Source code

Revision control

Copy as Markdown

Other Tools

// Copyright 2019 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "hwy/nanobenchmark.h"
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS // before inttypes.h
#endif
#include <inttypes.h> // IWYU pragma: keep
#include <stdio.h>
#include <stdlib.h>
#include <time.h> // clock_gettime
#include <algorithm> // std::sort, std::find_if
#include <array>
#include <chrono> //NOLINT
#include <limits>
#include <numeric> // std::iota
#include <random>
#include <string>
#include <utility> // std::pair
#include <vector>
#if defined(_WIN32) || defined(_WIN64)
#ifndef NOMINMAX
#define NOMINMAX
#endif // NOMINMAX
#include <windows.h>
#endif
#if defined(__APPLE__)
#include <mach/mach.h>
#include <mach/mach_time.h>
#endif
#if defined(__HAIKU__)
#include <OS.h>
#endif
#include "hwy/base.h"
#if HWY_ARCH_PPC && defined(__GLIBC__)
#include <sys/platform/ppc.h> // NOLINT __ppc_get_timebase_freq
#elif HWY_ARCH_X86
#if HWY_COMPILER_MSVC
#include <intrin.h>
#else
#include <cpuid.h> // NOLINT
#endif // HWY_COMPILER_MSVC
#endif // HWY_ARCH_X86
namespace hwy {
namespace {
namespace timer {
// Ticks := platform-specific timer values (CPU cycles on x86). Must be
// unsigned to guarantee wraparound on overflow.
using Ticks = uint64_t;
// Start/Stop return absolute timestamps and must be placed immediately before
// and after the region to measure. We provide separate Start/Stop functions
// because they use different fences.
//
// Background: RDTSC is not 'serializing'; earlier instructions may complete
// after it, and/or later instructions may complete before it. 'Fences' ensure
// regions' elapsed times are independent of such reordering. The only
// documented unprivileged serializing instruction is CPUID, which acts as a
// full fence (no reordering across it in either direction). Unfortunately
// the latency of CPUID varies wildly (perhaps made worse by not initializing
// its EAX input). Because it cannot reliably be deducted from the region's
// elapsed time, it must not be included in the region to measure (i.e.
// between the two RDTSC).
//
// The newer RDTSCP is sometimes described as serializing, but it actually
// only serves as a half-fence with release semantics. Although all
// instructions in the region will complete before the final timestamp is
// captured, subsequent instructions may leak into the region and increase the
// elapsed time. Inserting another fence after the final RDTSCP would prevent
// such reordering without affecting the measured region.
//
// Fortunately, such a fence exists. The LFENCE instruction is only documented
// to delay later loads until earlier loads are visible. However, Intel's
// reference manual says it acts as a full fence (waiting until all earlier
// instructions have completed, and delaying later instructions until it
// completes). AMD assigns the same behavior to MFENCE.
//
// We need a fence before the initial RDTSC to prevent earlier instructions
// from leaking into the region, and arguably another after RDTSC to avoid
// region instructions from completing before the timestamp is recorded.
// When surrounded by fences, the additional RDTSCP half-fence provides no
// benefit, so the initial timestamp can be recorded via RDTSC, which has
// lower overhead than RDTSCP because it does not read TSC_AUX. In summary,
// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE.
//
// Using Start+Start leads to higher variance and overhead than Stop+Stop.
// However, Stop+Stop includes an LFENCE in the region measurements, which
// adds a delay dependent on earlier loads. The combination of Start+Stop
// is faster than Start+Start and more consistent than Stop+Stop because
// the first LFENCE already delayed subsequent loads before the measured
// region. This combination seems not to have been considered in prior work:
//
// Note: performance counters can measure 'exact' instructions-retired or
// (unhalted) cycle counts. The RDPMC instruction is not serializing and also
// requires fences. Unfortunately, it is not accessible on all OSes and we
// prefer to avoid kernel-mode drivers. Performance counters are also affected
// by several under/over-count errata, so we use the TSC instead.
// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds,
// divide by InvariantTicksPerSecond.
inline Ticks Start() {
Ticks t;
#if HWY_ARCH_PPC && defined(__GLIBC__)
asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
#elif HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC
// pmccntr_el0 is privileged but cntvct_el0 is accessible in Linux and QEMU.
asm volatile("mrs %0, cntvct_el0" : "=r"(t));
#elif HWY_ARCH_X86 && HWY_COMPILER_MSVC
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
t = __rdtsc();
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#elif HWY_ARCH_X86_64
asm volatile(
"lfence\n\t"
"rdtsc\n\t"
"shl $32, %%rdx\n\t"
"or %%rdx, %0\n\t"
"lfence"
: "=a"(t)
:
// "memory" avoids reordering. rdx = TSC >> 32.
// "cc" = flags modified by SHL.
: "rdx", "memory", "cc");
#elif HWY_ARCH_RVV
asm volatile("rdtime %0" : "=r"(t));
#elif defined(_WIN32) || defined(_WIN64)
LARGE_INTEGER counter;
(void)QueryPerformanceCounter(&counter);
t = counter.QuadPart;
#elif defined(__APPLE__)
t = mach_absolute_time();
#elif defined(__HAIKU__)
t = system_time_nsecs(); // since boot
#else // POSIX
timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
t = static_cast<Ticks>(ts.tv_sec * 1000000000LL + ts.tv_nsec);
#endif
return t;
}
// WARNING: on x86, caller must check HasRDTSCP before using this!
inline Ticks Stop() {
uint64_t t;
#if HWY_ARCH_PPC && defined(__GLIBC__)
asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
#elif HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC
// pmccntr_el0 is privileged but cntvct_el0 is accessible in Linux and QEMU.
asm volatile("mrs %0, cntvct_el0" : "=r"(t));
#elif HWY_ARCH_X86 && HWY_COMPILER_MSVC
_ReadWriteBarrier();
unsigned aux;
t = __rdtscp(&aux);
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#elif HWY_ARCH_X86_64
// Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
asm volatile(
"rdtscp\n\t"
"shl $32, %%rdx\n\t"
"or %%rdx, %0\n\t"
"lfence"
: "=a"(t)
:
// "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
// "cc" = flags modified by SHL.
: "rcx", "rdx", "memory", "cc");
#else
t = Start();
#endif
return t;
}
} // namespace timer
namespace robust_statistics {
// Sorts integral values in ascending order (e.g. for Mode). About 3x faster
// than std::sort for input distributions with very few unique values.
template <class T>
void CountingSort(T* values, size_t num_values) {
// Unique values and their frequency (similar to flat_map).
using Unique = std::pair<T, int>;
std::vector<Unique> unique;
for (size_t i = 0; i < num_values; ++i) {
const T value = values[i];
const auto pos =
std::find_if(unique.begin(), unique.end(),
[value](const Unique u) { return u.first == value; });
if (pos == unique.end()) {
unique.push_back(std::make_pair(value, 1));
} else {
++pos->second;
}
}
// Sort in ascending order of value (pair.first).
std::sort(unique.begin(), unique.end());
// Write that many copies of each unique value to the array.
T* HWY_RESTRICT p = values;
for (const auto& value_count : unique) {
std::fill(p, p + value_count.second, value_count.first);
p += value_count.second;
}
NANOBENCHMARK_CHECK(p == values + num_values);
}
// @return i in [idx_begin, idx_begin + half_count) that minimizes
// sorted[i + half_count] - sorted[i].
template <typename T>
size_t MinRange(const T* const HWY_RESTRICT sorted, const size_t idx_begin,
const size_t half_count) {
T min_range = std::numeric_limits<T>::max();
size_t min_idx = 0;
for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
NANOBENCHMARK_CHECK(sorted[idx] <= sorted[idx + half_count]);
const T range = sorted[idx + half_count] - sorted[idx];
if (range < min_range) {
min_range = range;
min_idx = idx;
}
}
return min_idx;
}
// Returns an estimate of the mode by calling MinRange on successively
// halved intervals. "sorted" must be in ascending order. This is the
// Half Sample Mode estimator proposed by Bickel in "On a fast, robust
// estimator of the mode", with complexity O(N log N). The mode is less
// affected by outliers in highly-skewed distributions than the median.
