Source code
Revision control
Copy as Markdown
Other Tools
// Copyright 2019 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "tests/minmax_test.cc"
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
struct TestUnsignedMinMax {
template <typename T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
const auto v0 = Zero(d);
// Leave headroom such that v1 < v2 even after wraparound.
const auto mod = And(Iota(d, 0), Set(d, LimitsMax<T>() >> 1));
const auto v1 = Add(mod, Set(d, static_cast<T>(1)));
const auto v2 = Add(mod, Set(d, static_cast<T>(2)));
HWY_ASSERT_VEC_EQ(d, v1, Min(v1, v2));
HWY_ASSERT_VEC_EQ(d, v2, Max(v1, v2));
HWY_ASSERT_VEC_EQ(d, v0, Min(v1, v0));
HWY_ASSERT_VEC_EQ(d, v1, Max(v1, v0));
const auto vmin = Set(d, LimitsMin<T>());
const auto vmax = Set(d, LimitsMax<T>());
HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, vmax));
HWY_ASSERT_VEC_EQ(d, vmin, Min(vmax, vmin));
HWY_ASSERT_VEC_EQ(d, vmax, Max(vmin, vmax));
HWY_ASSERT_VEC_EQ(d, vmax, Max(vmax, vmin));
}
};
struct TestSignedMinMax {
template <typename T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
// Leave headroom such that v1 < v2 even after wraparound.
const auto mod =
And(Iota(d, 0), Set(d, ConvertScalarTo<T>(LimitsMax<T>() >> 1)));
const auto v1 = Add(mod, Set(d, ConvertScalarTo<T>(1)));
const auto v2 = Add(mod, Set(d, ConvertScalarTo<T>(2)));
const auto v_neg = Sub(Zero(d), v1);
HWY_ASSERT_VEC_EQ(d, v1, Min(v1, v2));
HWY_ASSERT_VEC_EQ(d, v2, Max(v1, v2));
HWY_ASSERT_VEC_EQ(d, v_neg, Min(v1, v_neg));
HWY_ASSERT_VEC_EQ(d, v1, Max(v1, v_neg));
const auto v0 = Zero(d);
const auto vmin = Set(d, LimitsMin<T>());
const auto vmax = Set(d, LimitsMax<T>());
HWY_ASSERT_VEC_EQ(d, vmin, Min(v0, vmin));
HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, v0));
HWY_ASSERT_VEC_EQ(d, v0, Max(v0, vmin));
HWY_ASSERT_VEC_EQ(d, v0, Max(vmin, v0));
HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, vmax));
HWY_ASSERT_VEC_EQ(d, vmin, Min(vmax, vmin));
HWY_ASSERT_VEC_EQ(d, vmax, Max(vmin, vmax));
HWY_ASSERT_VEC_EQ(d, vmax, Max(vmax, vmin));
}
};
struct TestFloatMinMax {
template <typename T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
const auto v1 = Iota(d, 1);
const auto v2 = Iota(d, 2);
const auto v_neg = Iota(d, -ConvertScalarTo<T>(Lanes(d)));
HWY_ASSERT_VEC_EQ(d, v1, Min(v1, v2));
HWY_ASSERT_VEC_EQ(d, v2, Max(v1, v2));
HWY_ASSERT_VEC_EQ(d, v_neg, Min(v1, v_neg));
HWY_ASSERT_VEC_EQ(d, v1, Max(v1, v_neg));
const auto v0 = Zero(d);
const auto vmin = Set(d, ConvertScalarTo<T>(-1E30));
const auto vmax = Set(d, ConvertScalarTo<T>(1E30));
HWY_ASSERT_VEC_EQ(d, vmin, Min(v0, vmin));
HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, v0));
HWY_ASSERT_VEC_EQ(d, v0, Max(v0, vmin));
HWY_ASSERT_VEC_EQ(d, v0, Max(vmin, v0));
HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, vmax));
