Source code
Revision control
Copy as Markdown
Other Tools
// Copyright 2021 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef HWY_TESTS_TEST_UTIL_H_
#define HWY_TESTS_TEST_UTIL_H_
// Target-independent helper functions for use by *_test.cc.
#include <string.h>
#include <cmath> // std::isnan
#include <string>
#include "hwy/base.h"
#include "hwy/print.h"
namespace hwy {
// The maximum vector size used in tests when defining test data. DEPRECATED.
HWY_MAYBE_UNUSED constexpr size_t kTestMaxVectorSize = 64;
// 64-bit random generator (Xorshift128+). Much smaller state than std::mt19937,
// which triggers a compiler bug.
class RandomState {
public:
explicit RandomState(const uint64_t seed = 0x123456789ull) {
s0_ = SplitMix64(seed + 0x9E3779B97F4A7C15ull);
s1_ = SplitMix64(s0_);
}
HWY_INLINE uint64_t operator()() {
uint64_t s1 = s0_;
const uint64_t s0 = s1_;
const uint64_t bits = s1 + s0;
s0_ = s0;
s1 ^= s1 << 23;
s1 ^= s0 ^ (s1 >> 18) ^ (s0 >> 5);
s1_ = s1;
return bits;
}
private:
static uint64_t SplitMix64(uint64_t z) {
z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9ull;
z = (z ^ (z >> 27)) * 0x94D049BB133111EBull;
return z ^ (z >> 31);
}
uint64_t s0_;
uint64_t s1_;
};
static HWY_INLINE uint32_t Random32(RandomState* rng) {
return static_cast<uint32_t>((*rng)());
}
static HWY_INLINE uint64_t Random64(RandomState* rng) { return (*rng)(); }
template <class T, HWY_IF_FLOAT_OR_SPECIAL(T)>
static HWY_INLINE T RandomFiniteValue(RandomState* rng) {
const uint64_t rand_bits = Random64(rng);
using TU = MakeUnsigned<T>;
constexpr TU kExponentMask = ExponentMask<T>();
constexpr TU kSignMantMask = static_cast<TU>(~kExponentMask);
constexpr TU kMaxExpField = static_cast<TU>(MaxExponentField<T>());
constexpr int kNumOfMantBits = MantissaBits<T>();
const TU orig_exp_field_val =
static_cast<TU>((rand_bits >> kNumOfMantBits) & kMaxExpField);
const TU sign_mant_bits = static_cast<TU>(rand_bits & kSignMantMask);
const TU exp_bits =
static_cast<TU>(HWY_MIN(HWY_MAX(orig_exp_field_val, 1), kMaxExpField - 1)
<< kNumOfMantBits);
return BitCastScalar<T>(static_cast<TU>(sign_mant_bits | exp_bits));
}
template <class T, HWY_IF_NOT_FLOAT_NOR_SPECIAL(T)>
static HWY_INLINE T RandomFiniteValue(RandomState* rng) {
using TU = MakeUnsigned<T>;
return static_cast<T>(Random64(rng) & LimitsMax<TU>());
}
HWY_TEST_DLLEXPORT bool BytesEqual(const void* p1, const void* p2, size_t size,
size_t* pos = nullptr);
void AssertStringEqual(const char* expected, const char* actual,
const char* target_name, const char* filename, int line);
namespace detail {
template <typename T, typename TU = MakeUnsigned<T>>
TU ComputeUlpDelta(const T expected, const T actual) {
// Handle -0 == 0 and infinities.
if (expected == actual) return 0;
// Consider "equal" if both are NaN, so we can verify an expected NaN.
// Needs a special case because there are many possible NaN representations.
if (std::isnan(expected) && std::isnan(actual)) return 0;
// Compute the difference in units of last place. We do not need to check for
// differing signs; they will result in large differences, which is fine.
TU ux, uy;
CopySameSize(&expected, &ux);
CopySameSize(&actual, &uy);
// Avoid unsigned->signed cast: 2's complement is only guaranteed by C++20.
const TU ulp = HWY_MAX(ux, uy) - HWY_MIN(ux, uy);
return ulp;
}
HWY_TEST_DLLEXPORT bool IsEqual(const TypeInfo& info, const void* expected_ptr,
const void* actual_ptr);
HWY_TEST_DLLEXPORT HWY_NORETURN void PrintMismatchAndAbort(
const TypeInfo& info, const void* expected_ptr, const void* actual_ptr,
const char* target_name, const char* filename, int line, size_t lane = 0,
size_t num_lanes = 1);
HWY_TEST_DLLEXPORT void AssertArrayEqual(const TypeInfo& info,
const void* expected_void,
const void* actual_void, size_t N,
const char* target_name,
const char* filename, int line);
} // namespace detail
// Returns a name for the vector/part/scalar. The type prefix is u/i/f for
// unsigned/signed/floating point, followed by the number of bits per lane;
// then 'x' followed by the number of lanes. Example: u8x16. This is useful for
// understanding which instantiation of a generic test failed.
