Source code
Revision control
Copy as Markdown
Other Tools
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/dec_xyb.h"
#include <cstring>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/dec_xyb.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/matrix_ops.h"
#include "lib/jxl/base/rect.h"
#include "lib/jxl/base/sanitizers.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/cms/jxl_cms_internal.h"
#include "lib/jxl/cms/opsin_params.h"
#include "lib/jxl/color_encoding_internal.h"
#include "lib/jxl/dec_xyb-inl.h"
#include "lib/jxl/image.h"
#include "lib/jxl/opsin_params.h"
#include "lib/jxl/quantizer.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::MulAdd;
Status OpsinToLinearInplace(Image3F* JXL_RESTRICT inout, ThreadPool* pool,
const OpsinParams& opsin_params) {
JXL_CHECK_IMAGE_INITIALIZED(*inout, Rect(*inout));
const size_t xsize = inout->xsize(); // not padded
const auto process_row = [&](const uint32_t task,
size_t /* thread */) -> Status {
const size_t y = task;
// Faster than adding via ByteOffset at end of loop.
float* JXL_RESTRICT row0 = inout->PlaneRow(0, y);
float* JXL_RESTRICT row1 = inout->PlaneRow(1, y);
float* JXL_RESTRICT row2 = inout->PlaneRow(2, y);
const HWY_FULL(float) d;
for (size_t x = 0; x < xsize; x += Lanes(d)) {
const auto in_opsin_x = Load(d, row0 + x);
const auto in_opsin_y = Load(d, row1 + x);
const auto in_opsin_b = Load(d, row2 + x);
auto linear_r = Undefined(d);
auto linear_g = Undefined(d);
auto linear_b = Undefined(d);
XybToRgb(d, in_opsin_x, in_opsin_y, in_opsin_b, opsin_params, &linear_r,
&linear_g, &linear_b);
Store(linear_r, d, row0 + x);
Store(linear_g, d, row1 + x);
Store(linear_b, d, row2 + x);
}
return true;
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, inout->ysize(), ThreadPool::NoInit,
process_row, "OpsinToLinear"));
return true;
}
// Same, but not in-place.
Status OpsinToLinear(const Image3F& opsin, const Rect& rect, ThreadPool* pool,
Image3F* JXL_RESTRICT linear,
const OpsinParams& opsin_params) {
JXL_ENSURE(SameSize(rect, *linear));
JXL_CHECK_IMAGE_INITIALIZED(opsin, rect);
const auto process_row = [&](const uint32_t task,
size_t /*thread*/) -> Status {
const size_t y = static_cast<size_t>(task);
// Faster than adding via ByteOffset at end of loop.
const float* JXL_RESTRICT row_opsin_0 = rect.ConstPlaneRow(opsin, 0, y);
const float* JXL_RESTRICT row_opsin_1 = rect.ConstPlaneRow(opsin, 1, y);
const float* JXL_RESTRICT row_opsin_2 = rect.ConstPlaneRow(opsin, 2, y);
float* JXL_RESTRICT row_linear_0 = linear->PlaneRow(0, y);
float* JXL_RESTRICT row_linear_1 = linear->PlaneRow(1, y);
float* JXL_RESTRICT row_linear_2 = linear->PlaneRow(2, y);
const HWY_FULL(float) d;
for (size_t x = 0; x < rect.xsize(); x += Lanes(d)) {
const auto in_opsin_x = Load(d, row_opsin_0 + x);
const auto in_opsin_y = Load(d, row_opsin_1 + x);
const auto in_opsin_b = Load(d, row_opsin_2 + x);
auto linear_r = Undefined(d);
auto linear_g = Undefined(d);
auto linear_b = Undefined(d);
XybToRgb(d, in_opsin_x, in_opsin_y, in_opsin_b, opsin_params, &linear_r,
&linear_g, &linear_b);
Store(linear_r, d, row_linear_0 + x);
Store(linear_g, d, row_linear_1 + x);
Store(linear_b, d, row_linear_2 + x);
}
return true;
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, static_cast<int>(rect.ysize()),
ThreadPool::NoInit, process_row,
"OpsinToLinear(Rect)"));
JXL_CHECK_IMAGE_INITIALIZED(*linear, rect);
return true;
}
// Transform YCbCr to RGB.
