Source code

Revision control

Copy as Markdown

Other Tools

// Copyright 2022 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <array> // IWYU pragma: keep
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "tests/compress_test.cc"
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
// Regenerate tables used in the implementation, instead of testing.
#define HWY_PRINT_TABLES 0
#if !HWY_PRINT_TABLES || HWY_IDE
template <class D, class DI, typename T = TFromD<D>, typename TI = TFromD<DI>>
void CheckStored(D d, DI di, const char* op, size_t expected_pos,
size_t actual_pos, size_t num_to_check,
const AlignedFreeUniquePtr<T[]>& in,
const AlignedFreeUniquePtr<TI[]>& mask_lanes,
const AlignedFreeUniquePtr<T[]>& expected, const T* actual_u,
int line) {
if (expected_pos != actual_pos) {
hwy::Abort(__FILE__, line,
"%s: size mismatch for %s: expected %d, actual %d\n", op,
TypeName(T(), Lanes(d)).c_str(), static_cast<int>(expected_pos),
static_cast<int>(actual_pos));
}
// Modified from AssertVecEqual - we may not be checking all lanes.
for (size_t i = 0; i < num_to_check; ++i) {
if (!IsEqual(expected[i], actual_u[i])) {
const size_t N = Lanes(d);
fprintf(stderr, "%s: mismatch at i=%d of %d, line %d:\n\n", op,
static_cast<int>(i), static_cast<int>(num_to_check), line);
Print(di, "mask", Load(di, mask_lanes.get()), 0, N);
Print(d, "in", Load(d, in.get()), 0, N);
Print(d, "expect", Load(d, expected.get()), 0, num_to_check);
Print(d, "actual", Load(d, actual_u), 0, num_to_check);
HWY_ASSERT(false);
}
}
}
struct TestCompress {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
RandomState rng;
using TI = MakeSigned<T>; // For mask > 0 comparison
using TU = MakeUnsigned<T>;
const Rebind<TI, D> di;
const size_t N = Lanes(d);
const size_t bits_size = RoundUpTo((N + 7) / 8, 8);
for (int frac : {0, 2, 3}) {
// For CompressStore
const size_t misalign = static_cast<size_t>(frac) * N / 4;
auto in_lanes = AllocateAligned<T>(N);
auto mask_lanes = AllocateAligned<TI>(N);
auto garbage = AllocateAligned<TU>(N);
auto expected = AllocateAligned<T>(N);
auto actual_a = AllocateAligned<T>(misalign + N);
auto bits = AllocateAligned<uint8_t>(bits_size);
HWY_ASSERT(in_lanes && mask_lanes && garbage && expected && actual_a &&
bits);
T* actual_u = actual_a.get() + misalign;
ZeroBytes(bits.get(), bits_size); // for MSAN
// Each lane should have a chance of having mask=true.
for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
size_t expected_pos = 0;
for (size_t i = 0; i < N; ++i) {
in_lanes[i] = RandomFiniteValue<T>(&rng);
mask_lanes[i] = (Random32(&rng) & 1024) ? TI(1) : TI(0);
if (mask_lanes[i] > 0) {
expected[expected_pos++] = in_lanes[i];
}
garbage[i] = static_cast<TU>(Random64(&rng));
}
size_t num_to_check;
if (CompressIsPartition<T>::value) {
// For non-native Compress, also check that mask=false lanes were
// moved to the back of the vector (highest indices).
size_t extra = expected_pos;
for (size_t i = 0; i < N; ++i) {
if (mask_lanes[i] == 0) {
expected[extra++] = in_lanes[i];
}
}
HWY_ASSERT(extra == N);
num_to_check = N;
} else {
// For native Compress, only the mask=true lanes are defined.
num_to_check = expected_pos;
}
const auto in = Load(d, in_lanes.get());
const auto mask =
RebindMask(d, Gt(Load(di, mask_lanes.get()), Zero(di)));
StoreMaskBits(d, mask, bits.get());
// Compress
ZeroBytes(actual_u, N * sizeof(T));
StoreU(Compress(in, mask), d, actual_u);
CheckStored(d, di, "Compress", expected_pos, expected_pos, num_to_check,
in_lanes, mask_lanes, expected, actual_u, __LINE__);
// CompressNot
ZeroBytes(actual_u, N * sizeof(T));
StoreU(CompressNot(in, Not(mask)), d, actual_u);
CheckStored(d, di, "CompressNot", expected_pos, expected_pos,
num_to_check, in_lanes, mask_lanes, expected, actual_u,
__LINE__);
// CompressStore
ZeroBytes(actual_u, N * sizeof(T));
const size_t size1 = CompressStore(in, mask, d, actual_u);
// expected_pos instead of num_to_check because this op is not
// affected by CompressIsPartition.
