size, codes->use_prefix_code,
codes->encoding_info.back().data(), histo_writer));
cost += ans_cost;
return true;
};
if (histo_writer) {
JXL_RETURN_IF_ERROR(histo_writer->WithMaxBits(
256 + alphabet_size * 24, layer, aux_out, body,
/*finished_histogram=*/true));
} else {
JXL_RETURN_IF_ERROR(body());
}
if (params.streaming_mode) {
JXL_RETURN_IF_ERROR(writer->AppendUnaligned(*histo_writer));
}
}
return cost;
}
const Histogram& Histo(size_t i) const { return histograms_[i]; }
private:
std::vector<Histogram> histograms_;
};
class SymbolCostEstimator {
public:
SymbolCostEstimator(size_t num_contexts, bool force_huffman,
const std::vector<std::vector<Token>>& tokens,
const LZ77Params& lz77) {
HistogramBuilder builder(num_contexts);
// Build histograms for estimating lz77 savings.
HybridUintConfig uint_config;
for (const auto& stream : tokens) {
for (const auto& token : stream) {
uint32_t tok, nbits, bits;
(token.is_lz77_length ? lz77.length_uint_config : uint_config)
.Encode(token.value, &tok, &nbits, &bits);
tok += token.is_lz77_length ? lz77.min_symbol : 0;
builder.VisitSymbol(tok, token.context);
}
}
max_alphabet_size_ = 0;
for (size_t i = 0; i < num_contexts; i++) {
max_alphabet_size_ =
std::max(max_alphabet_size_, builder.Histo(i).data_.size());
}
bits_.resize(num_contexts * max_alphabet_size_);
// TODO(veluca): SIMD?
add_symbol_cost_.resize(num_contexts);
for (size_t i = 0; i < num_contexts; i++) {
float inv_total = 1.0f / (builder.Histo(i).total_count_ + 1e-8f);
float total_cost = 0;
for (size_t j = 0; j < builder.Histo(i).data_.size(); j++) {
size_t cnt = builder.Histo(i).data_[j];
float cost = 0;
if (cnt != 0 && cnt != builder.Histo(i).total_count_) {
cost = -FastLog2f(cnt * inv_total);
if (force_huffman) cost = std::ceil(cost);
} else if (cnt == 0) {
cost = ANS_LOG_TAB_SIZE; // Highest possible cost.
}
bits_[i * max_alphabet_size_ + j] = cost;
total_cost += cost * builder.Histo(i).data_[j];
}
// Penalty for adding a lz77 symbol to this contest (only used for static
// cost model). Higher penalty for contexts that have a very low
// per-symbol entropy.
add_symbol_cost_[i] = std::max(0.0f, 6.0f - total_cost * inv_total);
}
}
float Bits(size_t ctx, size_t sym) const {
return bits_[ctx * max_alphabet_size_ + sym];
}
float LenCost(size_t ctx, size_t len, const LZ77Params& lz77) const {
uint32_t nbits, bits, tok;
lz77.length_uint_config.Encode(len, &tok, &nbits, &bits);
tok += lz77.min_symbol;
return nbits + Bits(ctx, tok);
}
float DistCost(size_t len, const LZ77Params& lz77) const {
uint32_t nbits, bits, tok;
HybridUintConfig().Encode(len, &tok, &nbits, &bits);
return nbits + Bits(lz77.nonserialized_distance_context, tok);
}
float AddSymbolCost(size_t idx) const { return add_symbol_cost_[idx]; }
private:
size_t max_alphabet_size_;
std::vector<float> bits_;
std::vector<float> add_symbol_cost_;
};
void ApplyLZ77_RLE(const HistogramParams& params, size_t num_contexts,
const std::vector<std::vector<Token>>& tokens,
LZ77Params& lz77,
std::vector<std::vector<Token>>& tokens_lz77) {
// TODO(veluca): tune heuristics here.
SymbolCostEstimator sce(num_contexts, params.force_huffman, tokens, lz77);
float bit_decrease = 0;
size_t total_symbols = 0;
tokens_lz77.resize(tokens.size());
std::vector<float> sym_cost;
HybridUintConfig uint_config;
for (size_t stream = 0; stream < tokens.size(); stream++) {
size_t distance_multiplier =
params.image_widths.size() > stream ? params.image_widths[stream] : 0;
const auto& in = tokens[stream];
auto& out = tokens_lz77[stream];
total_symbols += in.size();
// Cumulative sum of bit costs.
sym_cost.resize(in.size() + 1);
for (size_t i = 0; i < in.size(); i++) {
uint32_t tok, nbits, unused_bits;
uint_config.Encode(in[i].value, &tok, &nbits, &unused_bits);
sym_cost[i + 1] = sce.Bits(in[i].context, tok) + nbits + sym_cost[i];
}
out.reserve(in.size());
for (size_t i = 0; i < in.size(); i++) {
size_t num_to_copy = 0;
size_t distance_symbol = 0; // 1 for RLE.
if (distance_multiplier != 0) {
distance_symbol = 1; // Special distance 1 if enabled.