HWY_ASSERT_VEC_EQ(d, vmin, Min(vmax, vmin));
HWY_ASSERT_VEC_EQ(d, vmax, Max(vmin, vmax));
HWY_ASSERT_VEC_EQ(d, vmax, Max(vmax, vmin));
}
};
HWY_NOINLINE void TestAllMinMax() {
ForUnsignedTypes(ForPartialVectors<TestUnsignedMinMax>());
ForSignedTypes(ForPartialVectors<TestSignedMinMax>());
ForFloatTypes(ForPartialVectors<TestFloatMinMax>());
}
template <class D>
static HWY_NOINLINE Vec<D> Make128(D d, uint64_t hi, uint64_t lo) {
alignas(16) uint64_t in[2];
in[0] = lo;
in[1] = hi;
return LoadDup128(d, in);
}
struct TestMinMax128 {
template <typename T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
using V = Vec<D>;
const size_t N = Lanes(d);
auto a_lanes = AllocateAligned<T>(N);
auto b_lanes = AllocateAligned<T>(N);
auto min_lanes = AllocateAligned<T>(N);
auto max_lanes = AllocateAligned<T>(N);
RandomState rng;
const V v00 = Zero(d);
const V v01 = Make128(d, 0, 1);
const V v10 = Make128(d, 1, 0);
const V v11 = Add(v01, v10);
// Same arg
HWY_ASSERT_VEC_EQ(d, v00, Min128(d, v00, v00));
HWY_ASSERT_VEC_EQ(d, v01, Min128(d, v01, v01));
HWY_ASSERT_VEC_EQ(d, v10, Min128(d, v10, v10));
HWY_ASSERT_VEC_EQ(d, v11, Min128(d, v11, v11));
HWY_ASSERT_VEC_EQ(d, v00, Max128(d, v00, v00));
HWY_ASSERT_VEC_EQ(d, v01, Max128(d, v01, v01));
HWY_ASSERT_VEC_EQ(d, v10, Max128(d, v10, v10));
HWY_ASSERT_VEC_EQ(d, v11, Max128(d, v11, v11));
// First arg less
HWY_ASSERT_VEC_EQ(d, v00, Min128(d, v00, v01));
HWY_ASSERT_VEC_EQ(d, v01, Min128(d, v01, v10));
HWY_ASSERT_VEC_EQ(d, v10, Min128(d, v10, v11));
HWY_ASSERT_VEC_EQ(d, v01, Max128(d, v00, v01));
HWY_ASSERT_VEC_EQ(d, v10, Max128(d, v01, v10));
HWY_ASSERT_VEC_EQ(d, v11, Max128(d, v10, v11));
// Second arg less
HWY_ASSERT_VEC_EQ(d, v00, Min128(d, v01, v00));
HWY_ASSERT_VEC_EQ(d, v01, Min128(d, v10, v01));
HWY_ASSERT_VEC_EQ(d, v10, Min128(d, v11, v10));
HWY_ASSERT_VEC_EQ(d, v01, Max128(d, v01, v00));
HWY_ASSERT_VEC_EQ(d, v10, Max128(d, v10, v01));
HWY_ASSERT_VEC_EQ(d, v11, Max128(d, v11, v10));
// Also check 128-bit blocks are independent
for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) {
for (size_t i = 0; i < N; ++i) {
a_lanes[i] = Random64(&rng);
b_lanes[i] = Random64(&rng);
}
const V a = Load(d, a_lanes.get());
const V b = Load(d, b_lanes.get());
for (size_t i = 0; i < N; i += 2) {
const bool lt = a_lanes[i + 1] == b_lanes[i + 1]
? (a_lanes[i] < b_lanes[i])
: (a_lanes[i + 1] < b_lanes[i + 1]);
min_lanes[i + 0] = lt ? a_lanes[i + 0] : b_lanes[i + 0];
min_lanes[i + 1] = lt ? a_lanes[i + 1] : b_lanes[i + 1];
max_lanes[i + 0] = lt ? b_lanes[i + 0] : a_lanes[i + 0];
max_lanes[i + 1] = lt ? b_lanes[i + 1] : a_lanes[i + 1];
}
HWY_ASSERT_VEC_EQ(d, min_lanes.get(), Min128(d, a, b));
HWY_ASSERT_VEC_EQ(d, max_lanes.get(), Max128(d, a, b));
}
}
};
HWY_NOINLINE void TestAllMinMax128() {
ForGEVectors<128, TestMinMax128>()(uint64_t());
