Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_once.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/cfl.h"
#include "av1/common/reconintra.h"
enum {
NEED_LEFT = 1 << 1,
NEED_ABOVE = 1 << 2,
NEED_ABOVERIGHT = 1 << 3,
NEED_ABOVELEFT = 1 << 4,
NEED_BOTTOMLEFT = 1 << 5,
};
#define INTRA_EDGE_FILT 3
#define INTRA_EDGE_TAPS 5
#define MAX_UPSAMPLE_SZ 16
#define NUM_INTRA_NEIGHBOUR_PIXELS (MAX_TX_SIZE * 2 + 32)
static const uint8_t extend_modes[INTRA_MODES] = {
NEED_ABOVE | NEED_LEFT, // DC
NEED_ABOVE, // V
NEED_LEFT, // H
NEED_ABOVE | NEED_ABOVERIGHT, // D45
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D113
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D157
NEED_LEFT | NEED_BOTTOMLEFT, // D203
NEED_ABOVE | NEED_ABOVERIGHT, // D67
NEED_LEFT | NEED_ABOVE, // SMOOTH
NEED_LEFT | NEED_ABOVE, // SMOOTH_V
NEED_LEFT | NEED_ABOVE, // SMOOTH_H
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // PAETH
};
// Tables to store if the top-right reference pixels are available. The flags
// are represented with bits, packed into 8-bit integers. E.g., for the 32x32
// blocks in a 128x128 superblock, the index of the "o" block is 10 (in raster
// order), so its flag is stored at the 3rd bit of the 2nd entry in the table,
// i.e. (table[10 / 8] >> (10 % 8)) & 1.
// . . . .
// . . . .
// . . o .
// . . . .
static uint8_t has_tr_4x4[128] = {
255, 255, 255, 255, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
255, 255, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
};
static uint8_t has_tr_4x8[64] = {
255, 255, 255, 255, 119, 119, 119, 119, 127, 127, 127, 127, 119,
119, 119, 119, 255, 127, 255, 127, 119, 119, 119, 119, 127, 127,
127, 127, 119, 119, 119, 119, 255, 255, 255, 127, 119, 119, 119,
119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 127, 255, 127,
119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119,
};
static uint8_t has_tr_8x4[64] = {
255, 255, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
255, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
};
static uint8_t has_tr_8x8[32] = {
255, 255, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
255, 127, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
};
static uint8_t has_tr_8x16[16] = {
255, 255, 119, 119, 127, 127, 119, 119,
255, 127, 119, 119, 127, 127, 119, 119,
};
static uint8_t has_tr_16x8[16] = {
255, 0, 85, 0, 119, 0, 85, 0, 127, 0, 85, 0, 119, 0, 85, 0,
};
static uint8_t has_tr_16x16[8] = {
255, 85, 119, 85, 127, 85, 119, 85,
};
static uint8_t has_tr_16x32[4] = { 255, 119, 127, 119 };
static uint8_t has_tr_32x16[4] = { 15, 5, 7, 5 };
static uint8_t has_tr_32x32[2] = { 95, 87 };
static uint8_t has_tr_32x64[1] = { 127 };
static uint8_t has_tr_64x32[1] = { 19 };
static uint8_t has_tr_64x64[1] = { 7 };
static uint8_t has_tr_64x128[1] = { 3 };
static uint8_t has_tr_128x64[1] = { 1 };
static uint8_t has_tr_128x128[1] = { 1 };
static uint8_t has_tr_4x16[32] = {
255, 255, 255, 255, 127, 127, 127, 127, 255, 127, 255,
127, 127, 127, 127, 127, 255, 255, 255, 127, 127, 127,
127, 127, 255, 127, 255, 127, 127, 127, 127, 127,
};
static uint8_t has_tr_16x4[32] = {
255, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
127, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
};
static uint8_t has_tr_8x32[8] = {
255, 255, 127, 127, 255, 127, 127, 127,
};
static uint8_t has_tr_32x8[8] = {
15, 0, 5, 0, 7, 0, 5, 0,
};
static uint8_t has_tr_16x64[2] = { 255, 127 };
static uint8_t has_tr_64x16[2] = { 3, 1 };
static const uint8_t *const has_tr_tables[BLOCK_SIZES_ALL] = {
// 4X4
has_tr_4x4,
// 4X8, 8X4, 8X8
has_tr_4x8, has_tr_8x4, has_tr_8x8,
// 8X16, 16X8, 16X16
has_tr_8x16, has_tr_16x8, has_tr_16x16,
// 16X32, 32X16, 32X32
has_tr_16x32, has_tr_32x16, has_tr_32x32,
// 32X64, 64X32, 64X64
has_tr_32x64, has_tr_64x32, has_tr_64x64,
// 64x128, 128x64, 128x128
has_tr_64x128, has_tr_128x64, has_tr_128x128,
// 4x16, 16x4, 8x32
has_tr_4x16, has_tr_16x4, has_tr_8x32,
// 32x8, 16x64, 64x16
has_tr_32x8, has_tr_16x64, has_tr_64x16
};
static uint8_t has_tr_vert_8x8[32] = {
255, 255, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
255, 127, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
};
static uint8_t has_tr_vert_16x16[8] = {
255, 0, 119, 0, 127, 0, 119, 0,
};
static uint8_t has_tr_vert_32x32[2] = { 15, 7 };
static uint8_t has_tr_vert_64x64[1] = { 3 };
// The _vert_* tables are like the ordinary tables above, but describe the
// order we visit square blocks when doing a PARTITION_VERT_A or
// PARTITION_VERT_B. This is the same order as normal except for on the last
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
// as a pair of squares, which means that these tables work correctly for both
// mixed vertical partition types.