CheckStored(d, di, "CompressStore", expected_pos, size1, expected_pos,
in_lanes, mask_lanes, expected, actual_u, __LINE__);
// CompressBlendedStore
memcpy(actual_u, garbage.get(), N * sizeof(T));
const size_t size2 = CompressBlendedStore(in, mask, d, actual_u);
// expected_pos instead of num_to_check because this op only writes
// the mask=true lanes.
CheckStored(d, di, "CompressBlendedStore", expected_pos, size2,
expected_pos, in_lanes, mask_lanes, expected, actual_u,
__LINE__);
// Subsequent lanes are untouched.
for (size_t i = size2; i < N; ++i) {
#if HWY_COMPILER_MSVC && HWY_TARGET == HWY_AVX2
// TODO(eustas): re-enable when compiler is fixed
#else
HWY_ASSERT_EQ(garbage[i], reinterpret_cast<TU*>(actual_u)[i]);
#endif
}
// CompressBits
ZeroBytes(actual_u, N * sizeof(T));
StoreU(CompressBits(in, bits.get()), d, actual_u);
CheckStored(d, di, "CompressBits", expected_pos, expected_pos,
num_to_check, in_lanes, mask_lanes, expected, actual_u,
__LINE__);
// CompressBitsStore
ZeroBytes(actual_u, N * sizeof(T));
const size_t size3 = CompressBitsStore(in, bits.get(), d, actual_u);
// expected_pos instead of num_to_check because this op is not
// affected by CompressIsPartition.
CheckStored(d, di, "CompressBitsStore", expected_pos, size3,
expected_pos, in_lanes, mask_lanes, expected, actual_u,
__LINE__);
} // rep
} // frac
} // operator()
};
HWY_NOINLINE void TestAllCompress() {
ForAllTypes(ForPartialVectors<TestCompress>());
}
struct TestCompressBlocks {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
#if HWY_TARGET == HWY_SCALAR
(void)d;
#else
static_assert(sizeof(T) == 8 && !IsSigned<T>(), "Should be u64");
RandomState rng;
using TI = MakeSigned<T>; // For mask > 0 comparison
const Rebind<TI, D> di;
const size_t N = Lanes(d);
auto in_lanes = AllocateAligned<T>(N);
auto mask_lanes = AllocateAligned<TI>(N);
auto expected = AllocateAligned<T>(N);
auto actual = AllocateAligned<T>(N);
HWY_ASSERT(in_lanes && mask_lanes && expected && actual);
// Each lane should have a chance of having mask=true.
for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
size_t expected_pos = 0;
for (size_t i = 0; i < N; i += 2) {
in_lanes[i] = RandomFiniteValue<T>(&rng);
in_lanes[i + 1] = RandomFiniteValue<T>(&rng);
mask_lanes[i + 1] = mask_lanes[i] = TI{(Random32(&rng) & 8) ? 1 : 0};
if (mask_lanes[i] > 0) {
expected[expected_pos++] = in_lanes[i];
expected[expected_pos++] = in_lanes[i + 1];
}
}
size_t num_to_check;
if (CompressIsPartition<T>::value) {
// For non-native Compress, also check that mask=false lanes were
// moved to the back of the vector (highest indices).
size_t extra = expected_pos;
for (size_t i = 0; i < N; ++i) {
if (mask_lanes[i] == 0) {
expected[extra++] = in_lanes[i];
}
}
HWY_ASSERT(extra == N);
num_to_check = N;
} else {
// For native Compress, only the mask=true lanes are defined.
