Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jpegli/encode.h"
#include <jxl/types.h>
#include <cmath>
#include <initializer_list>
#include <vector>
#include "lib/jpegli/adaptive_quantization.h"
#include "lib/jpegli/bit_writer.h"
#include "lib/jpegli/bitstream.h"
#include "lib/jpegli/color_transform.h"
#include "lib/jpegli/downsample.h"
#include "lib/jpegli/encode_finish.h"
#include "lib/jpegli/encode_internal.h"
#include "lib/jpegli/encode_streaming.h"
#include "lib/jpegli/entropy_coding.h"
#include "lib/jpegli/error.h"
#include "lib/jpegli/huffman.h"
#include "lib/jpegli/input.h"
#include "lib/jpegli/memory_manager.h"
#include "lib/jpegli/quant.h"
namespace jpegli {
constexpr size_t kMaxBytesInMarker = 65533;
void CheckState(j_compress_ptr cinfo, int state) {
if (cinfo->global_state != state) {
JPEGLI_ERROR("Unexpected global state %d [expected %d]",
cinfo->global_state, state);
}
}
void CheckState(j_compress_ptr cinfo, int state1, int state2) {
if (cinfo->global_state != state1 && cinfo->global_state != state2) {
JPEGLI_ERROR("Unexpected global state %d [expected %d or %d]",
cinfo->global_state, state1, state2);
}
}
//
// Parameter setup
//
// Initialize cinfo fields that are not dependent on input image. This is shared
// between jpegli_CreateCompress() and jpegli_set_defaults()
void InitializeCompressParams(j_compress_ptr cinfo) {
cinfo->data_precision = 8;
cinfo->num_scans = 0;
cinfo->scan_info = nullptr;
cinfo->raw_data_in = FALSE;
cinfo->arith_code = FALSE;
cinfo->optimize_coding = FALSE;
cinfo->CCIR601_sampling = FALSE;
cinfo->smoothing_factor = 0;
cinfo->dct_method = JDCT_FLOAT;
cinfo->restart_interval = 0;
cinfo->restart_in_rows = 0;
cinfo->write_JFIF_header = FALSE;
cinfo->JFIF_major_version = 1;
cinfo->JFIF_minor_version = 1;
cinfo->density_unit = 0;
cinfo->X_density = 1;
cinfo->Y_density = 1;
#if JPEG_LIB_VERSION >= 70
cinfo->scale_num = 1;
cinfo->scale_denom = 1;
cinfo->do_fancy_downsampling = FALSE;
cinfo->min_DCT_h_scaled_size = DCTSIZE;
cinfo->min_DCT_v_scaled_size = DCTSIZE;
#endif
cinfo->master->psnr_target = 0.0f;
cinfo->master->psnr_tolerance = 0.01f;
cinfo->master->min_distance = 0.1f;
cinfo->master->max_distance = 25.0f;
}
float LinearQualityToDistance(int scale_factor) {
scale_factor = std::min(5000, std::max(0, scale_factor));
int quality =
scale_factor < 100 ? 100 - scale_factor / 2 : 5000 / scale_factor;
return jpegli_quality_to_distance(quality);
}
template <typename T>
void SetSentTableFlag(T** table_ptrs, size_t num, boolean val) {
for (size_t i = 0; i < num; ++i) {
if (table_ptrs[i]) table_ptrs[i]->sent_table = val;
}
}
//
// Compressor initialization
//
struct ProgressiveScan {
int Ss, Se, Ah, Al;
bool interleaved;
};
void SetDefaultScanScript(j_compress_ptr cinfo) {
int level = cinfo->master->progressive_level;
std::vector<ProgressiveScan> progressive_mode;
bool interleave_dc =
(cinfo->max_h_samp_factor == 1 && cinfo->max_v_samp_factor == 1);
if (level == 0) {
progressive_mode.push_back({0, 63, 0, 0, true});
} else if (level == 1) {
progressive_mode.push_back({0, 0, 0, 0, interleave_dc});
progressive_mode.push_back({1, 63, 0, 1, false});
progressive_mode.push_back({1, 63, 1, 0, false});
} else {
progressive_mode.push_back({0, 0, 0, 0, interleave_dc});
progressive_mode.push_back({1, 2, 0, 0, false});
progressive_mode.push_back({3, 63, 0, 2, false});
progressive_mode.push_back({3, 63, 2, 1, false});
progressive_mode.push_back({3, 63, 1, 0, false});
}
cinfo->script_space_size = 0;
for (const auto& scan : progressive_mode) {
int comps = scan.interleaved ? MAX_COMPS_IN_SCAN : 1;
cinfo->script_space_size += DivCeil(cinfo->num_components, comps);
}
cinfo->script_space =
Allocate<jpeg_scan_info>(cinfo, cinfo->script_space_size);
jpeg_scan_info* next_scan = cinfo->script_space;
for (const auto& scan : progressive_mode) {
int comps = scan.interleaved ? MAX_COMPS_IN_SCAN : 1;
for (int c = 0; c < cinfo->num_components; c += comps) {
next_scan->Ss = scan.Ss;
next_scan->Se = scan.Se;
next_scan->Ah = scan.Ah;
next_scan->Al = scan.Al;
next_scan->comps_in_scan = std::min(comps, cinfo->num_components - c);
for (int j = 0; j < next_scan->comps_in_scan; ++j) {
next_scan->component_index[j] = c + j;
}
++next_scan;
}
}
JPEGLI_CHECK(next_scan - cinfo->script_space == cinfo->script_space_size);
cinfo->scan_info = cinfo->script_space;
cinfo->num_scans = cinfo->script_space_size;
}
void ValidateScanScript(j_compress_ptr cinfo) {
// Mask of coefficient bits defined by the scan script, for each component
// and coefficient index.