}
struct TestMinMax128Upper {
template <typename T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
using V = Vec<D>;
const size_t N = Lanes(d);
auto a_lanes = AllocateAligned<T>(N);
auto b_lanes = AllocateAligned<T>(N);
auto min_lanes = AllocateAligned<T>(N);
auto max_lanes = AllocateAligned<T>(N);
RandomState rng;
const V v00 = Zero(d);
const V v01 = Make128(d, 0, 1);
const V v10 = Make128(d, 1, 0);
const V v11 = Add(v01, v10);
// Same arg
HWY_ASSERT_VEC_EQ(d, v00, Min128Upper(d, v00, v00));
HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v01, v01));
HWY_ASSERT_VEC_EQ(d, v10, Min128Upper(d, v10, v10));
HWY_ASSERT_VEC_EQ(d, v11, Min128Upper(d, v11, v11));
HWY_ASSERT_VEC_EQ(d, v00, Max128Upper(d, v00, v00));
HWY_ASSERT_VEC_EQ(d, v01, Max128Upper(d, v01, v01));
HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v10, v10));
HWY_ASSERT_VEC_EQ(d, v11, Max128Upper(d, v11, v11));
// Equivalent but not equal (chooses second arg)
HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v00, v01));
HWY_ASSERT_VEC_EQ(d, v11, Min128Upper(d, v10, v11));
HWY_ASSERT_VEC_EQ(d, v00, Min128Upper(d, v01, v00));
HWY_ASSERT_VEC_EQ(d, v10, Min128Upper(d, v11, v10));
HWY_ASSERT_VEC_EQ(d, v00, Max128Upper(d, v01, v00));
HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v11, v10));
HWY_ASSERT_VEC_EQ(d, v01, Max128Upper(d, v00, v01));
HWY_ASSERT_VEC_EQ(d, v11, Max128Upper(d, v10, v11));
// First arg less
HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v01, v10));
HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v01, v10));
// Second arg less
HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v10, v01));
HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v10, v01));
// Also check 128-bit blocks are independent
for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) {
for (size_t i = 0; i < N; ++i) {
a_lanes[i] = Random64(&rng);
b_lanes[i] = Random64(&rng);
}
const V a = Load(d, a_lanes.get());
const V b = Load(d, b_lanes.get());
for (size_t i = 0; i < N; i += 2) {
const bool lt = a_lanes[i + 1] < b_lanes[i + 1];
min_lanes[i + 0] = lt ? a_lanes[i + 0] : b_lanes[i + 0];
min_lanes[i + 1] = lt ? a_lanes[i + 1] : b_lanes[i + 1];
max_lanes[i + 0] = lt ? b_lanes[i + 0] : a_lanes[i + 0];
max_lanes[i + 1] = lt ? b_lanes[i + 1] : a_lanes[i + 1];
}
HWY_ASSERT_VEC_EQ(d, min_lanes.get(), Min128Upper(d, a, b));
HWY_ASSERT_VEC_EQ(d, max_lanes.get(), Max128Upper(d, a, b));
}
}
};
HWY_NOINLINE void TestAllMinMax128Upper() {
ForGEVectors<128, TestMinMax128Upper>()(uint64_t());
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace hwy {
HWY_BEFORE_TEST(HwyMinMaxTest);
HWY_EXPORT_AND_TEST_P(HwyMinMaxTest, TestAllMinMax);
HWY_EXPORT_AND_TEST_P(HwyMinMaxTest, TestAllMinMax128);
HWY_EXPORT_AND_TEST_P(HwyMinMaxTest, TestAllMinMax128Upper);
} // namespace hwy
#endif