JXL_DASSERT(kSpecialDistances[1][0] == 1);
JXL_DASSERT(kSpecialDistances[1][1] == 0);
}
if (i > 0) {
for (; i + num_to_copy < in.size(); num_to_copy++) {
if (in[i + num_to_copy].value != in[i - 1].value) {
break;
}
}
}
if (num_to_copy == 0) {
out.push_back(in[i]);
continue;
}
float cost = sym_cost[i + num_to_copy] - sym_cost[i];
// This subtraction might overflow, but that's OK.
size_t lz77_len = num_to_copy - lz77.min_length;
float lz77_cost = num_to_copy >= lz77.min_length
? CeilLog2Nonzero(lz77_len + 1) + 1
: 0;
if (num_to_copy < lz77.min_length || cost <= lz77_cost) {
for (size_t j = 0; j < num_to_copy; j++) {
out.push_back(in[i + j]);
}
i += num_to_copy - 1;
continue;
}
// Output the LZ77 length
out.emplace_back(in[i].context, lz77_len);
out.back().is_lz77_length = true;
i += num_to_copy - 1;
bit_decrease += cost - lz77_cost;
// Output the LZ77 copy distance.
out.emplace_back(lz77.nonserialized_distance_context, distance_symbol);
}
}
if (bit_decrease > total_symbols * 0.2 + 16) {
lz77.enabled = true;
}
}
// Hash chain for LZ77 matching
struct HashChain {
size_t size_;
std::vector<uint32_t> data_;
unsigned hash_num_values_ = 32768;
unsigned hash_mask_ = hash_num_values_ - 1;
unsigned hash_shift_ = 5;
std::vector<int> head;
std::vector<uint32_t> chain;
std::vector<int> val;
// Speed up repetitions of zero
std::vector<int> headz;
std::vector<uint32_t> chainz;
std::vector<uint32_t> zeros;
uint32_t numzeros = 0;
size_t window_size_;
size_t window_mask_;
size_t min_length_;
size_t max_length_;
// Map of special distance codes.
std::unordered_map<int, int> special_dist_table_;
size_t num_special_distances_ = 0;
uint32_t maxchainlength = 256; // window_size_ to allow all
HashChain(const Token* data, size_t size, size_t window_size,
size_t min_length, size_t max_length, size_t distance_multiplier)
: size_(size),
window_size_(window_size),
window_mask_(window_size - 1),
min_length_(min_length),
max_length_(max_length) {
data_.resize(size);
for (size_t i = 0; i < size; i++) {
data_[i] = data[i].value;
}
head.resize(hash_num_values_, -1);
val.resize(window_size_, -1);
chain.resize(window_size_);
for (uint32_t i = 0; i < window_size_; ++i) {
chain[i] = i; // same value as index indicates uninitialized
}
zeros.resize(window_size_);
headz.resize(window_size_ + 1, -1);
chainz.resize(window_size_);
for (uint32_t i = 0; i < window_size_; ++i) {
chainz[i] = i;
}
// Translate distance to special distance code.
if (distance_multiplier) {
// Count down, so if due to small distance multiplier multiple distances
// map to the same code, the smallest code will be used in the end.
for (int i = kNumSpecialDistances - 1; i >= 0; --i) {
special_dist_table_[SpecialDistance(i, distance_multiplier)] = i;
}
num_special_distances_ = kNumSpecialDistances;
}
}
uint32_t GetHash(size_t pos) const {
uint32_t result = 0;
if (pos + 2 < size_) {
// TODO(lode): take the MSB's of the uint32_t values into account as well,
// given that the hash code itself is less than 32 bits.
result ^= static_cast<uint32_t>(data_[pos + 0] << 0u);
result ^= static_cast<uint32_t>(data_[pos + 1] << hash_shift_);
result ^= static_cast<uint32_t>(data_[pos + 2] << (hash_shift_ * 2));
} else {
// No need to compute hash of last 2 bytes, the length 2 is too short.
return 0;
}
return result & hash_mask_;
}
uint32_t CountZeros(size_t pos, uint32_t prevzeros) const {
size_t end = pos + window_size_;
if (end > size_) end = size_;
if (prevzeros > 0) {
if (prevzeros >= window_mask_ && data_[end - 1] == 0 &&
end == pos + window_size_) {
return prevzeros;
} else {
return prevzeros - 1;
}
}
uint32_t num = 0;
while (pos + num < end && data_[pos + num] == 0) num++;
return num;
}
void Update(size_t pos) {
uint32_t hashval = GetHash(pos);
uint32_t wpos = pos & window_mask_;
val[wpos] = static_cast<int>(hashval);
if (head[hashval] != -1) chain[wpos] = head[hashval];
head[hashval] = wpos;
if (pos > 0 && data_[pos] != data_[pos - 1]) numzeros = 0;
numzeros = CountZeros(pos, numzeros);
zeros[wpos] = numzeros;
if (headz[numzeros] != -1) chainz[wpos] = headz[numzeros];
headz[numzeros] = wpos;
}
void Update(size_t pos, size_t len) {
for (size_t i = 0; i < len; i++) {
Update(pos + i);
}
}
template <typename CB>
void FindMatches(size_t pos, int max_dist, const CB& found_match) const {
uint32_t wpos = pos & window_mask_;
uint32_t hashval = GetHash(pos);
uint32_t hashpos = chain[wpos];
int prev_dist = 0;
int end = std::min<int>(pos + max_length_, size_);
uint32_t chainlength = 0;
uint32_t best_len = 0;
for (;;) {
int dist = (hashpos <= wpos) ? (wpos - hashpos)
: (wpos - hashpos + window_mask_ + 1);
if (dist < prev_dist) break;
prev_dist = dist;
uint32_t len = 0;
if (dist > 0) {
int i = pos;
int j = pos - dist;
if (numzeros > 3) {
int r = std::min<int>(numzeros - 1, zeros[hashpos]);
if (i + r >= end) r = end - i - 1;
i += r;
j += r;
}
while (i < end && data_[i] == data_[j]) {
i++;
j++;
}
len = i - pos;
// This can trigger even if the new length is slightly smaller than the
// best length, because it is possible for a slightly cheaper distance
// symbol to occur.
