Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// XYB -> linear sRGB helper function.
#if defined(LIB_JXL_DEC_XYB_INL_H_) == defined(HWY_TARGET_TOGGLE)
#ifdef LIB_JXL_DEC_XYB_INL_H_
#undef LIB_JXL_DEC_XYB_INL_H_
#else
#define LIB_JXL_DEC_XYB_INL_H_
#endif
#include <hwy/highway.h>
#include "lib/jxl/dec_xyb.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
namespace {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::Broadcast;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::MulAdd;
using hwy::HWY_NAMESPACE::Sub;
// Inverts the pixel-wise RGB->XYB conversion in OpsinDynamicsImage() (including
// the gamma mixing and simple gamma). Avoids clamping to [0, 1] - out of (sRGB)
// gamut values may be in-gamut after transforming to a wider space.
// "inverse_matrix" points to 9 broadcasted vectors, which are the 3x3 entries
// of the (row-major) opsin absorbance matrix inverse. Pre-multiplying its
// entries by c is equivalent to multiplying linear_* by c afterwards.
template <class D, class V>
HWY_INLINE HWY_MAYBE_UNUSED void XybToRgb(D d, const V opsin_x, const V opsin_y,
const V opsin_b,
const OpsinParams& opsin_params,
V* const HWY_RESTRICT linear_r,
V* const HWY_RESTRICT linear_g,
V* const HWY_RESTRICT linear_b) {
#if HWY_TARGET == HWY_SCALAR
const auto neg_bias_r = Set(d, opsin_params.opsin_biases[0]);
const auto neg_bias_g = Set(d, opsin_params.opsin_biases[1]);
const auto neg_bias_b = Set(d, opsin_params.opsin_biases[2]);
#else
const auto neg_bias_rgb = LoadDup128(d, opsin_params.opsin_biases);
const auto neg_bias_r = Broadcast<0>(neg_bias_rgb);
const auto neg_bias_g = Broadcast<1>(neg_bias_rgb);
const auto neg_bias_b = Broadcast<2>(neg_bias_rgb);
#endif
// Color space: XYB -> RGB
auto gamma_r = Add(opsin_y, opsin_x);
auto gamma_g = Sub(opsin_y, opsin_x);
auto gamma_b = opsin_b;
gamma_r = Sub(gamma_r, Set(d, opsin_params.opsin_biases_cbrt[0]));
gamma_g = Sub(gamma_g, Set(d, opsin_params.opsin_biases_cbrt[1]));
gamma_b = Sub(gamma_b, Set(d, opsin_params.opsin_biases_cbrt[2]));
// Undo gamma compression: linear = gamma^3 for efficiency.
const auto gamma_r2 = Mul(gamma_r, gamma_r);
const auto gamma_g2 = Mul(gamma_g, gamma_g);
const auto gamma_b2 = Mul(gamma_b, gamma_b);
const auto mixed_r = MulAdd(gamma_r2, gamma_r, neg_bias_r);
const auto mixed_g = MulAdd(gamma_g2, gamma_g, neg_bias_g);
const auto mixed_b = MulAdd(gamma_b2, gamma_b, neg_bias_b);
const float* HWY_RESTRICT inverse_matrix = opsin_params.inverse_opsin_matrix;
// Unmix (multiply by 3x3 inverse_matrix)
// TODO(eustas): ref would be more readable than pointer
*linear_r = Mul(LoadDup128(d, &inverse_matrix[0 * 4]), mixed_r);
*linear_g = Mul(LoadDup128(d, &inverse_matrix[3 * 4]), mixed_r);
*linear_b = Mul(LoadDup128(d, &inverse_matrix[6 * 4]), mixed_r);
*linear_r = MulAdd(LoadDup128(d, &inverse_matrix[1 * 4]), mixed_g, *linear_r);
*linear_g = MulAdd(LoadDup128(d, &inverse_matrix[4 * 4]), mixed_g, *linear_g);
*linear_b = MulAdd(LoadDup128(d, &inverse_matrix[7 * 4]), mixed_g, *linear_b);
*linear_r = MulAdd(LoadDup128(d, &inverse_matrix[2 * 4]), mixed_b, *linear_r);
*linear_g = MulAdd(LoadDup128(d, &inverse_matrix[5 * 4]), mixed_b, *linear_g);
*linear_b = MulAdd(LoadDup128(d, &inverse_matrix[8 * 4]), mixed_b, *linear_b);
}
inline HWY_MAYBE_UNUSED bool HasFastXYBTosRGB8() {
#if HWY_TARGET == HWY_NEON
return true;
#else
return false;
#endif
}
inline HWY_MAYBE_UNUSED Status FastXYBTosRGB8(const float* input[4],
uint8_t* output, bool is_rgba,
size_t xsize) {
// This function is very NEON-specific. As such, it uses intrinsics directly.