uint16_t comp_mask[kMaxComponents][DCTSIZE2] = {};
static constexpr int kMaxRefinementBit = 10;
for (int i = 0; i < cinfo->num_scans; ++i) {
const jpeg_scan_info& si = cinfo->scan_info[i];
if (si.comps_in_scan < 1 || si.comps_in_scan > MAX_COMPS_IN_SCAN) {
JPEGLI_ERROR("Invalid number of components in scan %d", si.comps_in_scan);
}
int last_ci = -1;
for (int j = 0; j < si.comps_in_scan; ++j) {
int ci = si.component_index[j];
if (ci < 0 || ci >= cinfo->num_components) {
JPEGLI_ERROR("Invalid component index %d in scan", ci);
} else if (ci == last_ci) {
JPEGLI_ERROR("Duplicate component index %d in scan", ci);
} else if (ci < last_ci) {
JPEGLI_ERROR("Out of order component index %d in scan", ci);
}
last_ci = ci;
}
if (si.Ss < 0 || si.Se < si.Ss || si.Se >= DCTSIZE2) {
JPEGLI_ERROR("Invalid spectral range %d .. %d in scan", si.Ss, si.Se);
}
if (si.Ah < 0 || si.Al < 0 || si.Al > kMaxRefinementBit) {
JPEGLI_ERROR("Invalid refinement bits %d/%d", si.Ah, si.Al);
}
if (!cinfo->progressive_mode) {
if (si.Ss != 0 || si.Se != DCTSIZE2 - 1 || si.Ah != 0 || si.Al != 0) {
JPEGLI_ERROR("Invalid scan for sequential mode");
}
} else {
if (si.Ss == 0 && si.Se != 0) {
JPEGLI_ERROR("DC and AC together in progressive scan");
}
}
if (si.Ss != 0 && si.comps_in_scan != 1) {
JPEGLI_ERROR("Interleaved AC only scan.");
}
for (int j = 0; j < si.comps_in_scan; ++j) {
int ci = si.component_index[j];
if (si.Ss != 0 && comp_mask[ci][0] == 0) {
JPEGLI_ERROR("AC before DC in component %d of scan", ci);
}
for (int k = si.Ss; k <= si.Se; ++k) {
if (comp_mask[ci][k] == 0) {
if (si.Ah != 0) {
JPEGLI_ERROR("Invalid first scan refinement bit");
}
comp_mask[ci][k] = ((0xffff << si.Al) & 0xffff);
} else {
if (comp_mask[ci][k] != ((0xffff << si.Ah) & 0xffff) ||
si.Al != si.Ah - 1) {
JPEGLI_ERROR("Invalid refinement bit progression.");
}
comp_mask[ci][k] |= 1 << si.Al;
}
}
}
if (si.comps_in_scan > 1) {
size_t mcu_size = 0;
for (int j = 0; j < si.comps_in_scan; ++j) {
int ci = si.component_index[j];
jpeg_component_info* comp = &cinfo->comp_info[ci];
mcu_size += comp->h_samp_factor * comp->v_samp_factor;
}
if (mcu_size > C_MAX_BLOCKS_IN_MCU) {
JPEGLI_ERROR("MCU size too big");
}
}
}
for (int c = 0; c < cinfo->num_components; ++c) {
for (int k = 0; k < DCTSIZE2; ++k) {
if (comp_mask[c][k] != 0xffff) {
JPEGLI_ERROR("Incomplete scan of component %d and frequency %d", c, k);
}
}
}
}
void ProcessCompressionParams(j_compress_ptr cinfo) {
if (cinfo->dest == nullptr) {
JPEGLI_ERROR("Missing destination.");
}
if (cinfo->image_width < 1 || cinfo->image_height < 1 ||
cinfo->input_components < 1) {
JPEGLI_ERROR("Empty input image.");
}
if (cinfo->image_width > static_cast<int>(JPEG_MAX_DIMENSION) ||
cinfo->image_height > static_cast<int>(JPEG_MAX_DIMENSION) ||
cinfo->input_components > static_cast<int>(kMaxComponents)) {
JPEGLI_ERROR("Input image too big.");
}
if (cinfo->num_components < 1 ||
cinfo->num_components > static_cast<int>(kMaxComponents)) {
JPEGLI_ERROR("Invalid number of components.");
}
if (cinfo->data_precision != kJpegPrecision) {
JPEGLI_ERROR("Invalid data precision");
}
if (cinfo->arith_code) {
JPEGLI_ERROR("Arithmetic coding is not implemented.");
}
if (cinfo->CCIR601_sampling) {
JPEGLI_ERROR("CCIR601 sampling is not implemented.");
}
if (cinfo->restart_interval > 65535u) {
JPEGLI_ERROR("Restart interval too big");
}
if (cinfo->smoothing_factor < 0 || cinfo->smoothing_factor > 100) {
JPEGLI_ERROR("Invalid smoothing factor %d", cinfo->smoothing_factor);
}
jpeg_comp_master* m = cinfo->master;
cinfo->max_h_samp_factor = cinfo->max_v_samp_factor = 1;
for (int c = 0; c < cinfo->num_components; ++c) {
jpeg_component_info* comp = &cinfo->comp_info[c];
if (comp->component_index != c) {
JPEGLI_ERROR("Invalid component index");
}
for (int j = 0; j < c; ++j) {
if (cinfo->comp_info[j].component_id == comp->component_id) {
JPEGLI_ERROR("Duplicate component id %d", comp->component_id);
}
}
if (comp->h_samp_factor <= 0 || comp->v_samp_factor <= 0 ||
comp->h_samp_factor > MAX_SAMP_FACTOR ||
comp->v_samp_factor > MAX_SAMP_FACTOR) {
JPEGLI_ERROR("Invalid sampling factor %d x %d", comp->h_samp_factor,
comp->v_samp_factor);
}
if (cinfo->num_components == 1) {
// Force samp factors to 1x1 for single-component images.
comp->h_samp_factor = comp->v_samp_factor = 1;
}
cinfo->max_h_samp_factor =
std::max(comp->h_samp_factor, cinfo->max_h_samp_factor);
cinfo->max_v_samp_factor =
std::max(comp->v_samp_factor, cinfo->max_v_samp_factor);
}
size_t iMCU_width = DCTSIZE * cinfo->max_h_samp_factor;
size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor;
size_t total_iMCU_cols = DivCeil(cinfo->image_width, iMCU_width);
cinfo->total_iMCU_rows = DivCeil(cinfo->image_height, iMCU_height);
m->xsize_blocks = total_iMCU_cols * cinfo->max_h_samp_factor;
m->ysize_blocks = cinfo->total_iMCU_rows * cinfo->max_v_samp_factor;
size_t blocks_per_iMCU = 0;
for (int c = 0; c < cinfo->num_components; ++c) {
jpeg_component_info* comp = &cinfo->comp_info[c];
if (cinfo->max_h_samp_factor % comp->h_samp_factor != 0 ||
cinfo->max_v_samp_factor % comp->v_samp_factor != 0) {
JPEGLI_ERROR("Non-integral sampling ratios are not supported.");
}
m->h_factor[c] = cinfo->max_h_samp_factor / comp->h_samp_factor;
m->v_factor[c] = cinfo->max_v_samp_factor / comp->v_samp_factor;
comp->downsampled_width = DivCeil(cinfo->image_width, m->h_factor[c]);
comp->downsampled_height = DivCeil(cinfo->image_height, m->v_factor[c]);
comp->width_in_blocks = DivCeil(comp->downsampled_width, DCTSIZE);
comp->height_in_blocks = DivCeil(comp->downsampled_height, DCTSIZE);
blocks_per_iMCU += comp->h_samp_factor * comp->v_samp_factor;
}
m->blocks_per_iMCU_row = total_iMCU_cols * blocks_per_iMCU;
// Disable adaptive quantization for subsampled luma channel.