if (len >= min_length_ && len + 2 >= best_len) {
auto it = special_dist_table_.find(dist);
int dist_symbol = (it == special_dist_table_.end())
? (num_special_distances_ + dist - 1)
: it->second;
found_match(len, dist_symbol);
if (len > best_len) best_len = len;
}
}
chainlength++;
if (chainlength >= maxchainlength) break;
if (numzeros >= 3 && len > numzeros) {
if (hashpos == chainz[hashpos]) break;
hashpos = chainz[hashpos];
if (zeros[hashpos] != numzeros) break;
} else {
if (hashpos == chain[hashpos]) break;
hashpos = chain[hashpos];
if (val[hashpos] != static_cast<int>(hashval)) {
// outdated hash value
break;
}
}
}
}
void FindMatch(size_t pos, int max_dist, size_t* result_dist_symbol,
size_t* result_len) const {
*result_dist_symbol = 0;
*result_len = 1;
FindMatches(pos, max_dist, [&](size_t len, size_t dist_symbol) {
if (len > *result_len ||
(len == *result_len && *result_dist_symbol > dist_symbol)) {
*result_len = len;
*result_dist_symbol = dist_symbol;
}
});
}
};
float LenCost(size_t len) {
uint32_t nbits, bits, tok;
HybridUintConfig(1, 0, 0).Encode(len, &tok, &nbits, &bits);
constexpr float kCostTable[] = {
2.797667318563126, 3.213177690381199, 2.5706009246743737,
2.408392498667534, 2.829649191872326, 3.3923087753324577,
4.029267451554331, 4.415576699706408, 4.509357574741465,
9.21481543803004, 10.020590190114898, 11.858671627804766,
12.45853300490526, 11.713105831990857, 12.561996324849314,
13.775477692278367, 13.174027068768641,
};
size_t table_size = sizeof kCostTable / sizeof *kCostTable;
if (tok >= table_size) tok = table_size - 1;
return kCostTable[tok] + nbits;
}
// TODO(veluca): this does not take into account usage or non-usage of distance
// multipliers.
float DistCost(size_t dist) {
uint32_t nbits, bits, tok;
HybridUintConfig(7, 0, 0).Encode(dist, &tok, &nbits, &bits);
constexpr float kCostTable[] = {
6.368282626312716, 5.680793277090298, 8.347404197105247,
7.641619201599141, 6.914328374119438, 7.959808291537444,
8.70023120759855, 8.71378518934703, 9.379132523982769,
9.110472749092708, 9.159029569270908, 9.430936766731973,
7.278284055315169, 7.8278514904267755, 10.026641158289236,
9.976049229827066, 9.64351607048908, 9.563403863480442,
10.171474111762747, 10.45950155077234, 9.994813912104219,
10.322524683741156, 8.465808729388186, 8.756254166066853,
10.160930174662234, 10.247329273413435, 10.04090403724809,
10.129398517544082, 9.342311691539546, 9.07608009102374,
10.104799540677513, 10.378079384990906, 10.165828974075072,
10.337595322341553, 7.940557464567944, 10.575665823319431,
11.023344321751955, 10.736144698831827, 11.118277044595054,
7.468468230648442, 10.738305230932939, 10.906980780216568,
10.163468216353817, 10.17805759656433, 11.167283670483565,
11.147050200274544, 10.517921919244333, 10.651764778156886,
10.17074446448919, 11.217636876224745, 11.261630721139484,
11.403140815247259, 10.892472096873417, 11.1859607804481,
8.017346947551262, 7.895143720278828, 11.036577113822025,
11.170562110315794, 10.326988722591086, 10.40872184751056,
11.213498225466386, 11.30580635516863, 10.672272515665442,
10.768069466228063, 11.145257364153565, 11.64668307145549,
10.593156194627339, 11.207499484844943, 10.767517766396908,
10.826629811407042, 10.737764794499988, 10.6200448518045,
10.191315385198092, 8.468384171390085, 11.731295299170432,
11.824619886654398, 10.41518844301179, 10.16310536548649,
10.539423685097576, 10.495136599328031, 10.469112847728267,
11.72057686174922, 10.910326337834674, 11.378921834673758,
11.847759036098536, 11.92071647623854, 10.810628276345282,
11.008601085273893, 11.910326337834674, 11.949212023423133,
11.298614839104337, 11.611603659010392, 10.472930394619985,
11.835564720850282, 11.523267392285337, 12.01055816679611,
8.413029688994023, 11.895784139536406, 11.984679534970505,
11.220654278717394, 11.716311684833672, 10.61036646226114,
10.89849965960364, 10.203762898863669, 10.997560826267238,
11.484217379438984, 11.792836176993665, 12.24310468755171,
11.464858097919262, 12.212747017409377, 11.425595666074955,
11.572048533398757, 12.742093965163013, 11.381874288645637,