template <typename T>
std::string TypeName(T /*unused*/, size_t N) {
char string100[100];
detail::TypeName(detail::MakeTypeInfo<T>(), N, string100);
return string100;
}
// Type large enough to hold either value, to which we cast for comparison.
template <typename T1, typename T2>
using LargestType = If<IsFloat<T1>() || IsFloat<T2>(),
FloatFromSize<HWY_MAX(sizeof(T1), sizeof(T2))>,
If<IsSigned<T1>() || IsSigned<T2>(),
SignedFromSize<HWY_MAX(sizeof(T1), sizeof(T2))>,
UnsignedFromSize<HWY_MAX(sizeof(T1), sizeof(T2))>>>;
// TTo is the lane type of the actual value and T is an often but not
// necessarily larger type of the expected value. Especially for 8-bit lanes
// initialized via Iota, the actual value often wraps around. To ensure it still
// compares equal to the expected value, wrap integers.
// 1) < 64-bit integer: mask
template <typename TTo, typename T, HWY_IF_NOT_FLOAT_NOR_SPECIAL(TTo),
HWY_IF_T_SIZE_LE(TTo, 4)>
T WrapTo(T value) {
return static_cast<T>(static_cast<uint64_t>(value) &
((uint64_t{1} << (sizeof(TTo) * 8)) - 1));
}
// 2) 64-bit integer: no mask (shift would overflow)
template <typename TTo, typename T, HWY_IF_NOT_FLOAT_NOR_SPECIAL(TTo),
HWY_IF_T_SIZE_GT(TTo, 4)>
T WrapTo(T value) {
return value;
}
// 3) float or special: do nothing because their value range is sufficient for
// Iota for any vector length.
template <typename TTo, typename T, HWY_IF_FLOAT_OR_SPECIAL(TTo)>
T WrapTo(T value) {
return value;
}
// Compare non-vector, non-string T, after promoting to the largest type.
template <typename TExpected, typename TActual>
HWY_INLINE bool IsEqual(const TExpected texpected, const TActual actual) {
const TActual expected = ConvertScalarTo<TActual>(WrapTo<TActual>(texpected));
const auto info = detail::MakeTypeInfo<TActual>();
return detail::IsEqual(info, &expected, &actual);
}
template <typename TExpected, typename TActual>
HWY_INLINE void AssertEqual(const TExpected texpected, const TActual actual,
const char* target_name, const char* filename,
int line, size_t lane = 0) {
const TActual expected = ConvertScalarTo<TActual>(WrapTo<TActual>(texpected));
const auto info = detail::MakeTypeInfo<TActual>();
if (!detail::IsEqual(info, &expected, &actual)) {
detail::PrintMismatchAndAbort(info, &expected, &actual, target_name,
filename, line, lane);
}
}
template <typename T>
HWY_INLINE void AssertArrayEqual(const T* expected, const T* actual,
size_t count, const char* target_name,
const char* filename, int line) {
const auto info = hwy::detail::MakeTypeInfo<T>();
detail::AssertArrayEqual(info, expected, actual, count, target_name, filename,
line);
}
// Compare with tolerance due to FMA and f16 precision.
template <typename T>
HWY_INLINE void AssertArraySimilar(const T* expected, const T* actual,
size_t count, const char* target_name,
const char* filename, int line) {
const double tolerance =
(hwy::IsSame<RemoveCvRef<T>, float16_t>() ? 128.0 : 1.0) /
(uint64_t{1} << MantissaBits<T>());
for (size_t i = 0; i < count; ++i) {
const double exp = ConvertScalarTo<double>(expected[i]);
const double act = ConvertScalarTo<double>(actual[i]);
const double l1 = ScalarAbs(act - exp);
// Cannot divide, so check absolute error.
if (exp == 0.0) {
if (l1 > tolerance) {
HWY_ABORT("%s %s:%d %s mismatch %zu of %zu: %E %E l1 %E tol %E\n",
target_name, filename, line, TypeName(T(), 1).c_str(), i,
count, exp, act, l1, tolerance);
}
} else { // relative
const double rel = l1 / exp;
if (rel > tolerance) {
HWY_ABORT("%s %s:%d %s mismatch %zu of %zu: %E %E rel %E tol %E\n",
target_name, filename, line, TypeName(T(), 1).c_str(), i,
count, exp, act, rel, tolerance);
}
}
}
}
} // namespace hwy
#endif // HWY_TESTS_TEST_UTIL_H_