int y_channel = cinfo->jpeg_color_space == JCS_RGB ? 1 : 0;
jpeg_component_info* y_comp = &cinfo->comp_info[y_channel];
if (y_comp->h_samp_factor != cinfo->max_h_samp_factor ||
y_comp->v_samp_factor != cinfo->max_v_samp_factor) {
m->use_adaptive_quantization = false;
}
if (cinfo->scan_info == nullptr) {
SetDefaultScanScript(cinfo);
}
cinfo->progressive_mode = TO_JXL_BOOL(cinfo->scan_info->Ss != 0 ||
cinfo->scan_info->Se != DCTSIZE2 - 1);
ValidateScanScript(cinfo);
m->scan_token_info =
Allocate<ScanTokenInfo>(cinfo, cinfo->num_scans, JPOOL_IMAGE);
memset(m->scan_token_info, 0, cinfo->num_scans * sizeof(ScanTokenInfo));
m->ac_ctx_offset = Allocate<uint8_t>(cinfo, cinfo->num_scans, JPOOL_IMAGE);
size_t num_ac_contexts = 0;
for (int i = 0; i < cinfo->num_scans; ++i) {
const jpeg_scan_info* scan_info = &cinfo->scan_info[i];
m->ac_ctx_offset[i] = 4 + num_ac_contexts;
if (scan_info->Se > 0) {
num_ac_contexts += scan_info->comps_in_scan;
}
if (num_ac_contexts > 252) {
JPEGLI_ERROR("Too many AC scans in image");
}
ScanTokenInfo* sti = &m->scan_token_info[i];
if (scan_info->comps_in_scan == 1) {
int comp_idx = scan_info->component_index[0];
jpeg_component_info* comp = &cinfo->comp_info[comp_idx];
sti->MCUs_per_row = comp->width_in_blocks;
sti->MCU_rows_in_scan = comp->height_in_blocks;
sti->blocks_in_MCU = 1;
} else {
sti->MCUs_per_row =
DivCeil(cinfo->image_width, DCTSIZE * cinfo->max_h_samp_factor);
sti->MCU_rows_in_scan =
DivCeil(cinfo->image_height, DCTSIZE * cinfo->max_v_samp_factor);
sti->blocks_in_MCU = 0;
for (int j = 0; j < scan_info->comps_in_scan; ++j) {
int comp_idx = scan_info->component_index[j];
jpeg_component_info* comp = &cinfo->comp_info[comp_idx];
sti->blocks_in_MCU += comp->h_samp_factor * comp->v_samp_factor;
}
}
size_t num_MCUs = sti->MCU_rows_in_scan * sti->MCUs_per_row;
sti->num_blocks = num_MCUs * sti->blocks_in_MCU;
if (cinfo->restart_in_rows <= 0) {
sti->restart_interval = cinfo->restart_interval;
} else {
sti->restart_interval =
std::min<size_t>(sti->MCUs_per_row * cinfo->restart_in_rows, 65535u);
}
sti->num_restarts = sti->restart_interval > 0
? DivCeil(num_MCUs, sti->restart_interval)
: 1;
sti->restarts = Allocate<size_t>(cinfo, sti->num_restarts, JPOOL_IMAGE);
}
m->num_contexts = 4 + num_ac_contexts;
}
bool IsStreamingSupported(j_compress_ptr cinfo) {
if (cinfo->global_state == kEncWriteCoeffs) {
return false;
}
// TODO(szabadka) Remove this restriction.
if (cinfo->restart_interval > 0 || cinfo->restart_in_rows > 0) {
return false;
}
if (cinfo->num_scans > 1) {
return false;
}
if (cinfo->master->psnr_target > 0) {
return false;
}
return true;
}
void AllocateBuffers(j_compress_ptr cinfo) {
jpeg_comp_master* m = cinfo->master;
memset(m->last_dc_coeff, 0, sizeof(m->last_dc_coeff));
if (!IsStreamingSupported(cinfo) || cinfo->optimize_coding) {
int ysize_blocks = DivCeil(cinfo->image_height, DCTSIZE);
int num_arrays = cinfo->num_scans * ysize_blocks;
m->token_arrays = Allocate<TokenArray>(cinfo, num_arrays, JPOOL_IMAGE);
m->cur_token_array = 0;
memset(m->token_arrays, 0, num_arrays * sizeof(TokenArray));
m->num_tokens = 0;
m->total_num_tokens = 0;
}
if (cinfo->global_state == kEncWriteCoeffs) {
return;
}
size_t iMCU_width = DCTSIZE * cinfo->max_h_samp_factor;
size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor;
size_t total_iMCU_cols = DivCeil(cinfo->image_width, iMCU_width);
size_t xsize_full = total_iMCU_cols * iMCU_width;
size_t ysize_full = 3 * iMCU_height;
if (!cinfo->raw_data_in) {
int num_all_components =
std::max(cinfo->input_components, cinfo->num_components);
for (int c = 0; c < num_all_components; ++c) {
m->input_buffer[c].Allocate(cinfo, ysize_full, xsize_full);
}
}
for (int c = 0; c < cinfo->num_components; ++c) {
jpeg_component_info* comp = &cinfo->comp_info[c];
size_t xsize = total_iMCU_cols * comp->h_samp_factor * DCTSIZE;
size_t ysize = 3 * comp->v_samp_factor * DCTSIZE;
if (cinfo->raw_data_in) {
m->input_buffer[c].Allocate(cinfo, ysize, xsize);
}
m->smooth_input[c] = &m->input_buffer[c];
if (!cinfo->raw_data_in && cinfo->smoothing_factor) {
m->smooth_input[c] = Allocate<RowBuffer<float>>(cinfo, 1, JPOOL_IMAGE);
m->smooth_input[c]->Allocate(cinfo, ysize_full, xsize_full);
}
m->raw_data[c] = m->smooth_input[c];
if (!cinfo->raw_data_in && (m->h_factor[c] > 1 || m->v_factor[c] > 1)) {
m->raw_data[c] = Allocate<RowBuffer<float>>(cinfo, 1, JPOOL_IMAGE);
m->raw_data[c]->Allocate(cinfo, ysize, xsize);
}
m->quant_mul[c] = Allocate<float>(cinfo, DCTSIZE2, JPOOL_IMAGE_ALIGNED);
}
m->dct_buffer = Allocate<float>(cinfo, 2 * DCTSIZE2, JPOOL_IMAGE_ALIGNED);
m->block_tmp = Allocate<int32_t>(cinfo, DCTSIZE2 * 4, JPOOL_IMAGE_ALIGNED);
if (!IsStreamingSupported(cinfo)) {
m->coeff_buffers =
Allocate<jvirt_barray_ptr>(cinfo, cinfo->num_components, JPOOL_IMAGE);
for (int c = 0; c < cinfo->num_components; ++c) {
jpeg_component_info* comp = &cinfo->comp_info[c];
const size_t xsize_blocks = comp->width_in_blocks;
const size_t ysize_blocks = comp->height_in_blocks;
m->coeff_buffers[c] = (*cinfo->mem->request_virt_barray)(
reinterpret_cast<j_common_ptr>(cinfo), JPOOL_IMAGE,
/*pre_zero=*/FALSE, xsize_blocks, ysize_blocks, comp->v_samp_factor);
}
}
if (m->use_adaptive_quantization) {
int y_channel = cinfo->jpeg_color_space == JCS_RGB ? 1 : 0;
jpeg_component_info* y_comp = &cinfo->comp_info[y_channel];
const size_t xsize_blocks = y_comp->width_in_blocks;
const size_t vecsize = VectorSize();
const size_t xsize_padded = DivCeil(2 * xsize_blocks, vecsize) * vecsize;
m->diff_buffer =
Allocate<float>(cinfo, xsize_blocks * DCTSIZE + 8, JPOOL_IMAGE_ALIGNED);
m->fuzzy_erosion_tmp.Allocate(cinfo, 2, xsize_padded);
m->pre_erosion.Allocate(cinfo, 6 * cinfo->max_v_samp_factor, xsize_padded);
size_t qf_height = cinfo->max_v_samp_factor;
if (m->psnr_target > 0) {
qf_height *= cinfo->total_iMCU_rows;
}
m->quant_field.Allocate(cinfo, qf_height, xsize_blocks);
} else {
m->quant_field.Allocate(cinfo, 1, m->xsize_blocks);
m->quant_field.FillRow(0, 0, m->xsize_blocks);
}
for (int c = 0; c < cinfo->num_components; ++c) {
m->zero_bias_offset[c] =
Allocate<float>(cinfo, DCTSIZE2, JPOOL_IMAGE_ALIGNED);
m->zero_bias_mul[c] = Allocate<float>(cinfo, DCTSIZE2, JPOOL_IMAGE_ALIGNED);
memset(m->zero_bias_mul[c], 0, DCTSIZE2 * sizeof(float));
memset(m->zero_bias_offset[c], 0, DCTSIZE2 * sizeof(float));
}
}
void InitProgressMonitor(j_compress_ptr cinfo) {
if (cinfo->progress == nullptr) {
return;
}
if (IsStreamingSupported(cinfo)) {
// We have only one input pass.