// The averaging operation below assumes "T" is an unsigned integer type.
template <typename T>
T ModeOfSorted(const T* const HWY_RESTRICT sorted, const size_t num_values) {
size_t idx_begin = 0;
size_t half_count = num_values / 2;
while (half_count > 1) {
idx_begin = MinRange(sorted, idx_begin, half_count);
half_count >>= 1;
}
const T x = sorted[idx_begin + 0];
if (half_count == 0) {
return x;
}
NANOBENCHMARK_CHECK(half_count == 1);
const T average = (x + sorted[idx_begin + 1] + 1) / 2;
return average;
}
// Returns the mode. Side effect: sorts "values".
template <typename T>
T Mode(T* values, const size_t num_values) {
CountingSort(values, num_values);
return ModeOfSorted(values, num_values);
}
template <typename T, size_t N>
T Mode(T (&values)[N]) {
return Mode(&values[0], N);
}
// Returns the median value. Side effect: sorts "values".
template <typename T>
T Median(T* values, const size_t num_values) {
NANOBENCHMARK_CHECK(!values->empty());
std::sort(values, values + num_values);
const size_t half = num_values / 2;
// Odd count: return middle
if (num_values % 2) {
return values[half];
}
// Even count: return average of middle two.
return (values[half] + values[half - 1] + 1) / 2;
}
// Returns a robust measure of variability.
template <typename T>
T MedianAbsoluteDeviation(const T* values, const size_t num_values,
const T median) {
NANOBENCHMARK_CHECK(num_values != 0);
std::vector<T> abs_deviations;
abs_deviations.reserve(num_values);
for (size_t i = 0; i < num_values; ++i) {
const int64_t abs = std::abs(static_cast<int64_t>(values[i]) -
static_cast<int64_t>(median));
abs_deviations.push_back(static_cast<T>(abs));
}
return Median(abs_deviations.data(), num_values);
}
} // namespace robust_statistics
} // namespace
namespace platform {
namespace {
// Measures the actual current frequency of Ticks. We cannot rely on the nominal
// frequency encoded in x86 BrandString because it is misleading on M1 Rosetta,
// and not reported by AMD. CPUID 0x15 is also not yet widely supported. Also
// used on RISC-V and aarch64.
HWY_MAYBE_UNUSED double MeasureNominalClockRate() {
double max_ticks_per_sec = 0.0;
// Arbitrary, enough to ignore 2 outliers without excessive init time.
for (int rep = 0; rep < 3; ++rep) {
auto time0 = std::chrono::steady_clock::now();
using Time = decltype(time0);
const timer::Ticks ticks0 = timer::Start();
const Time time_min = time0 + std::chrono::milliseconds(10);
Time time1;
timer::Ticks ticks1;
for (;;) {
time1 = std::chrono::steady_clock::now();
// Ideally this would be Stop, but that requires RDTSCP on x86. To avoid
// another codepath, just use Start instead. now() presumably has its own
// fence-like behavior.
ticks1 = timer::Start(); // Do not use Stop, see comment above
if (time1 >= time_min) break;
}
const double dticks = static_cast<double>(ticks1 - ticks0);
std::chrono::duration<double, std::ratio<1>> dtime = time1 - time0;
const double ticks_per_sec = dticks / dtime.count();
max_ticks_per_sec = std::max(max_ticks_per_sec, ticks_per_sec);
}
return max_ticks_per_sec;
}
#if HWY_ARCH_X86
void Cpuid(const uint32_t level, const uint32_t count,
uint32_t* HWY_RESTRICT abcd) {
#if HWY_COMPILER_MSVC
int regs[4];
__cpuidex(regs, level, count);
for (int i = 0; i < 4; ++i) {
abcd[i] = regs[i];
}
#else
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
__cpuid_count(level, count, a, b, c, d);
abcd[0] = a;
abcd[1] = b;
abcd[2] = c;
abcd[3] = d;
#endif
}
bool HasRDTSCP() {
uint32_t abcd[4];
Cpuid(0x80000001U, 0, abcd); // Extended feature flags
return (abcd[3] & (1u << 27)) != 0; // RDTSCP
}
std::string BrandString() {
char brand_string[49];
std::array<uint32_t, 4> abcd;
// Check if brand string is supported (it is on all reasonable Intel/AMD)
Cpuid(0x80000000U, 0, abcd.data());
if (abcd[0] < 0x80000004U) {
return std::string();
}
for (size_t i = 0; i < 3; ++i) {
Cpuid(static_cast<uint32_t>(0x80000002U + i), 0, abcd.data());
CopyBytes<sizeof(abcd)>(&abcd[0], brand_string + i * 16); // not same size
}
brand_string[48] = 0;
return brand_string;
}
#endif // HWY_ARCH_X86
} // namespace
HWY_DLLEXPORT double InvariantTicksPerSecond() {
#if HWY_ARCH_PPC && defined(__GLIBC__)
return static_cast<double>(__ppc_get_timebase_freq());
#elif HWY_ARCH_X86 || HWY_ARCH_RVV || (HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC)
// We assume the x86 TSC is invariant; it is on all recent Intel/AMD CPUs.