12.191870445817015, 11.683156920035426, 11.152442115262197,
11.90303691580457, 11.653292787169159, 11.938615382266098,
16.970641701570223, 16.853602280380002, 17.26240782594733,
16.644655390108507, 17.14310889757499, 16.910935455445955,
17.505678976959697, 17.213498225466388, 2.4162310293553024,
3.494587244462329, 3.5258600986408344, 3.4959806589517095,
3.098390886949687, 3.343454654302911, 3.588847442290287,
4.14614790111827, 5.152948641990529, 7.433696808092598,
9.716311684833672,
};
size_t table_size = sizeof kCostTable / sizeof *kCostTable;
if (tok >= table_size) tok = table_size - 1;
return kCostTable[tok] + nbits;
}
void ApplyLZ77_LZ77(const HistogramParams& params, size_t num_contexts,
const std::vector<std::vector<Token>>& tokens,
LZ77Params& lz77,
std::vector<std::vector<Token>>& tokens_lz77) {
// TODO(veluca): tune heuristics here.
SymbolCostEstimator sce(num_contexts, params.force_huffman, tokens, lz77);
float bit_decrease = 0;
size_t total_symbols = 0;
tokens_lz77.resize(tokens.size());
HybridUintConfig uint_config;
std::vector<float> sym_cost;
for (size_t stream = 0; stream < tokens.size(); stream++) {
size_t distance_multiplier =
params.image_widths.size() > stream ? params.image_widths[stream] : 0;
const auto& in = tokens[stream];
auto& out = tokens_lz77[stream];
total_symbols += in.size();
// Cumulative sum of bit costs.
sym_cost.resize(in.size() + 1);
for (size_t i = 0; i < in.size(); i++) {
uint32_t tok, nbits, unused_bits;
uint_config.Encode(in[i].value, &tok, &nbits, &unused_bits);
sym_cost[i + 1] = sce.Bits(in[i].context, tok) + nbits + sym_cost[i];
}
out.reserve(in.size());
size_t max_distance = in.size();
size_t min_length = lz77.min_length;
JXL_DASSERT(min_length >= 3);
size_t max_length = in.size();
// Use next power of two as window size.
size_t window_size = 1;
while (window_size < max_distance && window_size < kWindowSize) {
window_size <<= 1;
}
HashChain chain(in.data(), in.size(), window_size, min_length, max_length,
distance_multiplier);
size_t len;
size_t dist_symbol;
const size_t max_lazy_match_len = 256; // 0 to disable lazy matching
// Whether the next symbol was already updated (to test lazy matching)
bool already_updated = false;
for (size_t i = 0; i < in.size(); i++) {
out.push_back(in[i]);
if (!already_updated) chain.Update(i);
already_updated = false;
chain.FindMatch(i, max_distance, &dist_symbol, &len);
if (len >= min_length) {
if (len < max_lazy_match_len && i + 1 < in.size()) {
// Try length at next symbol lazy matching
chain.Update(i + 1);
already_updated = true;
size_t len2, dist_symbol2;
chain.FindMatch(i + 1, max_distance, &dist_symbol2, &len2);
if (len2 > len) {
// Use the lazy match. Add literal, and use the next length starting
// from the next byte.
++i;
already_updated = false;
len = len2;
dist_symbol = dist_symbol2;
out.push_back(in[i]);
}
}
float cost = sym_cost[i + len] - sym_cost[i];
size_t lz77_len = len - lz77.min_length;
float lz77_cost = LenCost(lz77_len) + DistCost(dist_symbol) +
sce.AddSymbolCost(out.back().context);
if (lz77_cost <= cost) {
out.back().value = len - min_length;
out.back().is_lz77_length = true;
out.emplace_back(lz77.nonserialized_distance_context, dist_symbol);
bit_decrease += cost - lz77_cost;
} else {
// LZ77 match ignored, and symbol already pushed. Push all other
// symbols and skip.
for (size_t j = 1; j < len; j++) {
out.push_back(in[i + j]);
}
}
if (already_updated) {
chain.Update(i + 2, len - 2);
already_updated = false;
} else {
chain.Update(i + 1, len - 1);
}
i += len - 1;
} else {
// Literal, already pushed
}
}
}
if (bit_decrease > total_symbols * 0.2 + 16) {
lz77.enabled = true;
}
}
void ApplyLZ77_Optimal(const HistogramParams& params, size_t num_contexts,
const std::vector<std::vector<Token>>& tokens,
LZ77Params& lz77,
std::vector<std::vector<Token>>& tokens_lz77) {
std::vector<std::vector<Token>> tokens_for_cost_estimate;
ApplyLZ77_LZ77(params, num_contexts, tokens, lz77, tokens_for_cost_estimate);
// If greedy-LZ77 does not give better compression than no-lz77, no reason to
// run the optimal matching.