//
// There are tables for each of the square sizes. Vertical rectangles (like
// BLOCK_16X32) use their respective "non-vert" table
static const uint8_t *const has_tr_vert_tables[BLOCK_SIZES] = {
// 4X4
NULL,
// 4X8, 8X4, 8X8
has_tr_4x8, NULL, has_tr_vert_8x8,
// 8X16, 16X8, 16X16
has_tr_8x16, NULL, has_tr_vert_16x16,
// 16X32, 32X16, 32X32
has_tr_16x32, NULL, has_tr_vert_32x32,
// 32X64, 64X32, 64X64
has_tr_32x64, NULL, has_tr_vert_64x64,
// 64x128, 128x64, 128x128
has_tr_64x128, NULL, has_tr_128x128
};
static const uint8_t *get_has_tr_table(PARTITION_TYPE partition,
BLOCK_SIZE bsize) {
const uint8_t *ret = NULL;
// If this is a mixed vertical partition, look up bsize in orders_vert.
if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
assert(bsize < BLOCK_SIZES);
ret = has_tr_vert_tables[bsize];
} else {
ret = has_tr_tables[bsize];
}
assert(ret);
return ret;
}
static int has_top_right(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
int mi_col, int top_available, int right_available,
PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
int col_off, int ss_x, int ss_y) {
if (!top_available || !right_available) return 0;
const int bw_unit = mi_size_wide[bsize];
const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1);
const int top_right_count_unit = tx_size_wide_unit[txsz];
if (row_off > 0) { // Just need to check if enough pixels on the right.
if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) {
// Special case: For 128x128 blocks, the transform unit whose
// top-right corner is at the center of the block does in fact have
// pixels available at its top-right corner.
if (row_off == mi_size_high[BLOCK_64X64] >> ss_y &&
col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) {
return 1;
}
const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
const int col_off_64 = col_off % plane_bw_unit_64;
return col_off_64 + top_right_count_unit < plane_bw_unit_64;
}
return col_off + top_right_count_unit < plane_bw_unit;
} else {
// All top-right pixels are in the block above, which is already available.
if (col_off + top_right_count_unit < plane_bw_unit) return 1;
const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
const int bh_in_mi_log2 = mi_size_high_log2[bsize];
const int sb_mi_size = mi_size_high[sb_size];
const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
// Top row of superblock: so top-right pixels are in the top and/or
// top-right superblocks, both of which are already available.
if (blk_row_in_sb == 0) return 1;
// Rightmost column of superblock (and not the top row): so top-right pixels
// fall in the right superblock, which is not available yet.
if (((blk_col_in_sb + 1) << bw_in_mi_log2) >= sb_mi_size) {
return 0;
}
// General case (neither top row nor rightmost column): check if the
// top-right block is coded before the current block.
const int this_blk_index =
((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
blk_col_in_sb + 0;
const int idx1 = this_blk_index / 8;
const int idx2 = this_blk_index % 8;
const uint8_t *has_tr_table = get_has_tr_table(partition, bsize);
return (has_tr_table[idx1] >> idx2) & 1;
}
}
// Similar to the has_tr_* tables, but store if the bottom-left reference
// pixels are available.