#if HWY_TARGET == HWY_NEON
// WARNING: doing fixed point arithmetic correctly is very complicated.
// Changes to this function should be thoroughly tested.
// Note that the input is assumed to have 13 bits of mantissa, and the output
// will have 14 bits.
auto srgb_tf = [&](int16x8_t v16) {
int16x8_t clz = vclzq_s16(v16);
// Convert to [0.25, 0.5) range.
int16x8_t v025_05_16 = vqshlq_s16(v16, vqsubq_s16(clz, vdupq_n_s16(2)));
// third degree polynomial approximation between 0.25 and 0.5
// of 1.055/2^(7/2.4) * x^(1/2.4) / 32.
// poly ~ ((0.95x-1.75)*x+1.72)*x+0.29
// We actually compute ~ ((0.47x-0.87)*x+0.86)*(2x)+0.29 as 1.75 and 1.72
// overflow our fixed point representation.
int16x8_t twov = vqaddq_s16(v025_05_16, v025_05_16);
// 0.47 * x
int16x8_t step1 = vqrdmulhq_n_s16(v025_05_16, 15706);
// - 0.87
int16x8_t step2 = vsubq_s16(step1, vdupq_n_s16(28546));
// * x
int16x8_t step3 = vqrdmulhq_s16(step2, v025_05_16);
// + 0.86
int16x8_t step4 = vaddq_s16(step3, vdupq_n_s16(28302));
// * 2x
int16x8_t step5 = vqrdmulhq_s16(step4, twov);
// + 0.29
int16x8_t mul16 = vaddq_s16(step5, vdupq_n_s16(9485));
int16x8_t exp16 = vsubq_s16(vdupq_n_s16(11), clz);
// Compute 2**(1/2.4*exp16)/32. Values of exp16 that would overflow are
// capped to 1.
// Generated with the following Python script:
// a = []
// b = []
//
// for i in range(0, 16):
// v = 2**(5/12.*i)
// v /= 16
// v *= 256 * 128
// v = int(v)
// a.append(v // 256)
// b.append(v % 256)
//
// print(", ".join("0x%02x" % x for x in a))
//
// print(", ".join("0x%02x" % x for x in b))
HWY_ALIGN constexpr uint8_t k2to512powersm1div32_high[16] = {
0x08, 0x0a, 0x0e, 0x13, 0x19, 0x21, 0x2d, 0x3c,
0x50, 0x6b, 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8f,
};
HWY_ALIGN constexpr uint8_t k2to512powersm1div32_low[16] = {
0x00, 0xad, 0x41, 0x06, 0x65, 0xe7, 0x41, 0x68,
0xa2, 0xa2, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
// Using the highway implementation here since vqtbl1q is aarch64-only.
using hwy::HWY_NAMESPACE::Vec128;
uint8x16_t pow_low =
TableLookupBytes(
Vec128<uint8_t, 16>(vld1q_u8(k2to512powersm1div32_low)),
Vec128<uint8_t, 16>(vreinterpretq_u8_s16(exp16)))
.raw;
uint8x16_t pow_high =
TableLookupBytes(
Vec128<uint8_t, 16>(vld1q_u8(k2to512powersm1div32_high)),
Vec128<uint8_t, 16>(vreinterpretq_u8_s16(exp16)))
.raw;
int16x8_t pow16 = vreinterpretq_s16_u16(vsliq_n_u16(
vreinterpretq_u16_u8(pow_low), vreinterpretq_u16_u8(pow_high), 8));
// approximation of v * 12.92, divided by 2
// Note that our input is using 13 mantissa bits instead of 15.
int16x8_t v16_linear = vrshrq_n_s16(vmulq_n_s16(v16, 826), 5);
// 1.055*pow(v, 1/2.4) - 0.055, divided by 2
auto v16_pow = vsubq_s16(vqrdmulhq_s16(mul16, pow16), vdupq_n_s16(901));
// > 0.0031308f (note that v16 has 13 mantissa bits)
return vbslq_s16(vcgeq_s16(v16, vdupq_n_s16(26)), v16_pow, v16_linear);
};
const float* JXL_RESTRICT row_in_x = input[0];
const float* JXL_RESTRICT row_in_y = input[1];
const float* JXL_RESTRICT row_in_b = input[2];
const float* JXL_RESTRICT row_in_a = input[3];
for (size_t x = 0; x < xsize; x += 8) {
// Normal ranges for xyb for in-gamut sRGB colors:
// x: -0.015386 0.028100
// y: 0.000000 0.845308
// b: 0.000000 0.845308
// We actually want x * 8 to have some extra precision.