if (!lz77.enabled) return;
SymbolCostEstimator sce(num_contexts + 1, params.force_huffman,
tokens_for_cost_estimate, lz77);
tokens_lz77.resize(tokens.size());
HybridUintConfig uint_config;
std::vector<float> sym_cost;
std::vector<uint32_t> dist_symbols;
for (size_t stream = 0; stream < tokens.size(); stream++) {
size_t distance_multiplier =
params.image_widths.size() > stream ? params.image_widths[stream] : 0;
const auto& in = tokens[stream];
auto& out = tokens_lz77[stream];
// Cumulative sum of bit costs.
sym_cost.resize(in.size() + 1);
for (size_t i = 0; i < in.size(); i++) {
uint32_t tok, nbits, unused_bits;
uint_config.Encode(in[i].value, &tok, &nbits, &unused_bits);
sym_cost[i + 1] = sce.Bits(in[i].context, tok) + nbits + sym_cost[i];
}
out.reserve(in.size());
size_t max_distance = in.size();
size_t min_length = lz77.min_length;
JXL_DASSERT(min_length >= 3);
size_t max_length = in.size();
// Use next power of two as window size.
size_t window_size = 1;
while (window_size < max_distance && window_size < kWindowSize) {
window_size <<= 1;
}
HashChain chain(in.data(), in.size(), window_size, min_length, max_length,
distance_multiplier);
struct MatchInfo {
uint32_t len;
uint32_t dist_symbol;
uint32_t ctx;
float total_cost = std::numeric_limits<float>::max();
};
// Total cost to encode the first N symbols.
std::vector<MatchInfo> prefix_costs(in.size() + 1);
prefix_costs[0].total_cost = 0;
size_t rle_length = 0;
size_t skip_lz77 = 0;
for (size_t i = 0; i < in.size(); i++) {
chain.Update(i);
float lit_cost =
prefix_costs[i].total_cost + sym_cost[i + 1] - sym_cost[i];
if (prefix_costs[i + 1].total_cost > lit_cost) {
prefix_costs[i + 1].dist_symbol = 0;
prefix_costs[i + 1].len = 1;
prefix_costs[i + 1].ctx = in[i].context;
prefix_costs[i + 1].total_cost = lit_cost;
}
if (skip_lz77 > 0) {
skip_lz77--;
continue;
}
dist_symbols.clear();
chain.FindMatches(i, max_distance,
[&dist_symbols](size_t len, size_t dist_symbol) {
if (dist_symbols.size() <= len) {
dist_symbols.resize(len + 1, dist_symbol);
}
if (dist_symbol < dist_symbols[len]) {
dist_symbols[len] = dist_symbol;
}
});
if (dist_symbols.size() <= min_length) continue;
{
size_t best_cost = dist_symbols.back();
for (size_t j = dist_symbols.size() - 1; j >= min_length; j--) {
if (dist_symbols[j] < best_cost) {
best_cost = dist_symbols[j];
}
dist_symbols[j] = best_cost;
}
}
for (size_t j = min_length; j < dist_symbols.size(); j++) {
// Cost model that uses results from lazy LZ77.
float lz77_cost = sce.LenCost(in[i].context, j - min_length, lz77) +
sce.DistCost(dist_symbols[j], lz77);
float cost = prefix_costs[i].total_cost + lz77_cost;
if (prefix_costs[i + j].total_cost > cost) {
prefix_costs[i + j].len = j;
prefix_costs[i + j].dist_symbol = dist_symbols[j] + 1;
prefix_costs[i + j].ctx = in[i].context;
prefix_costs[i + j].total_cost = cost;
}
}
// We are in a RLE sequence: skip all the symbols except the first 8 and
// the last 8. This avoid quadratic costs for sequences with long runs of
// the same symbol.