static const double freq = MeasureNominalClockRate();
return freq;
#elif defined(_WIN32) || defined(_WIN64)
LARGE_INTEGER freq;
(void)QueryPerformanceFrequency(&freq);
return static_cast<double>(freq.QuadPart);
#elif defined(__APPLE__)
mach_timebase_info_data_t timebase;
(void)mach_timebase_info(&timebase);
return static_cast<double>(timebase.denom) / timebase.numer * 1E9;
#else
return 1E9; // Haiku and clock_gettime return nanoseconds.
#endif
}
HWY_DLLEXPORT double Now() {
static const double mul = 1.0 / InvariantTicksPerSecond();
return static_cast<double>(timer::Start()) * mul;
}
HWY_DLLEXPORT uint64_t TimerResolution() {
#if HWY_ARCH_X86
bool can_use_stop = platform::HasRDTSCP();
#else
constexpr bool can_use_stop = true;
#endif
// Nested loop avoids exceeding stack/L1 capacity.
timer::Ticks repetitions[Params::kTimerSamples];
for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) {
timer::Ticks samples[Params::kTimerSamples];
if (can_use_stop) {
for (size_t i = 0; i < Params::kTimerSamples; ++i) {
const timer::Ticks t0 = timer::Start();
const timer::Ticks t1 = timer::Stop(); // we checked HasRDTSCP above
samples[i] = t1 - t0;
}
} else {
for (size_t i = 0; i < Params::kTimerSamples; ++i) {
const timer::Ticks t0 = timer::Start();
const timer::Ticks t1 = timer::Start(); // do not use Stop, see above
samples[i] = t1 - t0;
}
}
repetitions[rep] = robust_statistics::Mode(samples);
}
return robust_statistics::Mode(repetitions);
}
} // namespace platform
namespace {
static const timer::Ticks timer_resolution = platform::TimerResolution();
// Estimates the expected value of "lambda" values with a variable number of
// samples until the variability "rel_mad" is less than "max_rel_mad".
template <class Lambda>
timer::Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad,
const Params& p, const Lambda& lambda) {
// Choose initial samples_per_eval based on a single estimated duration.
timer::Ticks t0 = timer::Start();
lambda();
timer::Ticks t1 = timer::Stop(); // Caller checks HasRDTSCP
timer::Ticks est = t1 - t0;
static const double ticks_per_second = platform::InvariantTicksPerSecond();
const size_t ticks_per_eval =
static_cast<size_t>(ticks_per_second * p.seconds_per_eval);
size_t samples_per_eval = est == 0
? p.min_samples_per_eval
: static_cast<size_t>(ticks_per_eval / est);
samples_per_eval = HWY_MAX(samples_per_eval, p.min_samples_per_eval);
std::vector<timer::Ticks> samples;
samples.reserve(1 + samples_per_eval);
samples.push_back(est);
// Percentage is too strict for tiny differences, so also allow a small
// absolute "median absolute deviation".
const timer::Ticks max_abs_mad = (timer_resolution + 99) / 100;
*rel_mad = 0.0; // ensure initialized
for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) {
samples.reserve(samples.size() + samples_per_eval);
for (size_t i = 0; i < samples_per_eval; ++i) {
t0 = timer::Start();
lambda();
t1 = timer::Stop(); // Caller checks HasRDTSCP
samples.push_back(t1 - t0);
}
if (samples.size() >= p.min_mode_samples) {
est = robust_statistics::Mode(samples.data(), samples.size());
} else {
// For "few" (depends also on the variance) samples, Median is safer.