cinfo->progress->total_passes = 1;
} else {
// We have one input pass, a histogram pass for each scan, and an encode
// pass for each scan.
cinfo->progress->total_passes = 1 + 2 * cinfo->num_scans;
}
}
// Common setup code between streaming and transcoding code paths. Called in
// both jpegli_start_compress() and jpegli_write_coefficients().
void InitCompress(j_compress_ptr cinfo, boolean write_all_tables) {
jpeg_comp_master* m = cinfo->master;
(*cinfo->err->reset_error_mgr)(reinterpret_cast<j_common_ptr>(cinfo));
ProcessCompressionParams(cinfo);
InitProgressMonitor(cinfo);
AllocateBuffers(cinfo);
if (cinfo->global_state != kEncWriteCoeffs) {
ChooseInputMethod(cinfo);
if (!cinfo->raw_data_in) {
ChooseColorTransform(cinfo);
ChooseDownsampleMethods(cinfo);
}
QuantPass pass = m->psnr_target > 0 ? QuantPass::SEARCH_FIRST_PASS
: QuantPass::NO_SEARCH;
InitQuantizer(cinfo, pass);
}
if (write_all_tables) {
jpegli_suppress_tables(cinfo, FALSE);
}
if (!cinfo->optimize_coding && !cinfo->progressive_mode) {
CopyHuffmanTables(cinfo);
InitEntropyCoder(cinfo);
}
(*cinfo->dest->init_destination)(cinfo);
WriteFileHeader(cinfo);
JpegBitWriterInit(cinfo);
m->next_iMCU_row = 0;
m->last_restart_interval = 0;
m->next_dht_index = 0;
}
//
// Input streaming
//
void ProgressMonitorInputPass(j_compress_ptr cinfo) {
if (cinfo->progress == nullptr) {
return;
}
cinfo->progress->completed_passes = 0;
cinfo->progress->pass_counter = cinfo->next_scanline;
cinfo->progress->pass_limit = cinfo->image_height;
(*cinfo->progress->progress_monitor)(reinterpret_cast<j_common_ptr>(cinfo));
}
void ReadInputRow(j_compress_ptr cinfo, const uint8_t* scanline,
float* row[kMaxComponents]) {
jpeg_comp_master* m = cinfo->master;
int num_all_components =
std::max(cinfo->input_components, cinfo->num_components);
for (int c = 0; c < num_all_components; ++c) {
row[c] = m->input_buffer[c].Row(m->next_input_row);
}
++m->next_input_row;
if (scanline == nullptr) {
for (int c = 0; c < cinfo->input_components; ++c) {
memset(row[c], 0, cinfo->image_width * sizeof(row[c][0]));
}
return;
}
(*m->input_method)(scanline, cinfo->image_width, row);
}
void PadInputBuffer(j_compress_ptr cinfo, float* row[kMaxComponents]) {
jpeg_comp_master* m = cinfo->master;
const size_t len0 = cinfo->image_width;
const size_t len1 = m->xsize_blocks * DCTSIZE;
for (int c = 0; c < cinfo->num_components; ++c) {
// Pad row to a multiple of the iMCU width, plus create a border of 1
// repeated pixel for adaptive quant field calculation.
float last_val = row[c][len0 - 1];
for (size_t x = len0; x <= len1; ++x) {
row[c][x] = last_val;
}
row[c][-1] = row[c][0];
}
if (m->next_input_row == cinfo->image_height) {
size_t num_rows = m->ysize_blocks * DCTSIZE - cinfo->image_height;
for (size_t i = 0; i < num_rows; ++i) {
for (int c = 0; c < cinfo->num_components; ++c) {
float* dest = m->input_buffer[c].Row(m->next_input_row) - 1;
memcpy(dest, row[c] - 1, (len1 + 2) * sizeof(dest[0]));
}
++m->next_input_row;
}
}
}
void ProcessiMCURow(j_compress_ptr cinfo) {
JPEGLI_CHECK(cinfo->master->next_iMCU_row < cinfo->total_iMCU_rows);
if (!cinfo->raw_data_in) {
ApplyInputSmoothing(cinfo);
DownsampleInputBuffer(cinfo);
}
ComputeAdaptiveQuantField(cinfo);
if (IsStreamingSupported(cinfo)) {
if (cinfo->optimize_coding) {
ComputeTokensForiMCURow(cinfo);
} else {
WriteiMCURow(cinfo);
}
} else {
ComputeCoefficientsForiMCURow(cinfo);
}
++cinfo->master->next_iMCU_row;
}
void ProcessiMCURows(j_compress_ptr cinfo) {
jpeg_comp_master* m = cinfo->master;
size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor;
// To have context rows both above and below the current iMCU row, we delay
// processing the first iMCU row and process two iMCU rows after we receive
// the last input row.