if ((dist_symbols.back() == 0 && distance_multiplier == 0) ||
(dist_symbols.back() == 1 && distance_multiplier != 0)) {
rle_length++;
} else {
rle_length = 0;
}
if (rle_length >= 8 && dist_symbols.size() > 9) {
skip_lz77 = dist_symbols.size() - 10;
rle_length = 0;
}
}
size_t pos = in.size();
while (pos > 0) {
bool is_lz77_length = prefix_costs[pos].dist_symbol != 0;
if (is_lz77_length) {
size_t dist_symbol = prefix_costs[pos].dist_symbol - 1;
out.emplace_back(lz77.nonserialized_distance_context, dist_symbol);
}
size_t val = is_lz77_length ? prefix_costs[pos].len - min_length
: in[pos - 1].value;
out.emplace_back(prefix_costs[pos].ctx, val);
out.back().is_lz77_length = is_lz77_length;
pos -= prefix_costs[pos].len;
}
std::reverse(out.begin(), out.end());
}
}
void ApplyLZ77(const HistogramParams& params, size_t num_contexts,
const std::vector<std::vector<Token>>& tokens, LZ77Params& lz77,
std::vector<std::vector<Token>>& tokens_lz77) {
if (params.initialize_global_state) {
lz77.enabled = false;
}
if (params.force_huffman) {
lz77.min_symbol = std::min(PREFIX_MAX_ALPHABET_SIZE - 32, 512);
} else {
lz77.min_symbol = 224;
}
switch (params.lz77_method) {
case HistogramParams::LZ77Method::kNone:
return;
case HistogramParams::LZ77Method::kRLE:
ApplyLZ77_RLE(params, num_contexts, tokens, lz77, tokens_lz77);
return;
case HistogramParams::LZ77Method::kLZ77:
ApplyLZ77_LZ77(params, num_contexts, tokens, lz77, tokens_lz77);
return;
case HistogramParams::LZ77Method::kOptimal:
ApplyLZ77_Optimal(params, num_contexts, tokens, lz77, tokens_lz77);
return;
}
}
} // namespace
Status EncodeHistograms(const std::vector<uint8_t>& context_map,
const EntropyEncodingData& codes, BitWriter* writer,
LayerType layer, AuxOut* aux_out) {
return writer->WithMaxBits(
128 + kClustersLimit * 136, layer, aux_out,
[&]() -> Status {
JXL_RETURN_IF_ERROR(Bundle::Write(codes.lz77, writer, layer, aux_out));
if (codes.lz77.enabled) {
EncodeUintConfig(codes.lz77.length_uint_config, writer,
/*log_alpha_size=*/8);
}
JXL_RETURN_IF_ERROR(EncodeContextMap(
context_map, codes.encoding_info.size(), writer, layer, aux_out));
writer->Write(1, TO_JXL_BOOL(codes.use_prefix_code));
size_t log_alpha_size = 8;
if (codes.use_prefix_code) {
log_alpha_size = PREFIX_MAX_BITS;
} else {
log_alpha_size = 8; // streaming_mode
writer->Write(2, log_alpha_size - 5);
}
EncodeUintConfigs(codes.uint_config, writer, log_alpha_size);
if (codes.use_prefix_code) {
for (const auto& info : codes.encoding_info) {
StoreVarLenUint16(info.size() - 1, writer);
}
}
for (const auto& histo_writer : codes.encoded_histograms) {
JXL_RETURN_IF_ERROR(writer->AppendUnaligned(histo_writer));
}
return true;
},
/*finished_histogram=*/true);
}
StatusOr<size_t> BuildAndEncodeHistograms(
JxlMemoryManager* memory_manager, const HistogramParams& params,
size_t num_contexts, std::vector<std::vector<Token>>& tokens,
EntropyEncodingData* codes, std::vector<uint8_t>* context_map,
BitWriter* writer, LayerType layer, AuxOut* aux_out) {
size_t cost = 0;
codes->lz77.nonserialized_distance_context = num_contexts;
std::vector<std::vector<Token>> tokens_lz77;
ApplyLZ77(params, num_contexts, tokens, codes->lz77, tokens_lz77);
if (ans_fuzzer_friendly_) {
codes->lz77.length_uint_config = HybridUintConfig(10, 0, 0);
codes->lz77.min_symbol = 2048;
}
const size_t max_contexts = std::min(num_contexts, kClustersLimit);
const auto& body = [&]() -> Status {
if (writer) {
JXL_RETURN_IF_ERROR(Bundle::Write(codes->lz77, writer, layer, aux_out));
} else {
size_t ebits, bits;
JXL_RETURN_IF_ERROR(Bundle::CanEncode(codes->lz77, &ebits, &bits));
cost += bits;
}
if (codes->lz77.enabled) {
if (writer) {
size_t b = writer->BitsWritten();
EncodeUintConfig(codes->lz77.length_uint_config, writer,
/*log_alpha_size=*/8);
cost += writer->BitsWritten() - b;
} else {
SizeWriter size_writer;
EncodeUintConfig(codes->lz77.length_uint_config, &size_writer,
/*log_alpha_size=*/8);
cost += size_writer.size;
}
num_contexts += 1;
tokens = std::move(tokens_lz77);
}
size_t total_tokens = 0;
// Build histograms.
HistogramBuilder builder(num_contexts);
HybridUintConfig uint_config; // Default config for clustering.