// TODO(veluca): consider different approaches here, like vld1q_f32_x2.
float32x4_t opsin_x_left = vld1q_f32(row_in_x + x);
int16x4_t opsin_x16_times8_left =
vqmovn_s32(vcvtq_n_s32_f32(opsin_x_left, 18));
float32x4_t opsin_x_right =
vld1q_f32(row_in_x + x + (x + 4 < xsize ? 4 : 0));
int16x4_t opsin_x16_times8_right =
vqmovn_s32(vcvtq_n_s32_f32(opsin_x_right, 18));
int16x8_t opsin_x16_times8 =
vcombine_s16(opsin_x16_times8_left, opsin_x16_times8_right);
float32x4_t opsin_y_left = vld1q_f32(row_in_y + x);
int16x4_t opsin_y16_left = vqmovn_s32(vcvtq_n_s32_f32(opsin_y_left, 15));
float32x4_t opsin_y_right =
vld1q_f32(row_in_y + x + (x + 4 < xsize ? 4 : 0));
int16x4_t opsin_y16_right = vqmovn_s32(vcvtq_n_s32_f32(opsin_y_right, 15));
int16x8_t opsin_y16 = vcombine_s16(opsin_y16_left, opsin_y16_right);
float32x4_t opsin_b_left = vld1q_f32(row_in_b + x);
int16x4_t opsin_b16_left = vqmovn_s32(vcvtq_n_s32_f32(opsin_b_left, 15));
float32x4_t opsin_b_right =
vld1q_f32(row_in_b + x + (x + 4 < xsize ? 4 : 0));
int16x4_t opsin_b16_right = vqmovn_s32(vcvtq_n_s32_f32(opsin_b_right, 15));
int16x8_t opsin_b16 = vcombine_s16(opsin_b16_left, opsin_b16_right);
int16x8_t neg_bias16 = vdupq_n_s16(-124); // -0.0037930732552754493
int16x8_t neg_bias_cbrt16 = vdupq_n_s16(-5110); // -0.155954201
int16x8_t neg_bias_half16 = vdupq_n_s16(-62);
// Color space: XYB -> RGB
// Compute ((y+x-bias_cbrt)^3-(y-x-bias_cbrt)^3)/2,
// ((y+x-bias_cbrt)^3+(y-x-bias_cbrt)^3)/2+bias, (b-bias_cbrt)^3+bias.
// Note that ignoring x2 in the formulas below (as x << y) results in
// errors of at least 3 in the final sRGB values.
int16x8_t opsin_yp16 = vqsubq_s16(opsin_y16, neg_bias_cbrt16);
int16x8_t ysq16 = vqrdmulhq_s16(opsin_yp16, opsin_yp16);
int16x8_t twentyfourx16 = vmulq_n_s16(opsin_x16_times8, 3);
int16x8_t twentyfourxy16 = vqrdmulhq_s16(opsin_yp16, twentyfourx16);
int16x8_t threexsq16 =
vrshrq_n_s16(vqrdmulhq_s16(opsin_x16_times8, twentyfourx16), 6);
// We can ignore x^3 here. Note that this is multiplied by 8.
int16x8_t mixed_rmg16 = vqrdmulhq_s16(twentyfourxy16, opsin_yp16);
int16x8_t mixed_rpg_sos_half = vhaddq_s16(ysq16, threexsq16);
int16x8_t mixed_rpg16 = vhaddq_s16(
vqrdmulhq_s16(opsin_yp16, mixed_rpg_sos_half), neg_bias_half16);
int16x8_t gamma_b16 = vqsubq_s16(opsin_b16, neg_bias_cbrt16);
int16x8_t gamma_bsq16 = vqrdmulhq_s16(gamma_b16, gamma_b16);
int16x8_t gamma_bcb16 = vqrdmulhq_s16(gamma_bsq16, gamma_b16);
int16x8_t mixed_b16 = vqaddq_s16(gamma_bcb16, neg_bias16);
// mixed_rpg and mixed_b are in 0-1 range.
// mixed_rmg has a smaller range (-0.035 to 0.035 for valid sRGB). Note
// that at this point it is already multiplied by 8.