if (m->next_input_row % iMCU_height == 0 && m->next_input_row > iMCU_height) {
ProcessiMCURow(cinfo);
}
if (m->next_input_row >= cinfo->image_height) {
ProcessiMCURow(cinfo);
}
}
//
// Non-streaming part
//
void ZigZagShuffleBlocks(j_compress_ptr cinfo) {
JCOEF tmp[DCTSIZE2];
for (int c = 0; c < cinfo->num_components; ++c) {
jpeg_component_info* comp = &cinfo->comp_info[c];
for (JDIMENSION by = 0; by < comp->height_in_blocks; ++by) {
JBLOCKARRAY blocks = GetBlockRow(cinfo, c, by);
for (JDIMENSION bx = 0; bx < comp->width_in_blocks; ++bx) {
JCOEF* block = &blocks[0][bx][0];
for (int k = 0; k < DCTSIZE2; ++k) {
tmp[k] = block[kJPEGNaturalOrder[k]];
}
memcpy(block, tmp, sizeof(tmp));
}
}
}
}
} // namespace jpegli
//
// Parameter setup
//
void jpegli_CreateCompress(j_compress_ptr cinfo, int version,
size_t structsize) {
cinfo->mem = nullptr;
if (structsize != sizeof(*cinfo)) {
JPEGLI_ERROR("jpegli_compress_struct has wrong size.");
}
jpegli::InitMemoryManager(reinterpret_cast<j_common_ptr>(cinfo));
cinfo->progress = nullptr;
cinfo->is_decompressor = FALSE;
cinfo->global_state = jpegli::kEncStart;
cinfo->dest = nullptr;
cinfo->image_width = 0;
cinfo->image_height = 0;
cinfo->input_components = 0;
cinfo->in_color_space = JCS_UNKNOWN;
cinfo->input_gamma = 1.0f;
cinfo->num_components = 0;
cinfo->jpeg_color_space = JCS_UNKNOWN;
cinfo->comp_info = nullptr;
for (auto& quant_tbl_ptr : cinfo->quant_tbl_ptrs) {
quant_tbl_ptr = nullptr;
}
for (int i = 0; i < NUM_HUFF_TBLS; ++i) {
cinfo->dc_huff_tbl_ptrs[i] = nullptr;
cinfo->ac_huff_tbl_ptrs[i] = nullptr;
}
memset(cinfo->arith_dc_L, 0, sizeof(cinfo->arith_dc_L));
memset(cinfo->arith_dc_U, 0, sizeof(cinfo->arith_dc_U));
memset(cinfo->arith_ac_K, 0, sizeof(cinfo->arith_ac_K));
cinfo->write_Adobe_marker = FALSE;
cinfo->master = jpegli::Allocate<jpeg_comp_master>(cinfo, 1);
jpegli::InitializeCompressParams(cinfo);
cinfo->master->force_baseline = true;
cinfo->master->xyb_mode = false;
cinfo->master->cicp_transfer_function = 2; // unknown transfer function code
cinfo->master->use_std_tables = false;
cinfo->master->use_adaptive_quantization = true;
cinfo->master->progressive_level = jpegli::kDefaultProgressiveLevel;
cinfo->master->data_type = JPEGLI_TYPE_UINT8;
cinfo->master->endianness = JPEGLI_NATIVE_ENDIAN;
cinfo->master->coeff_buffers = nullptr;
}
void jpegli_set_xyb_mode(j_compress_ptr cinfo) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->master->xyb_mode = true;
}
void jpegli_set_cicp_transfer_function(j_compress_ptr cinfo, int code) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->master->cicp_transfer_function = code;
}
void jpegli_set_defaults(j_compress_ptr cinfo) {
CheckState(cinfo, jpegli::kEncStart);
jpegli::InitializeCompressParams(cinfo);
jpegli_default_colorspace(cinfo);
jpegli_set_quality(cinfo, 90, TRUE);
jpegli_set_progressive_level(cinfo, jpegli::kDefaultProgressiveLevel);
jpegli::AddStandardHuffmanTables(reinterpret_cast<j_common_ptr>(cinfo),
/*is_dc=*/false);
jpegli::AddStandardHuffmanTables(reinterpret_cast<j_common_ptr>(cinfo),
/*is_dc=*/true);
}
void jpegli_default_colorspace(j_compress_ptr cinfo) {
CheckState(cinfo, jpegli::kEncStart);
if (cinfo->in_color_space == JCS_RGB && cinfo->master->xyb_mode) {
jpegli_set_colorspace(cinfo, JCS_RGB);
return;
}
switch (cinfo->in_color_space) {
case JCS_GRAYSCALE:
jpegli_set_colorspace(cinfo, JCS_GRAYSCALE);
break;
case JCS_RGB:
#ifdef JCS_EXTENSIONS
case JCS_EXT_RGB:
case JCS_EXT_BGR:
case JCS_EXT_RGBX:
case JCS_EXT_BGRX:
case JCS_EXT_XRGB:
case JCS_EXT_XBGR:
#endif
#if JCS_ALPHA_EXTENSIONS
case JCS_EXT_RGBA:
case JCS_EXT_BGRA:
case JCS_EXT_ARGB:
case JCS_EXT_ABGR:
#endif
jpegli_set_colorspace(cinfo, JCS_YCbCr);
break;
case JCS_YCbCr:
jpegli_set_colorspace(cinfo, JCS_YCbCr);
break;
case JCS_CMYK:
jpegli_set_colorspace(cinfo, JCS_CMYK);
break;
case JCS_YCCK:
jpegli_set_colorspace(cinfo, JCS_YCCK);
break;
case JCS_UNKNOWN:
jpegli_set_colorspace(cinfo, JCS_UNKNOWN);
break;
default:
JPEGLI_ERROR("Unsupported input colorspace %d", cinfo->in_color_space);
}
}
void jpegli_set_colorspace(j_compress_ptr cinfo, J_COLOR_SPACE colorspace) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->jpeg_color_space = colorspace;
switch (colorspace) {
case JCS_GRAYSCALE:
cinfo->num_components = 1;
break;
case JCS_RGB:
case JCS_YCbCr:
cinfo->num_components = 3;
break;
case JCS_CMYK:
case JCS_YCCK:
cinfo->num_components = 4;
break;
case JCS_UNKNOWN:
cinfo->num_components =
std::min<int>(jpegli::kMaxComponents, cinfo->input_components);
break;
default:
JPEGLI_ERROR("Unsupported jpeg colorspace %d", colorspace);
}
// Adobe marker is only needed to distinguish CMYK and YCCK JPEGs.
cinfo->write_Adobe_marker = TO_JXL_BOOL(cinfo->jpeg_color_space == JCS_YCCK);
if (cinfo->comp_info == nullptr) {
cinfo->comp_info =
jpegli::Allocate<jpeg_component_info>(cinfo, MAX_COMPONENTS);
}
memset(cinfo->comp_info, 0,
jpegli::kMaxComponents * sizeof(jpeg_component_info));
for (int c = 0; c < cinfo->num_components; ++c) {
jpeg_component_info* comp = &cinfo->comp_info[c];
comp->component_index = c;
comp->component_id = c + 1;
comp->h_samp_factor = 1;
comp->v_samp_factor = 1;
comp->quant_tbl_no = 0;
comp->dc_tbl_no = 0;
comp->ac_tbl_no = 0;
}
if (colorspace == JCS_RGB) {
cinfo->comp_info[0].component_id = 'R';
cinfo->comp_info[1].component_id = 'G';
cinfo->comp_info[2].component_id = 'B';
if (cinfo->master->xyb_mode) {
// Subsample blue channel.