// Unless we are using the kContextMap histogram option.
if (params.uint_method == HistogramParams::HybridUintMethod::kContextMap) {
uint_config = HybridUintConfig(2, 0, 1);
}
if (params.uint_method == HistogramParams::HybridUintMethod::k000) {
uint_config = HybridUintConfig(0, 0, 0);
}
if (ans_fuzzer_friendly_) {
uint_config = HybridUintConfig(10, 0, 0);
}
for (const auto& stream : tokens) {
if (codes->lz77.enabled) {
for (const auto& token : stream) {
total_tokens++;
uint32_t tok, nbits, bits;
(token.is_lz77_length ? codes->lz77.length_uint_config : uint_config)
.Encode(token.value, &tok, &nbits, &bits);
tok += token.is_lz77_length ? codes->lz77.min_symbol : 0;
builder.VisitSymbol(tok, token.context);
}
} else if (num_contexts == 1) {
for (const auto& token : stream) {
total_tokens++;
uint32_t tok, nbits, bits;
uint_config.Encode(token.value, &tok, &nbits, &bits);
builder.VisitSymbol(tok, /*token.context=*/0);
}
} else {
for (const auto& token : stream) {
total_tokens++;
uint32_t tok, nbits, bits;
uint_config.Encode(token.value, &tok, &nbits, &bits);
builder.VisitSymbol(tok, token.context);
}
}
}
if (params.add_missing_symbols) {
for (size_t c = 0; c < num_contexts; ++c) {
for (int symbol = 0; symbol < ANS_MAX_ALPHABET_SIZE; ++symbol) {
builder.VisitSymbol(symbol, c);
}
}
}
if (params.initialize_global_state) {
bool use_prefix_code =
params.force_huffman || total_tokens < 100 ||
params.clustering == HistogramParams::ClusteringType::kFastest ||
ans_fuzzer_friendly_;
if (!use_prefix_code) {
bool all_singleton = true;
for (size_t i = 0; i < num_contexts; i++) {
if (builder.Histo(i).ShannonEntropy() >= 1e-5) {
all_singleton = false;
}
}
if (all_singleton) {
use_prefix_code = true;
}
}
codes->use_prefix_code = use_prefix_code;
}
if (params.add_fixed_histograms) {
// TODO(szabadka) Add more fixed histograms.
// TODO(szabadka) Reduce alphabet size by choosing a non-default
// uint_config.
const size_t alphabet_size = ANS_MAX_ALPHABET_SIZE;
const size_t log_alpha_size = 8;
JXL_ENSURE(alphabet_size == 1u << log_alpha_size);
static_assert(ANS_MAX_ALPHABET_SIZE <= ANS_TAB_SIZE);
std::vector<int32_t> counts =
CreateFlatHistogram(alphabet_size, ANS_TAB_SIZE);
codes->encoding_info.emplace_back();
codes->encoding_info.back().resize(alphabet_size);
codes->encoded_histograms.emplace_back(memory_manager);
BitWriter* histo_writer = &codes->encoded_histograms.back();
JXL_RETURN_IF_ERROR(histo_writer->WithMaxBits(
256 + alphabet_size * 24, LayerType::Header, nullptr,
[&]() -> Status {
JXL_ASSIGN_OR_RETURN(
size_t ans_cost,
BuildAndStoreANSEncodingData(
memory_manager, params.ans_histogram_strategy,
counts.data(), alphabet_size, log_alpha_size,
codes->use_prefix_code, codes->encoding_info.back().data(),
histo_writer));
(void)ans_cost;
return true;
}));
}
// Encode histograms.
JXL_ASSIGN_OR_RETURN(
size_t entropy_bits,
builder.BuildAndStoreEntropyCodes(memory_manager, params, tokens, codes,
context_map, writer, layer, aux_out));
cost += entropy_bits;
return true;
};
if (writer) {
JXL_RETURN_IF_ERROR(writer->WithMaxBits(
128 + num_contexts * 40 + max_contexts * 96, layer, aux_out, body,
/*finished_histogram=*/true));
} else {
JXL_RETURN_IF_ERROR(body());
}
if (aux_out != nullptr) {
aux_out->layer(layer).num_clustered_histograms +=
codes->encoding_info.size();
}
return cost;
}
size_t WriteTokens(const std::vector<Token>& tokens,
const EntropyEncodingData& codes,
const std::vector<uint8_t>& context_map,
size_t context_offset, BitWriter* writer) {
size_t num_extra_bits = 0;
if (codes.use_prefix_code) {
for (const auto& token : tokens) {
uint32_t tok, nbits, bits;
size_t histo = context_map[context_offset + token.context];
(token.is_lz77_length ? codes.lz77.length_uint_config
: codes.uint_config[histo])
.Encode(token.value, &tok, &nbits, &bits);
tok += token.is_lz77_length ? codes.lz77.min_symbol : 0;
// Combine two calls to the BitWriter. Equivalent to:
// writer->Write(codes.encoding_info[histo][tok].depth,
// codes.encoding_info[histo][tok].bits);
// writer->Write(nbits, bits);
uint64_t data = codes.encoding_info[histo][tok].bits;
data |= static_cast<uint64_t>(bits)
<< codes.encoding_info[histo][tok].depth;
writer->Write(codes.encoding_info[histo][tok].depth + nbits, data);
num_extra_bits += nbits;
}
return num_extra_bits;
}
std::vector<uint64_t> out;
std::vector<uint8_t> out_nbits;
out.reserve(tokens.size());
out_nbits.reserve(tokens.size());
uint64_t allbits = 0;
size_t numallbits = 0;
// Writes in *reversed* order.