num_to_check = expected_pos;
}
const auto in = Load(d, in_lanes.get());
const auto mask = RebindMask(d, Gt(Load(di, mask_lanes.get()), Zero(di)));
// CompressBlocksNot
ZeroBytes(actual.get(), N * sizeof(T));
StoreU(CompressBlocksNot(in, Not(mask)), d, actual.get());
CheckStored(d, di, "CompressBlocksNot", expected_pos, expected_pos,
num_to_check, in_lanes, mask_lanes, expected, actual.get(),
__LINE__);
} // rep
#endif // HWY_TARGET == HWY_SCALAR
} // operator()
};
HWY_NOINLINE void TestAllCompressBlocks() {
ForGE128Vectors<TestCompressBlocks>()(uint64_t());
}
#endif // !HWY_PRINT_TABLES
#if HWY_PRINT_TABLES || HWY_IDE
namespace detail { // for code folding
void PrintCompress8x8Tables() {
printf("======================================= 8x8\n");
constexpr size_t N = 8;
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint8_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
printf("%d,", indices[i]);
}
printf(code & 1 ? "//\n" : "/**/");
}
printf("\n");
}
void PrintCompress16x8Tables() {
printf("======================================= 16x8\n");
constexpr size_t N = 8; // 128-bit SIMD
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint8_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Doubled (for converting lane to byte indices)
for (size_t i = 0; i < N; ++i) {
printf("%d,", 2 * indices[i]);
}
printf(code & 1 ? "//\n" : "/**/");
}
printf("\n");
}
void PrintCompressNot16x8Tables() {
printf("======================================= Not 16x8\n");
constexpr size_t N = 8; // 128-bit SIMD
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint8_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Doubled (for converting lane to byte indices)
for (size_t i = 0; i < N; ++i) {
printf("%d,", 2 * indices[i]);
}
printf(not_code & 1 ? "//\n" : "/**/");
}
printf("\n");
}
// Compressed to nibbles, unpacked via variable right shift. Also includes
// FirstN bits in the nibble MSB.
void PrintCompress32x8Tables() {
printf("======================================= 32/64x8\n");
constexpr size_t N = 8; // AVX2 or 64-bit AVX3
for (uint64_t code = 0; code < (1ull << N); ++code) {
const size_t count = PopCount(code);
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
if (i < count) {
indices[i] |= N;
HWY_ASSERT(indices[i] < 0x10);
}
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
void PrintCompressNot32x8Tables() {
printf("======================================= Not 32/64x8\n");
constexpr size_t N = 8; // AVX2 or 64-bit AVX3
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
const size_t count = PopCount(code);
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
if (i < count) {
indices[i] |= N;
HWY_ASSERT(indices[i] < 0x10);
}
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
// Compressed to nibbles (for AVX3 64x4)
void PrintCompress64x4NibbleTables() {
printf("======================================= 64x4Nibble\n");
constexpr size_t N = 4; // AVX2
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
void PrintCompressNot64x4NibbleTables() {
printf("======================================= Not 64x4Nibble\n");
constexpr size_t N = 4; // AVX2
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
void PrintCompressNot64x2NibbleTables() {
printf("======================================= Not 64x2Nibble\n");
constexpr size_t N = 2; // 128-bit
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Convert to nibbles
uint64_t packed = 0;
for (size_t i = 0; i < N; ++i) {
HWY_ASSERT(indices[i] < N);
packed += indices[i] << (i * 4);
}
HWY_ASSERT(packed < (1ull << (N * 4)));
printf("0x%08x,", static_cast<uint32_t>(packed));
}
printf("\n");
}
void PrintCompress64x4Tables() {
printf("======================================= 64x4 uncompressed\n");
constexpr size_t N = 4; // SVE_256
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<size_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Store uncompressed indices because SVE TBL returns 0 if an index is out
// of bounds. On AVX3 we simply variable-shift because permute indices are
// interpreted modulo N. Compression is not worth the extra shift+AND
// because the table is anyway only 512 bytes.
for (size_t i = 0; i < N; ++i) {
printf("%d,", static_cast<int>(indices[i]));
}
}
printf("\n");
}
void PrintCompressNot64x4Tables() {
printf("======================================= Not 64x4 uncompressed\n");
constexpr size_t N = 4; // SVE_256
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<size_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Store uncompressed indices because SVE TBL returns 0 if an index is out
// of bounds. On AVX3 we simply variable-shift because permute indices are
// interpreted modulo N. Compression is not worth the extra shift+AND
// because the table is anyway only 512 bytes.
for (size_t i = 0; i < N; ++i) {
printf("%d,", static_cast<int>(indices[i]));
}
}
printf("\n");
}
// Same as above, but prints pairs of u32 indices (for AVX2). Also includes
// FirstN bits in the nibble MSB.