cinfo->comp_info[0].h_samp_factor = cinfo->comp_info[0].v_samp_factor = 2;
cinfo->comp_info[1].h_samp_factor = cinfo->comp_info[1].v_samp_factor = 2;
cinfo->comp_info[2].h_samp_factor = cinfo->comp_info[2].v_samp_factor = 1;
// Use separate quantization tables for each component
cinfo->comp_info[1].quant_tbl_no = 1;
cinfo->comp_info[2].quant_tbl_no = 2;
}
} else if (colorspace == JCS_CMYK) {
cinfo->comp_info[0].component_id = 'C';
cinfo->comp_info[1].component_id = 'M';
cinfo->comp_info[2].component_id = 'Y';
cinfo->comp_info[3].component_id = 'K';
} else if (colorspace == JCS_YCbCr || colorspace == JCS_YCCK) {
// Use separate quantization and Huffman tables for luma and chroma
cinfo->comp_info[1].quant_tbl_no = 1;
cinfo->comp_info[2].quant_tbl_no = 1;
cinfo->comp_info[1].dc_tbl_no = cinfo->comp_info[1].ac_tbl_no = 1;
cinfo->comp_info[2].dc_tbl_no = cinfo->comp_info[2].ac_tbl_no = 1;
// Use chroma subsampling by default
cinfo->comp_info[0].h_samp_factor = cinfo->comp_info[0].v_samp_factor = 2;
if (colorspace == JCS_YCCK) {
cinfo->comp_info[3].h_samp_factor = cinfo->comp_info[3].v_samp_factor = 2;
}
}
}
void jpegli_set_distance(j_compress_ptr cinfo, float distance,
boolean force_baseline) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->master->force_baseline = FROM_JXL_BOOL(force_baseline);
float distances[NUM_QUANT_TBLS] = {distance, distance, distance};
jpegli::SetQuantMatrices(cinfo, distances, /*add_two_chroma_tables=*/true);
}
float jpegli_quality_to_distance(int quality) {
return (quality >= 100 ? 0.01f
: quality >= 30 ? 0.1f + (100 - quality) * 0.09f
: 53.0f / 3000.0f * quality * quality -
23.0f / 20.0f * quality + 25.0f);
}
void jpegli_set_psnr(j_compress_ptr cinfo, float psnr, float tolerance,
float min_distance, float max_distance) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->master->psnr_target = psnr;
cinfo->master->psnr_tolerance = tolerance;
cinfo->master->min_distance = min_distance;
cinfo->master->max_distance = max_distance;
}
void jpegli_set_quality(j_compress_ptr cinfo, int quality,
boolean force_baseline) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->master->force_baseline = FROM_JXL_BOOL(force_baseline);
float distance = jpegli_quality_to_distance(quality);
float distances[NUM_QUANT_TBLS] = {distance, distance, distance};
jpegli::SetQuantMatrices(cinfo, distances, /*add_two_chroma_tables=*/false);
}
void jpegli_set_linear_quality(j_compress_ptr cinfo, int scale_factor,
boolean force_baseline) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->master->force_baseline = FROM_JXL_BOOL(force_baseline);
float distance = jpegli::LinearQualityToDistance(scale_factor);
float distances[NUM_QUANT_TBLS] = {distance, distance, distance};
jpegli::SetQuantMatrices(cinfo, distances, /*add_two_chroma_tables=*/false);
}
#if JPEG_LIB_VERSION >= 70
void jpegli_default_qtables(j_compress_ptr cinfo, boolean force_baseline) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->master->force_baseline = force_baseline;
float distances[NUM_QUANT_TBLS];
for (int i = 0; i < NUM_QUANT_TBLS; ++i) {
distances[i] = jpegli::LinearQualityToDistance(cinfo->q_scale_factor[i]);
}
jpegli::SetQuantMatrices(cinfo, distances, /*add_two_chroma_tables=*/false);
}
#endif
int jpegli_quality_scaling(int quality) {
quality = std::min(100, std::max(1, quality));
return quality < 50 ? 5000 / quality : 200 - 2 * quality;
}
void jpegli_use_standard_quant_tables(j_compress_ptr cinfo) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->master->use_std_tables = true;
}
void jpegli_add_quant_table(j_compress_ptr cinfo, int which_tbl,
const unsigned int* basic_table, int scale_factor,
boolean force_baseline) {
CheckState(cinfo, jpegli::kEncStart);
if (which_tbl < 0 || which_tbl > NUM_QUANT_TBLS) {
JPEGLI_ERROR("Invalid quant table index %d", which_tbl);
}
if (cinfo->quant_tbl_ptrs[which_tbl] == nullptr) {
cinfo->quant_tbl_ptrs[which_tbl] =
jpegli_alloc_quant_table(reinterpret_cast<j_common_ptr>(cinfo));
}
int max_qval = force_baseline ? 255 : 32767U;
JQUANT_TBL* quant_table = cinfo->quant_tbl_ptrs[which_tbl];
for (int k = 0; k < DCTSIZE2; ++k) {
int qval = (basic_table[k] * scale_factor + 50) / 100;
qval = std::max(1, std::min(qval, max_qval));
quant_table->quantval[k] = qval;
}
quant_table->sent_table = FALSE;
}
void jpegli_enable_adaptive_quantization(j_compress_ptr cinfo, boolean value) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->master->use_adaptive_quantization = FROM_JXL_BOOL(value);
}
void jpegli_simple_progression(j_compress_ptr cinfo) {
CheckState(cinfo, jpegli::kEncStart);
jpegli_set_progressive_level(cinfo, 2);
}
void jpegli_set_progressive_level(j_compress_ptr cinfo, int level) {
CheckState(cinfo, jpegli::kEncStart);
if (level < 0) {
JPEGLI_ERROR("Invalid progressive level %d", level);
}
cinfo->master->progressive_level = level;
}
void jpegli_set_input_format(j_compress_ptr cinfo, JpegliDataType data_type,
JpegliEndianness endianness) {
CheckState(cinfo, jpegli::kEncStart);
switch (data_type) {
case JPEGLI_TYPE_UINT8:
case JPEGLI_TYPE_UINT16:
case JPEGLI_TYPE_FLOAT:
cinfo->master->data_type = data_type;
break;
default:
JPEGLI_ERROR("Unsupported data type %d", data_type);
}
switch (endianness) {
case JPEGLI_NATIVE_ENDIAN:
case JPEGLI_LITTLE_ENDIAN:
case JPEGLI_BIG_ENDIAN:
cinfo->master->endianness = endianness;
break;
default:
JPEGLI_ERROR("Unsupported endianness %d", endianness);
}
}
#if JPEG_LIB_VERSION >= 70
void jpegli_calc_jpeg_dimensions(j_compress_ptr cinfo) {
// Since input scaling is not supported, we just copy the image dimensions.