static uint8_t has_bl_4x4[128] = {
84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85, 85,
85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 1, 0, 84, 85, 85, 85, 16, 17,
17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85, 85, 85, 16, 17, 17, 17, 84,
85, 85, 85, 0, 0, 0, 0, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85,
0, 1, 1, 1, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 1,
0, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85,
85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 0, 0,
};
static uint8_t has_bl_4x8[64] = {
16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
};
static uint8_t has_bl_8x4[64] = {
254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
};
static uint8_t has_bl_8x8[32] = {
84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
};
static uint8_t has_bl_8x16[16] = {
16, 17, 0, 1, 16, 17, 0, 0, 16, 17, 0, 1, 16, 17, 0, 0,
};
static uint8_t has_bl_16x8[16] = {
254, 84, 254, 16, 254, 84, 254, 0, 254, 84, 254, 16, 254, 84, 254, 0,
};
static uint8_t has_bl_16x16[8] = {
84, 16, 84, 0, 84, 16, 84, 0,
};
static uint8_t has_bl_16x32[4] = { 16, 0, 16, 0 };
static uint8_t has_bl_32x16[4] = { 78, 14, 78, 14 };
static uint8_t has_bl_32x32[2] = { 4, 4 };
static uint8_t has_bl_32x64[1] = { 0 };
static uint8_t has_bl_64x32[1] = { 34 };
static uint8_t has_bl_64x64[1] = { 0 };
static uint8_t has_bl_64x128[1] = { 0 };
static uint8_t has_bl_128x64[1] = { 0 };
static uint8_t has_bl_128x128[1] = { 0 };
static uint8_t has_bl_4x16[32] = {
0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
};
static uint8_t has_bl_16x4[32] = {
254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
};
static uint8_t has_bl_8x32[8] = {
0, 1, 0, 0, 0, 1, 0, 0,
};
static uint8_t has_bl_32x8[8] = {
238, 78, 238, 14, 238, 78, 238, 14,
};
static uint8_t has_bl_16x64[2] = { 0, 0 };
static uint8_t has_bl_64x16[2] = { 42, 42 };
static const uint8_t *const has_bl_tables[BLOCK_SIZES_ALL] = {
// 4X4
has_bl_4x4,
// 4X8, 8X4, 8X8
has_bl_4x8, has_bl_8x4, has_bl_8x8,
// 8X16, 16X8, 16X16
has_bl_8x16, has_bl_16x8, has_bl_16x16,
// 16X32, 32X16, 32X32
has_bl_16x32, has_bl_32x16, has_bl_32x32,
// 32X64, 64X32, 64X64
has_bl_32x64, has_bl_64x32, has_bl_64x64,
// 64x128, 128x64, 128x128
has_bl_64x128, has_bl_128x64, has_bl_128x128,
// 4x16, 16x4, 8x32
has_bl_4x16, has_bl_16x4, has_bl_8x32,
// 32x8, 16x64, 64x16
has_bl_32x8, has_bl_16x64, has_bl_64x16
};
static uint8_t has_bl_vert_8x8[32] = {
254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
};
static uint8_t has_bl_vert_16x16[8] = {
254, 16, 254, 0, 254, 16, 254, 0,
};
static uint8_t has_bl_vert_32x32[2] = { 14, 14 };
static uint8_t has_bl_vert_64x64[1] = { 2 };
// The _vert_* tables are like the ordinary tables above, but describe the
// order we visit square blocks when doing a PARTITION_VERT_A or
// PARTITION_VERT_B. This is the same order as normal except for on the last
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
// as a pair of squares, which means that these tables work correctly for both
// mixed vertical partition types.
//
// There are tables for each of the square sizes. Vertical rectangles (like
// BLOCK_16X32) use their respective "non-vert" table
static const uint8_t *const has_bl_vert_tables[BLOCK_SIZES] = {
// 4X4
NULL,
// 4X8, 8X4, 8X8
has_bl_4x8, NULL, has_bl_vert_8x8,
// 8X16, 16X8, 16X16
has_bl_8x16, NULL, has_bl_vert_16x16,
// 16X32, 32X16, 32X32
has_bl_16x32, NULL, has_bl_vert_32x32,
// 32X64, 64X32, 64X64
has_bl_32x64, NULL, has_bl_vert_64x64,
// 64x128, 128x64, 128x128
has_bl_64x128, NULL, has_bl_128x128
};
static const uint8_t *get_has_bl_table(PARTITION_TYPE partition,
BLOCK_SIZE bsize) {
const uint8_t *ret = NULL;
// If this is a mixed vertical partition, look up bsize in orders_vert.
if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
assert(bsize < BLOCK_SIZES);
ret = has_bl_vert_tables[bsize];
} else {
ret = has_bl_tables[bsize];
}
assert(ret);
return ret;
}
static int has_bottom_left(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
int mi_col, int bottom_available, int left_available,
PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
int col_off, int ss_x, int ss_y) {
if (!bottom_available || !left_available) return 0;
// Special case for 128x* blocks, when col_off is half the block width.