void PrintCompress64x4PairTables() {
printf("======================================= 64x4 u32 index\n");
constexpr size_t N = 4; // AVX2
for (uint64_t code = 0; code < (1ull << N); ++code) {
const size_t count = PopCount(code);
std::array<size_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Store uncompressed indices because SVE TBL returns 0 if an index is out
// of bounds. On AVX3 we simply variable-shift because permute indices are
// interpreted modulo N. Compression is not worth the extra shift+AND
// because the table is anyway only 512 bytes.
for (size_t i = 0; i < N; ++i) {
const int first_n_bit = i < count ? 8 : 0;
const int low = static_cast<int>(2 * indices[i]) + first_n_bit;
HWY_ASSERT(low < 0x10);
printf("%d, %d, ", low, low + 1);
}
}
printf("\n");
}
void PrintCompressNot64x4PairTables() {
printf("======================================= Not 64x4 u32 index\n");
constexpr size_t N = 4; // AVX2
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
const size_t count = PopCount(code);
std::array<size_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
// Store uncompressed indices because SVE TBL returns 0 if an index is out
// of bounds. On AVX3 we simply variable-shift because permute indices are
// interpreted modulo N. Compression is not worth the extra shift+AND
// because the table is anyway only 512 bytes.
for (size_t i = 0; i < N; ++i) {
const int first_n_bit = i < count ? 8 : 0;
const int low = static_cast<int>(2 * indices[i]) + first_n_bit;
HWY_ASSERT(low < 0x10);
printf("%d, %d, ", low, low + 1);
}
}
printf("\n");
}
// 4-tuple of byte indices
void PrintCompress32x4Tables() {
printf("======================================= 32x4\n");
using T = uint32_t;
constexpr size_t N = 4; // SSE4
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
}
}
}
printf("\n");
}
void PrintCompressNot32x4Tables() {
printf("======================================= Not 32x4\n");
using T = uint32_t;
constexpr size_t N = 4; // SSE4
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
}
}
}
printf("\n");
}
// 8-tuple of byte indices
void PrintCompress64x2Tables() {
printf("======================================= 64x2\n");
using T = uint64_t;
constexpr size_t N = 2; // SSE4
for (uint64_t code = 0; code < (1ull << N); ++code) {
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
}
}
}
printf("\n");
}
void PrintCompressNot64x2Tables() {
printf("======================================= Not 64x2\n");
using T = uint64_t;
constexpr size_t N = 2; // SSE4
for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
const uint64_t code = ~not_code;
std::array<uint32_t, N> indices{0};
size_t pos = 0;
// All lanes where mask = true
for (size_t i = 0; i < N; ++i) {
if (code & (1ull << i)) {
indices[pos++] = i;
}
}
// All lanes where mask = false
for (size_t i = 0; i < N; ++i) {
if (!(code & (1ull << i))) {
indices[pos++] = i;
}
}
HWY_ASSERT(pos == N);
for (size_t i = 0; i < N; ++i) {
for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
}
}
}
printf("\n");
}
} // namespace detail
HWY_NOINLINE void PrintTables() {
// Only print once.
#if HWY_TARGET == HWY_STATIC_TARGET
detail::PrintCompress32x8Tables();
detail::PrintCompressNot32x8Tables();
detail::PrintCompress64x4NibbleTables();
detail::PrintCompressNot64x4NibbleTables();
detail::PrintCompressNot64x2NibbleTables();
detail::PrintCompress64x4Tables();
detail::PrintCompressNot64x4Tables();
detail::PrintCompress32x4Tables();
detail::PrintCompressNot32x4Tables();
detail::PrintCompress64x2Tables();
detail::PrintCompressNot64x2Tables();
detail::PrintCompress64x4PairTables();
detail::PrintCompressNot64x4PairTables();
detail::PrintCompress16x8Tables();
detail::PrintCompress8x8Tables();
detail::PrintCompressNot16x8Tables();
#endif
}
#endif // HWY_PRINT_TABLES
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace hwy {
HWY_BEFORE_TEST(HwyCompressTest);
#if HWY_PRINT_TABLES
// Only print instead of running tests; this will be visible in the log.
HWY_EXPORT_AND_TEST_P(HwyCompressTest, PrintTables);
#else
HWY_EXPORT_AND_TEST_P(HwyCompressTest, TestAllCompress);
HWY_EXPORT_AND_TEST_P(HwyCompressTest, TestAllCompressBlocks);
#endif
} // namespace hwy
#endif