// Could be performed in-place (i.e. Y, Cb and Cr could alias R, B and B).
void YcbcrToRgb(const Image3F& ycbcr, Image3F* rgb, const Rect& rect) {
JXL_CHECK_IMAGE_INITIALIZED(ycbcr, rect);
const HWY_CAPPED(float, kBlockDim) df;
const size_t S = Lanes(df); // Step.
const size_t xsize = rect.xsize();
const size_t ysize = rect.ysize();
if ((xsize == 0) || (ysize == 0)) return;
// Full-range BT.601 as defined by JFIF Clause 7:
const auto c128 = Set(df, 128.0f / 255);
const auto crcr = Set(df, 1.402f);
const auto cgcb = Set(df, -0.114f * 1.772f / 0.587f);
const auto cgcr = Set(df, -0.299f * 1.402f / 0.587f);
const auto cbcb = Set(df, 1.772f);
for (size_t y = 0; y < ysize; y++) {
const float* y_row = rect.ConstPlaneRow(ycbcr, 1, y);
const float* cb_row = rect.ConstPlaneRow(ycbcr, 0, y);
const float* cr_row = rect.ConstPlaneRow(ycbcr, 2, y);
float* r_row = rect.PlaneRow(rgb, 0, y);
float* g_row = rect.PlaneRow(rgb, 1, y);
float* b_row = rect.PlaneRow(rgb, 2, y);
for (size_t x = 0; x < xsize; x += S) {
const auto y_vec = Add(Load(df, y_row + x), c128);
const auto cb_vec = Load(df, cb_row + x);
const auto cr_vec = Load(df, cr_row + x);
const auto r_vec = MulAdd(crcr, cr_vec, y_vec);
const auto g_vec = MulAdd(cgcr, cr_vec, MulAdd(cgcb, cb_vec, y_vec));
const auto b_vec = MulAdd(cbcb, cb_vec, y_vec);
Store(r_vec, df, r_row + x);
Store(g_vec, df, g_row + x);
Store(b_vec, df, b_row + x);
}
}
JXL_CHECK_IMAGE_INITIALIZED(*rgb, rect);
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(OpsinToLinearInplace);
Status OpsinToLinearInplace(Image3F* JXL_RESTRICT inout, ThreadPool* pool,
const OpsinParams& opsin_params) {
return HWY_DYNAMIC_DISPATCH(OpsinToLinearInplace)(inout, pool, opsin_params);
}
HWY_EXPORT(OpsinToLinear);
Status OpsinToLinear(const Image3F& opsin, const Rect& rect, ThreadPool* pool,
Image3F* JXL_RESTRICT linear,
const OpsinParams& opsin_params) {
return HWY_DYNAMIC_DISPATCH(OpsinToLinear)(opsin, rect, pool, linear,
opsin_params);
}
HWY_EXPORT(YcbcrToRgb);
void YcbcrToRgb(const Image3F& ycbcr, Image3F* rgb, const Rect& rect) {
HWY_DYNAMIC_DISPATCH(YcbcrToRgb)(ycbcr, rgb, rect);
}
HWY_EXPORT(HasFastXYBTosRGB8);
bool HasFastXYBTosRGB8() { return HWY_DYNAMIC_DISPATCH(HasFastXYBTosRGB8)(); }
HWY_EXPORT(FastXYBTosRGB8);
Status FastXYBTosRGB8(const float* input[4], uint8_t* output, bool is_rgba,
size_t xsize) {
return HWY_DYNAMIC_DISPATCH(FastXYBTosRGB8)(input, output, is_rgba, xsize);
}
void OpsinParams::Init(float intensity_target) {
InitSIMDInverseMatrix(GetOpsinAbsorbanceInverseMatrix(), inverse_opsin_matrix,
intensity_target);
memcpy(opsin_biases, jxl::cms::kNegOpsinAbsorbanceBiasRGB.data(),
sizeof(jxl::cms::kNegOpsinAbsorbanceBiasRGB));
memcpy(quant_biases, kDefaultQuantBias, sizeof(kDefaultQuantBias));
for (size_t c = 0; c < 4; c++) {
opsin_biases_cbrt[c] = cbrtf(opsin_biases[c]);
}
}
bool CanOutputToColorEncoding(const ColorEncoding& c_desired) {
if (!c_desired.HaveFields()) {
return false;
}
// TODO(veluca): keep in sync with dec_reconstruct.cc
const auto& tf = c_desired.Tf();
if (!tf.IsPQ() && !tf.IsSRGB() && !tf.have_gamma && !tf.IsLinear() &&
!tf.IsHLG() && !tf.IsDCI() && !tf.Is709()) {
return false;
}
if (c_desired.IsGray() && c_desired.GetWhitePointType() != WhitePoint::kD65) {
// TODO(veluca): figure out what should happen here.