cinfo->jpeg_width = cinfo->image_width;
cinfo->jpeg_height = cinfo->image_height;
}
#endif
void jpegli_copy_critical_parameters(j_decompress_ptr srcinfo,
j_compress_ptr dstinfo) {
CheckState(dstinfo, jpegli::kEncStart);
// Image parameters.
dstinfo->image_width = srcinfo->image_width;
dstinfo->image_height = srcinfo->image_height;
dstinfo->input_components = srcinfo->num_components;
dstinfo->in_color_space = srcinfo->jpeg_color_space;
dstinfo->input_gamma = srcinfo->output_gamma;
// Compression parameters.
jpegli_set_defaults(dstinfo);
jpegli_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
if (dstinfo->num_components != srcinfo->num_components) {
const auto& cinfo = dstinfo;
JPEGLI_ERROR("Mismatch between src colorspace and components");
}
dstinfo->data_precision = srcinfo->data_precision;
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
dstinfo->density_unit = srcinfo->density_unit;
dstinfo->X_density = srcinfo->X_density;
dstinfo->Y_density = srcinfo->Y_density;
for (int c = 0; c < dstinfo->num_components; ++c) {
jpeg_component_info* srccomp = &srcinfo->comp_info[c];
jpeg_component_info* dstcomp = &dstinfo->comp_info[c];
dstcomp->component_id = srccomp->component_id;
dstcomp->h_samp_factor = srccomp->h_samp_factor;
dstcomp->v_samp_factor = srccomp->v_samp_factor;
dstcomp->quant_tbl_no = srccomp->quant_tbl_no;
}
for (int i = 0; i < NUM_QUANT_TBLS; ++i) {
if (!srcinfo->quant_tbl_ptrs[i]) continue;
if (dstinfo->quant_tbl_ptrs[i] == nullptr) {
dstinfo->quant_tbl_ptrs[i] = jpegli::Allocate<JQUANT_TBL>(dstinfo, 1);
}
memcpy(dstinfo->quant_tbl_ptrs[i], srcinfo->quant_tbl_ptrs[i],
sizeof(JQUANT_TBL));
dstinfo->quant_tbl_ptrs[i]->sent_table = FALSE;
}
}
void jpegli_suppress_tables(j_compress_ptr cinfo, boolean suppress) {
jpegli::SetSentTableFlag(cinfo->quant_tbl_ptrs, NUM_QUANT_TBLS, suppress);
jpegli::SetSentTableFlag(cinfo->dc_huff_tbl_ptrs, NUM_HUFF_TBLS, suppress);
jpegli::SetSentTableFlag(cinfo->ac_huff_tbl_ptrs, NUM_HUFF_TBLS, suppress);
}
//
// Compressor initialization
//
void jpegli_start_compress(j_compress_ptr cinfo, boolean write_all_tables) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->global_state = jpegli::kEncHeader;
jpegli::InitCompress(cinfo, write_all_tables);
cinfo->next_scanline = 0;
cinfo->master->next_input_row = 0;
}
void jpegli_write_coefficients(j_compress_ptr cinfo,
jvirt_barray_ptr* coef_arrays) {
CheckState(cinfo, jpegli::kEncStart);
cinfo->global_state = jpegli::kEncWriteCoeffs;
jpegli::InitCompress(cinfo, /*write_all_tables=*/TRUE);
cinfo->master->coeff_buffers = coef_arrays;
cinfo->next_scanline = cinfo->image_height;
cinfo->master->next_input_row = cinfo->image_height;
}
void jpegli_write_tables(j_compress_ptr cinfo) {
CheckState(cinfo, jpegli::kEncStart);
if (cinfo->dest == nullptr) {
JPEGLI_ERROR("Missing destination.");
}
jpeg_comp_master* m = cinfo->master;
(*cinfo->err->reset_error_mgr)(reinterpret_cast<j_common_ptr>(cinfo));
(*cinfo->dest->init_destination)(cinfo);
jpegli::WriteOutput(cinfo, {0xFF, 0xD8}); // SOI
jpegli::EncodeDQT(cinfo, /*write_all_tables=*/true);
jpegli::CopyHuffmanTables(cinfo);
jpegli::EncodeDHT(cinfo, 0, m->num_huffman_tables);
jpegli::WriteOutput(cinfo, {0xFF, 0xD9}); // EOI
(*cinfo->dest->term_destination)(cinfo);
jpegli_suppress_tables(cinfo, TRUE);
}
//
// Marker writing
//
void jpegli_write_m_header(j_compress_ptr cinfo, int marker,
unsigned int datalen) {
CheckState(cinfo, jpegli::kEncHeader, jpegli::kEncWriteCoeffs);
if (datalen > jpegli::kMaxBytesInMarker) {
JPEGLI_ERROR("Invalid marker length %u", datalen);
}
if (marker != 0xfe && (marker < 0xe0 || marker > 0xef)) {
JPEGLI_ERROR(
"jpegli_write_m_header: Only APP and COM markers are supported.");
}
std::vector<uint8_t> marker_data(4 + datalen);
marker_data[0] = 0xff;
marker_data[1] = marker;
marker_data[2] = (datalen + 2) >> 8;
marker_data[3] = (datalen + 2) & 0xff;
jpegli::WriteOutput(cinfo, marker_data.data(), 4);
}
void jpegli_write_m_byte(j_compress_ptr cinfo, int val) {
uint8_t data = val;
jpegli::WriteOutput(cinfo, &data, 1);
}
void jpegli_write_marker(j_compress_ptr cinfo, int marker,
const JOCTET* dataptr, unsigned int datalen) {
jpegli_write_m_header(cinfo, marker, datalen);
jpegli::WriteOutput(cinfo, dataptr, datalen);
}
void jpegli_write_icc_profile(j_compress_ptr cinfo, const JOCTET* icc_data_ptr,
unsigned int icc_data_len) {
constexpr size_t kMaxIccBytesInMarker =
jpegli::kMaxBytesInMarker - sizeof jpegli::kICCSignature - 2;
const int num_markers =
static_cast<int>(jpegli::DivCeil(icc_data_len, kMaxIccBytesInMarker));
size_t begin = 0;
for (int current_marker = 0; current_marker < num_markers; ++current_marker) {
const size_t length = std::min(kMaxIccBytesInMarker, icc_data_len - begin);
jpegli_write_m_header(
cinfo, jpegli::kICCMarker,
static_cast<unsigned int>(length + sizeof jpegli::kICCSignature + 2));
for (const unsigned char c : jpegli::kICCSignature) {
jpegli_write_m_byte(cinfo, c);
}
jpegli_write_m_byte(cinfo, current_marker + 1);
jpegli_write_m_byte(cinfo, num_markers);
for (size_t i = 0; i < length; ++i) {