est = robust_statistics::Median(samples.data(), samples.size());
}
NANOBENCHMARK_CHECK(est != 0);
// Median absolute deviation (mad) is a robust measure of 'variability'.
const timer::Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation(
samples.data(), samples.size(), est);
*rel_mad = static_cast<double>(abs_mad) / static_cast<double>(est);
if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) {
if (p.verbose) {
printf("%6" PRIu64 " samples => %5" PRIu64 " (abs_mad=%4" PRIu64
", rel_mad=%4.2f%%)\n",
static_cast<uint64_t>(samples.size()),
static_cast<uint64_t>(est), static_cast<uint64_t>(abs_mad),
*rel_mad * 100.0);
}
return est;
}
}
if (p.verbose) {
printf("WARNING: rel_mad=%4.2f%% still exceeds %4.2f%% after %6" PRIu64
" samples.\n",
*rel_mad * 100.0, max_rel_mad * 100.0,
static_cast<uint64_t>(samples.size()));
}
return est;
}
using InputVec = std::vector<FuncInput>;
// Returns vector of unique input values.
InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) {
InputVec unique(inputs, inputs + num_inputs);
std::sort(unique.begin(), unique.end());
unique.erase(std::unique(unique.begin(), unique.end()), unique.end());
return unique;
}
// Returns how often we need to call func for sufficient precision.
size_t NumSkip(const Func func, const uint8_t* arg, const InputVec& unique,
const Params& p) {
// Min elapsed ticks for any input.
timer::Ticks min_duration = ~timer::Ticks(0);
for (const FuncInput input : unique) {
double rel_mad;
const timer::Ticks total = SampleUntilStable(
p.target_rel_mad, &rel_mad, p,
[func, arg, input]() { PreventElision(func(arg, input)); });
min_duration = HWY_MIN(min_duration, total - timer_resolution);
}
// Number of repetitions required to reach the target resolution.
const size_t max_skip = p.precision_divisor;
// Number of repetitions given the estimated duration.
const size_t num_skip =
min_duration == 0
? 0
: static_cast<size_t>((max_skip + min_duration - 1) / min_duration);
if (p.verbose) {
printf("res=%" PRIu64 " max_skip=%" PRIu64 " min_dur=%" PRIu64
" num_skip=%" PRIu64 "\n",
static_cast<uint64_t>(timer_resolution),
static_cast<uint64_t>(max_skip), static_cast<uint64_t>(min_duration),
static_cast<uint64_t>(num_skip));
}
return num_skip;
}
// Replicates inputs until we can omit "num_skip" occurrences of an input.
InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs,
const size_t num_unique, const size_t num_skip,
const Params& p) {
InputVec full;
if (num_unique == 1) {
full.assign(p.subset_ratio * num_skip, inputs[0]);
return full;
}
full.reserve(p.subset_ratio * num_skip * num_inputs);
for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) {
full.insert(full.end(), inputs, inputs + num_inputs);
}
std::mt19937 rng;
std::shuffle(full.begin(), full.end(), rng);
return full;
}
// Copies the "full" to "subset" in the same order, but with "num_skip"
// randomly selected occurrences of "input_to_skip" removed.
void FillSubset(const InputVec& full, const FuncInput input_to_skip,
const size_t num_skip, InputVec* subset) {
const size_t count =
static_cast<size_t>(std::count(full.begin(), full.end(), input_to_skip));
// Generate num_skip random indices: which occurrence to skip.
std::vector<uint32_t> omit(count);
std::iota(omit.begin(), omit.end(), 0);
// omit[] is the same on every call, but that's OK because they identify the
// Nth instance of input_to_skip, so the position within full[] differs.