return false;
}
return true;
}
Status OutputEncodingInfo::SetFromMetadata(const CodecMetadata& metadata) {
orig_color_encoding = metadata.m.color_encoding;
orig_intensity_target = metadata.m.IntensityTarget();
desired_intensity_target = orig_intensity_target;
const auto& im = metadata.transform_data.opsin_inverse_matrix;
orig_inverse_matrix = im.inverse_matrix;
default_transform = im.all_default;
xyb_encoded = metadata.m.xyb_encoded;
std::copy(std::begin(im.opsin_biases), std::end(im.opsin_biases),
opsin_params.opsin_biases);
for (int i = 0; i < 3; ++i) {
opsin_params.opsin_biases_cbrt[i] = cbrtf(opsin_params.opsin_biases[i]);
}
opsin_params.opsin_biases_cbrt[3] = opsin_params.opsin_biases[3] = 1;
std::copy(std::begin(im.quant_biases), std::end(im.quant_biases),
opsin_params.quant_biases);
bool orig_ok = CanOutputToColorEncoding(orig_color_encoding);
bool orig_grey = orig_color_encoding.IsGray();
return SetColorEncoding(!xyb_encoded || orig_ok
? orig_color_encoding
: ColorEncoding::LinearSRGB(orig_grey));
}
Status OutputEncodingInfo::MaybeSetColorEncoding(
const ColorEncoding& c_desired) {
if (c_desired.GetColorSpace() == ColorSpace::kXYB &&
((color_encoding.GetColorSpace() == ColorSpace::kRGB &&
color_encoding.GetPrimariesType() != Primaries::kSRGB) ||
color_encoding.Tf().IsPQ())) {
return false;
}
if (!xyb_encoded && !CanOutputToColorEncoding(c_desired)) {
return false;
}
return SetColorEncoding(c_desired);
}
Status OutputEncodingInfo::SetColorEncoding(const ColorEncoding& c_desired) {
color_encoding = c_desired;
linear_color_encoding = color_encoding;
linear_color_encoding.Tf().SetTransferFunction(TransferFunction::kLinear);
color_encoding_is_original = orig_color_encoding.SameColorEncoding(c_desired);
// Compute the opsin inverse matrix and luminances based on primaries and
// white point.
Matrix3x3 inverse_matrix;
bool inverse_matrix_is_default = default_transform;
inverse_matrix = orig_inverse_matrix;
constexpr Vector3 kSRGBLuminances{0.2126, 0.7152, 0.0722};
luminances = kSRGBLuminances;
if ((c_desired.GetPrimariesType() != Primaries::kSRGB ||
c_desired.GetWhitePointType() != WhitePoint::kD65) &&
!c_desired.IsGray()) {
Matrix3x3 srgb_to_xyzd50;
const auto& srgb = ColorEncoding::SRGB(/*is_gray=*/false);
PrimariesCIExy p;
JXL_RETURN_IF_ERROR(srgb.GetPrimaries(p));
CIExy w = srgb.GetWhitePoint();
JXL_RETURN_IF_ERROR(PrimariesToXYZD50(p.r.x, p.r.y, p.g.x, p.g.y, p.b.x,
p.b.y, w.x, w.y, srgb_to_xyzd50));
Matrix3x3 original_to_xyz;
JXL_RETURN_IF_ERROR(c_desired.GetPrimaries(p));
w = c_desired.GetWhitePoint();
if (!PrimariesToXYZ(p.r.x, p.r.y, p.g.x, p.g.y, p.b.x, p.b.y, w.x, w.y,
original_to_xyz)) {
return JXL_FAILURE("PrimariesToXYZ failed");
}
luminances = original_to_xyz[1];
if (xyb_encoded) {
Matrix3x3 adapt_to_d50;
if (!AdaptToXYZD50(c_desired.GetWhitePoint().x,
c_desired.GetWhitePoint().y, adapt_to_d50)) {
return JXL_FAILURE("AdaptToXYZD50 failed");
}
Matrix3x3 xyzd50_to_original;
Mul3x3Matrix(adapt_to_d50, original_to_xyz, xyzd50_to_original);
JXL_RETURN_IF_ERROR(Inv3x3Matrix(xyzd50_to_original));
Matrix3x3 srgb_to_original;
Mul3x3Matrix(xyzd50_to_original, srgb_to_xyzd50, srgb_to_original);
Mul3x3Matrix(srgb_to_original, orig_inverse_matrix, inverse_matrix);
inverse_matrix_is_default = false;
}
}
if (c_desired.IsGray()) {
Matrix3x3 tmp_inv_matrix = inverse_matrix;
Matrix3x3 srgb_to_luma{luminances, luminances, luminances};
Mul3x3Matrix(srgb_to_luma, tmp_inv_matrix, inverse_matrix);
}
// The internal XYB color space uses absolute luminance, so we scale back the
// opsin inverse matrix to relative luminance where 1.0 corresponds to the
// original intensity target.
if (xyb_encoded) {
InitSIMDInverseMatrix(inverse_matrix, opsin_params.inverse_opsin_matrix,
orig_intensity_target);
all_default_opsin = (std::abs(orig_intensity_target - 255.0) <= 0.1f &&
inverse_matrix_is_default);
}
// Set the inverse gamma based on color space transfer function.
const auto& tf = c_desired.Tf();
inverse_gamma = (tf.have_gamma ? tf.GetGamma()
: tf.IsDCI() ? 1.0f / 2.6f
: 1.0);
return true;
}
} // namespace jxl
#endif // HWY_ONCE