jpegli_write_m_byte(cinfo, icc_data_ptr[begin]);
++begin;
}
}
}
//
// Input streaming
//
JDIMENSION jpegli_write_scanlines(j_compress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION num_lines) {
CheckState(cinfo, jpegli::kEncHeader, jpegli::kEncReadImage);
if (cinfo->raw_data_in) {
JPEGLI_ERROR("jpegli_write_raw_data() must be called for raw data mode.");
}
jpegli::ProgressMonitorInputPass(cinfo);
if (cinfo->global_state == jpegli::kEncHeader &&
jpegli::IsStreamingSupported(cinfo) && !cinfo->optimize_coding) {
jpegli::WriteFrameHeader(cinfo);
jpegli::WriteScanHeader(cinfo, 0);
}
cinfo->global_state = jpegli::kEncReadImage;
jpeg_comp_master* m = cinfo->master;
if (num_lines + cinfo->next_scanline > cinfo->image_height) {
num_lines = cinfo->image_height - cinfo->next_scanline;
}
JDIMENSION prev_scanline = cinfo->next_scanline;
size_t input_lag = (std::min<size_t>(cinfo->image_height, m->next_input_row) -
cinfo->next_scanline);
if (input_lag > num_lines) {
JPEGLI_ERROR("Need at least %u lines to continue", input_lag);
}
if (input_lag > 0) {
if (!jpegli::EmptyBitWriterBuffer(&m->bw)) {
return 0;
}
cinfo->next_scanline += input_lag;
}
float* rows[jpegli::kMaxComponents];
for (size_t i = input_lag; i < num_lines; ++i) {
jpegli::ReadInputRow(cinfo, scanlines[i], rows);
(*m->color_transform)(rows, cinfo->image_width);
jpegli::PadInputBuffer(cinfo, rows);
jpegli::ProcessiMCURows(cinfo);
if (!jpegli::EmptyBitWriterBuffer(&m->bw)) {
break;
}
++cinfo->next_scanline;
}
return cinfo->next_scanline - prev_scanline;
}
JDIMENSION jpegli_write_raw_data(j_compress_ptr cinfo, JSAMPIMAGE data,
JDIMENSION num_lines) {
CheckState(cinfo, jpegli::kEncHeader, jpegli::kEncReadImage);
if (!cinfo->raw_data_in) {
JPEGLI_ERROR("jpegli_write_raw_data(): raw data mode was not set");
}
jpegli::ProgressMonitorInputPass(cinfo);
if (cinfo->global_state == jpegli::kEncHeader &&
jpegli::IsStreamingSupported(cinfo) && !cinfo->optimize_coding) {
jpegli::WriteFrameHeader(cinfo);
jpegli::WriteScanHeader(cinfo, 0);
}
cinfo->global_state = jpegli::kEncReadImage;
jpeg_comp_master* m = cinfo->master;
if (cinfo->next_scanline >= cinfo->image_height) {
return 0;
}
size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor;
if (num_lines < iMCU_height) {
JPEGLI_ERROR("Missing input lines, minimum is %u", iMCU_height);
}
if (cinfo->next_scanline < m->next_input_row) {
JPEGLI_CHECK(m->next_input_row - cinfo->next_scanline == iMCU_height);
if (!jpegli::EmptyBitWriterBuffer(&m->bw)) {
return 0;
}
cinfo->next_scanline = m->next_input_row;
return iMCU_height;
}
size_t iMCU_y = m->next_input_row / iMCU_height;
float* rows[jpegli::kMaxComponents];
for (int c = 0; c < cinfo->num_components; ++c) {
JSAMPARRAY plane = data[c];
jpeg_component_info* comp = &cinfo->comp_info[c];
size_t xsize = comp->width_in_blocks * DCTSIZE;
size_t ysize = comp->v_samp_factor * DCTSIZE;
size_t y0 = iMCU_y * ysize;
auto& buffer = m->input_buffer[c];
for (size_t i = 0; i < ysize; ++i) {
rows[0] = buffer.Row(y0 + i);
if (plane[i] == nullptr) {
memset(rows[0], 0, xsize * sizeof(rows[0][0]));
} else {
(*m->input_method)(plane[i], xsize, rows);
}
// We need a border of 1 repeated pixel for adaptive quant field.
buffer.PadRow(y0 + i, xsize, /*border=*/1);
}
}
m->next_input_row += iMCU_height;
jpegli::ProcessiMCURows(cinfo);
if (!jpegli::EmptyBitWriterBuffer(&m->bw)) {
return 0;
}
cinfo->next_scanline += iMCU_height;
return iMCU_height;
}
//
// Non-streaming part
//
void jpegli_finish_compress(j_compress_ptr cinfo) {
CheckState(cinfo, jpegli::kEncReadImage, jpegli::kEncWriteCoeffs);
jpeg_comp_master* m = cinfo->master;
if (cinfo->next_scanline < cinfo->image_height) {
JPEGLI_ERROR("Incomplete image, expected %d rows, got %d",
cinfo->image_height, cinfo->next_scanline);
}
if (cinfo->global_state == jpegli::kEncWriteCoeffs) {
// Zig-zag shuffle all the blocks. For non-transcoding case it was already
// done in EncodeiMCURow().
jpegli::ZigZagShuffleBlocks(cinfo);
}
if (m->psnr_target > 0) {
jpegli::QuantizetoPSNR(cinfo);
}
const bool tokens_done = jpegli::IsStreamingSupported(cinfo);
const bool bitstream_done =
tokens_done && !FROM_JXL_BOOL(cinfo->optimize_coding);
if (!tokens_done) {
jpegli::TokenizeJpeg(cinfo);
}
if (cinfo->optimize_coding || cinfo->progressive_mode) {
jpegli::OptimizeHuffmanCodes(cinfo);
jpegli::InitEntropyCoder(cinfo);
}
if (!bitstream_done) {
jpegli::WriteFrameHeader(cinfo);
for (int i = 0; i < cinfo->num_scans; ++i) {
jpegli::WriteScanHeader(cinfo, i);
jpegli::WriteScanData(cinfo, i);
}
} else {
JumpToByteBoundary(&m->bw);
if (!EmptyBitWriterBuffer(&m->bw)) {
JPEGLI_ERROR("Output suspension is not supported in finish_compress");
}
}
jpegli::WriteOutput(cinfo, {0xFF, 0xD9}); // EOI
(*cinfo->dest->term_destination)(cinfo);
// Release memory and reset global state.
jpegli_abort_compress(cinfo);
}
void jpegli_abort_compress(j_compress_ptr cinfo) {
jpegli_abort(reinterpret_cast<j_common_ptr>(cinfo));
}
void jpegli_destroy_compress(j_compress_ptr cinfo) {
jpegli_destroy(reinterpret_cast<j_common_ptr>(cinfo));
}