std::mt19937 rng;
std::shuffle(omit.begin(), omit.end(), rng);
omit.resize(num_skip);
std::sort(omit.begin(), omit.end());
uint32_t occurrence = ~0u; // 0 after preincrement
size_t idx_omit = 0; // cursor within omit[]
size_t idx_subset = 0; // cursor within *subset
for (const FuncInput next : full) {
if (next == input_to_skip) {
++occurrence;
// Haven't removed enough already
if (idx_omit < num_skip) {
// This one is up for removal
if (occurrence == omit[idx_omit]) {
++idx_omit;
continue;
}
}
}
if (idx_subset < subset->size()) {
(*subset)[idx_subset++] = next;
}
}
NANOBENCHMARK_CHECK(idx_subset == subset->size());
NANOBENCHMARK_CHECK(idx_omit == omit.size());
NANOBENCHMARK_CHECK(occurrence == count - 1);
}
// Returns total ticks elapsed for all inputs.
timer::Ticks TotalDuration(const Func func, const uint8_t* arg,
const InputVec* inputs, const Params& p,
double* max_rel_mad) {
double rel_mad;
const timer::Ticks duration =
SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() {
for (const FuncInput input : *inputs) {
PreventElision(func(arg, input));
}
});
*max_rel_mad = HWY_MAX(*max_rel_mad, rel_mad);
return duration;
}
// (Nearly) empty Func for measuring timer overhead/resolution.
HWY_NOINLINE FuncOutput EmptyFunc(const void* /*arg*/, const FuncInput input) {
return input;
}
// Returns overhead of accessing inputs[] and calling a function; this will
// be deducted from future TotalDuration return values.
timer::Ticks Overhead(const uint8_t* arg, const InputVec* inputs,
const Params& p) {
double rel_mad;
// Zero tolerance because repeatability is crucial and EmptyFunc is fast.
return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() {
for (const FuncInput input : *inputs) {
PreventElision(EmptyFunc(arg, input));
}
});
}
} // namespace
HWY_DLLEXPORT int Unpredictable1() { return timer::Start() != ~0ULL; }
HWY_DLLEXPORT size_t Measure(const Func func, const uint8_t* arg,
const FuncInput* inputs, const size_t num_inputs,
Result* results, const Params& p) {
NANOBENCHMARK_CHECK(num_inputs != 0);
#if HWY_ARCH_X86
if (!platform::HasRDTSCP()) {
fprintf(stderr, "CPU '%s' does not support RDTSCP, skipping benchmark.\n",
platform::BrandString().c_str());
return 0;
}
#endif
const InputVec& unique = UniqueInputs(inputs, num_inputs);
const size_t num_skip = NumSkip(func, arg, unique, p); // never 0
if (num_skip == 0) return 0; // NumSkip already printed error message
// (slightly less work on x86 to cast from signed integer)
const float mul = 1.0f / static_cast<float>(static_cast<int>(num_skip));
const InputVec& full =
ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p);
InputVec subset(full.size() - num_skip);
const timer::Ticks overhead = Overhead(arg, &full, p);
const timer::Ticks overhead_skip = Overhead(arg, &subset, p);
if (overhead < overhead_skip) {
fprintf(stderr, "Measurement failed: overhead %" PRIu64 " < %" PRIu64 "\n",
static_cast<uint64_t>(overhead),
static_cast<uint64_t>(overhead_skip));
return 0;
}
if (p.verbose) {
printf("#inputs=%5" PRIu64 ",%5" PRIu64 " overhead=%5" PRIu64 ",%5" PRIu64
"\n",
static_cast<uint64_t>(full.size()),
static_cast<uint64_t>(subset.size()),
static_cast<uint64_t>(overhead),
static_cast<uint64_t>(overhead_skip));
}
double max_rel_mad = 0.0;
const timer::Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad);
for (size_t i = 0; i < unique.size(); ++i) {
FillSubset(full, unique[i], num_skip, &subset);
const timer::Ticks total_skip =
TotalDuration(func, arg, &subset, p, &max_rel_mad);
if (total < total_skip) {
fprintf(stderr, "Measurement failed: total %" PRIu64 " < %" PRIu64 "\n",
static_cast<uint64_t>(total), static_cast<uint64_t>(total_skip));
return 0;
}
const timer::Ticks duration =
(total - overhead) - (total_skip - overhead_skip);
results[i].input = unique[i];
results[i].ticks = static_cast<float>(duration) * mul;
results[i].variability = static_cast<float>(max_rel_mad);
}
return unique.size();
}
} // namespace hwy