// We multiply all the mixed values by 1/4 (i.e. shift them to 13-bit
// fixed point) to ensure intermediate quantities are in range. Note that
// r-g is not shifted, and was x8 before here; this corresponds to a x32
// overall multiplicative factor and ensures that all the matrix constants
// are in 0-1 range.
// Similarly, mixed_rpg16 is already multiplied by 1/4 because of the two
// vhadd + using neg_bias_half.
mixed_b16 = vshrq_n_s16(mixed_b16, 2);
// Unmix (multiply by 3x3 inverse_matrix)
// For increased precision, we use a matrix for converting from
// ((mixed_r - mixed_g)/2, (mixed_r + mixed_g)/2, mixed_b) to rgb. This
// avoids cancellation effects when computing (y+x)^3-(y-x)^3.
// We compute mixed_rpg - mixed_b because the (1+c)*mixed_rpg - c *
// mixed_b pattern is repeated frequently in the code below. This allows
// us to save a multiply per channel, and removes the presence of
// some constants above 1. Moreover, mixed_rmg - mixed_b is in (-1, 1)
// range, so the subtraction is safe.
// All the magic-looking constants here are derived by computing the
// inverse opsin matrix for the transformation modified as described
// above.
// Precomputation common to multiple color values.
int16x8_t mixed_rpgmb16 = vqsubq_s16(mixed_rpg16, mixed_b16);
int16x8_t mixed_rpgmb_times_016 = vqrdmulhq_n_s16(mixed_rpgmb16, 5394);
int16x8_t mixed_rg16 = vqaddq_s16(mixed_rpgmb_times_016, mixed_rpg16);
// R
int16x8_t linear_r16 =
vqaddq_s16(mixed_rg16, vqrdmulhq_n_s16(mixed_rmg16, 21400));
// G
int16x8_t linear_g16 =
vqaddq_s16(mixed_rg16, vqrdmulhq_n_s16(mixed_rmg16, -7857));
// B
int16x8_t linear_b16 = vqrdmulhq_n_s16(mixed_rpgmb16, -30996);
linear_b16 = vqaddq_s16(linear_b16, mixed_b16);
linear_b16 = vqaddq_s16(linear_b16, vqrdmulhq_n_s16(mixed_rmg16, -6525));
// Apply SRGB transfer function.
int16x8_t r = srgb_tf(linear_r16);
int16x8_t g = srgb_tf(linear_g16);
int16x8_t b = srgb_tf(linear_b16);
uint8x8_t r8 =
vqmovun_s16(vrshrq_n_s16(vsubq_s16(r, vshrq_n_s16(r, 8)), 6));
uint8x8_t g8 =
vqmovun_s16(vrshrq_n_s16(vsubq_s16(g, vshrq_n_s16(g, 8)), 6));
uint8x8_t b8 =
vqmovun_s16(vrshrq_n_s16(vsubq_s16(b, vshrq_n_s16(b, 8)), 6));
size_t n = xsize - x;
if (is_rgba) {
float32x4_t a_f32_left =
row_in_a ? vld1q_f32(row_in_a + x) : vdupq_n_f32(1.0f);
float32x4_t a_f32_right =
row_in_a ? vld1q_f32(row_in_a + x + (x + 4 < xsize ? 4 : 0))
: vdupq_n_f32(1.0f);
int16x4_t a16_left = vqmovn_s32(vcvtq_n_s32_f32(a_f32_left, 8));
int16x4_t a16_right = vqmovn_s32(vcvtq_n_s32_f32(a_f32_right, 8));
uint8x8_t a8 = vqmovun_s16(vcombine_s16(a16_left, a16_right));
uint8_t* buf = output + 4 * x;
uint8x8x4_t data = {r8, g8, b8, a8};
if (n >= 8) {
vst4_u8(buf, data);
} else {
uint8_t tmp[8 * 4];
vst4_u8(tmp, data);
memcpy(buf, tmp, n * 4);
}
} else {
uint8_t* buf = output + 3 * x;
uint8x8x3_t data = {r8, g8, b8};
if (n >= 8) {
vst3_u8(buf, data);
} else {
uint8_t tmp[8 * 3];
vst3_u8(tmp, data);
memcpy(buf, tmp, n * 3);
}
}
}
return true;
#else
(void)input;
(void)output;
(void)is_rgba;
(void)xsize;
return JXL_UNREACHABLE("unsupported platform");
#endif
}
} // namespace
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#endif // LIB_JXL_DEC_XYB_INL_H_