auto addbits = [&](size_t bits, size_t nbits) {
if (JXL_UNLIKELY(nbits)) {
JXL_DASSERT(bits >> nbits == 0);
if (JXL_UNLIKELY(numallbits + nbits > BitWriter::kMaxBitsPerCall)) {
out.push_back(allbits);
out_nbits.push_back(numallbits);
numallbits = allbits = 0;
}
allbits <<= nbits;
allbits |= bits;
numallbits += nbits;
}
};
const int end = tokens.size();
ANSCoder ans;
if (codes.lz77.enabled || context_map.size() > 1) {
for (int i = end - 1; i >= 0; --i) {
const Token token = tokens[i];
const uint8_t histo = context_map[context_offset + token.context];
uint32_t tok, nbits, bits;
(token.is_lz77_length ? codes.lz77.length_uint_config
: codes.uint_config[histo])
.Encode(tokens[i].value, &tok, &nbits, &bits);
tok += token.is_lz77_length ? codes.lz77.min_symbol : 0;
const ANSEncSymbolInfo& info = codes.encoding_info[histo][tok];
JXL_DASSERT(info.freq_ > 0);
// Extra bits first as this is reversed.
addbits(bits, nbits);
num_extra_bits += nbits;
uint8_t ans_nbits = 0;
uint32_t ans_bits = ans.PutSymbol(info, &ans_nbits);
addbits(ans_bits, ans_nbits);
}
} else {
for (int i = end - 1; i >= 0; --i) {
uint32_t tok, nbits, bits;
codes.uint_config[0].Encode(tokens[i].value, &tok, &nbits, &bits);
const ANSEncSymbolInfo& info = codes.encoding_info[0][tok];
// Extra bits first as this is reversed.
addbits(bits, nbits);
num_extra_bits += nbits;
uint8_t ans_nbits = 0;
uint32_t ans_bits = ans.PutSymbol(info, &ans_nbits);
addbits(ans_bits, ans_nbits);
}
}
const uint32_t state = ans.GetState();
writer->Write(32, state);
writer->Write(numallbits, allbits);
for (int i = out.size(); i > 0; --i) {
writer->Write(out_nbits[i - 1], out[i - 1]);
}
return num_extra_bits;
}
Status WriteTokens(const std::vector<Token>& tokens,
const EntropyEncodingData& codes,
const std::vector<uint8_t>& context_map,
size_t context_offset, BitWriter* writer, LayerType layer,
AuxOut* aux_out) {
// Theoretically, we could have 15 prefix code bits + 31 extra bits.
return writer->WithMaxBits(
46 * tokens.size() + 32 * 1024 * 4, layer, aux_out, [&] {
size_t num_extra_bits =
WriteTokens(tokens, codes, context_map, context_offset, writer);
if (aux_out != nullptr) {
aux_out->layer(layer).extra_bits += num_extra_bits;
}
return true;
});
}
void SetANSFuzzerFriendly(bool ans_fuzzer_friendly) {
#if JXL_IS_DEBUG_BUILD // Guard against accidental / malicious changes.
ans_fuzzer_friendly_ = ans_fuzzer_friendly;
#endif
}
HistogramParams HistogramParams::ForModular(
const CompressParams& cparams,
const std::vector<uint8_t>& extra_dc_precision, bool streaming_mode) {
HistogramParams params;
params.streaming_mode = streaming_mode;
if (cparams.speed_tier > SpeedTier::kKitten) {
params.clustering = HistogramParams::ClusteringType::kFast;
params.ans_histogram_strategy =
cparams.speed_tier > SpeedTier::kThunder
? HistogramParams::ANSHistogramStrategy::kFast
: HistogramParams::ANSHistogramStrategy::kApproximate;
params.lz77_method =
cparams.decoding_speed_tier >= 3 && cparams.modular_mode
? (cparams.speed_tier >= SpeedTier::kFalcon
? HistogramParams::LZ77Method::kRLE
: HistogramParams::LZ77Method::kLZ77)
: HistogramParams::LZ77Method::kNone;
// Near-lossless DC, as well as modular mode, require choosing hybrid uint
// more carefully.
if ((!extra_dc_precision.empty() && extra_dc_precision[0] != 0) ||
(cparams.modular_mode && cparams.speed_tier < SpeedTier::kCheetah)) {
params.uint_method = HistogramParams::HybridUintMethod::kFast;
} else {
params.uint_method = HistogramParams::HybridUintMethod::kNone;
}
} else if (cparams.speed_tier <= SpeedTier::kTortoise) {
params.lz77_method = HistogramParams::LZ77Method::kOptimal;
} else {
params.lz77_method = HistogramParams::LZ77Method::kLZ77;
}
if (cparams.decoding_speed_tier >= 1) {
params.max_histograms = 12;
}
if (cparams.decoding_speed_tier >= 1 && cparams.responsive) {
params.lz77_method = cparams.speed_tier >= SpeedTier::kCheetah
? HistogramParams::LZ77Method::kRLE
: cparams.speed_tier >= SpeedTier::kKitten
? HistogramParams::LZ77Method::kLZ77
: HistogramParams::LZ77Method::kOptimal;
}
if (cparams.decoding_speed_tier >= 2 && cparams.responsive) {
params.uint_method = HistogramParams::HybridUintMethod::k000;
params.force_huffman = true;
}
return params;
}
} // namespace jxl