// This is needed because 128x* superblocks are divided into 64x* blocks in
// raster order
if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) {
const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
const int col_off_64 = col_off % plane_bw_unit_64;
if (col_off_64 == 0) {
// We are at the left edge of top-right or bottom-right 64x* block.
const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y;
const int row_off_64 = row_off % plane_bh_unit_64;
const int plane_bh_unit =
AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64);
// Check if all bottom-left pixels are in the left 64x* block (which is
// already coded).
return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit;
}
}
if (col_off > 0) {
// Bottom-left pixels are in the bottom-left block, which is not available.
return 0;
} else {
const int bh_unit = mi_size_high[bsize];
const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1);
const int bottom_left_count_unit = tx_size_high_unit[txsz];
// All bottom-left pixels are in the left block, which is already available.
if (row_off + bottom_left_count_unit < plane_bh_unit) return 1;
const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
const int bh_in_mi_log2 = mi_size_high_log2[bsize];
const int sb_mi_size = mi_size_high[sb_size];
const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
// Leftmost column of superblock: so bottom-left pixels maybe in the left
// and/or bottom-left superblocks. But only the left superblock is
// available, so check if all required pixels fall in that superblock.
if (blk_col_in_sb == 0) {
const int blk_start_row_off =
blk_row_in_sb << (bh_in_mi_log2 + MI_SIZE_LOG2 - MI_SIZE_LOG2) >>
ss_y;
const int row_off_in_sb = blk_start_row_off + row_off;
const int sb_height_unit = sb_mi_size >> ss_y;
return row_off_in_sb + bottom_left_count_unit < sb_height_unit;
}
// Bottom row of superblock (and not the leftmost column): so bottom-left
// pixels fall in the bottom superblock, which is not available yet.
if (((blk_row_in_sb + 1) << bh_in_mi_log2) >= sb_mi_size) return 0;
// General case (neither leftmost column nor bottom row): check if the
// bottom-left block is coded before the current block.
const int this_blk_index =
((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
blk_col_in_sb + 0;
const int idx1 = this_blk_index / 8;
const int idx2 = this_blk_index % 8;
const uint8_t *has_bl_table = get_has_bl_table(partition, bsize);
return (has_bl_table[idx1] >> idx2) & 1;
}
}
typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left);
static intra_pred_fn pred[INTRA_MODES][TX_SIZES_ALL];
static intra_pred_fn dc_pred[2][2][TX_SIZES_ALL];
#if CONFIG_AV1_HIGHBITDEPTH
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd);
static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL];
static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL];
#endif
static void init_intra_predictors_internal(void) {
assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES);
#if CONFIG_REALTIME_ONLY && !CONFIG_AV1_DECODER
#define INIT_RECTANGULAR(p, type) \
p[TX_4X8] = aom_##type##_predictor_4x8; \
p[TX_8X4] = aom_##type##_predictor_8x4; \
p[TX_8X16] = aom_##type##_predictor_8x16; \
p[TX_16X8] = aom_##type##_predictor_16x8; \
p[TX_16X32] = aom_##type##_predictor_16x32; \
p[TX_32X16] = aom_##type##_predictor_32x16; \
p[TX_32X64] = aom_##type##_predictor_32x64; \
p[TX_64X32] = aom_##type##_predictor_64x32;
#else
#define INIT_RECTANGULAR(p, type) \
p[TX_4X8] = aom_##type##_predictor_4x8; \
p[TX_8X4] = aom_##type##_predictor_8x4; \
p[TX_8X16] = aom_##type##_predictor_8x16; \
p[TX_16X8] = aom_##type##_predictor_16x8; \
p[TX_16X32] = aom_##type##_predictor_16x32; \
p[TX_32X16] = aom_##type##_predictor_32x16; \
p[TX_32X64] = aom_##type##_predictor_32x64; \
p[TX_64X32] = aom_##type##_predictor_64x32; \
p[TX_4X16] = aom_##type##_predictor_4x16; \
p[TX_16X4] = aom_##type##_predictor_16x4; \
p[TX_8X32] = aom_##type##_predictor_8x32; \
p[TX_32X8] = aom_##type##_predictor_32x8; \
p[TX_16X64] = aom_##type##_predictor_16x64; \
p[TX_64X16] = aom_##type##_predictor_64x16;
#endif // CONFIG_REALTIME_ONLY && !CONFIG_AV1_DECODER
#define INIT_NO_4X4(p, type) \
p[TX_8X8] = aom_##type##_predictor_8x8; \
p[TX_16X16] = aom_##type##_predictor_16x16; \
p[TX_32X32] = aom_##type##_predictor_32x32; \
p[TX_64X64] = aom_##type##_predictor_64x64; \
INIT_RECTANGULAR(p, type)
#define INIT_ALL_SIZES(p, type) \
p[TX_4X4] = aom_##type##_predictor_4x4; \
INIT_NO_4X4(p, type)
INIT_ALL_SIZES(pred[V_PRED], v)
INIT_ALL_SIZES(pred[H_PRED], h)
INIT_ALL_SIZES(pred[PAETH_PRED], paeth)
INIT_ALL_SIZES(pred[SMOOTH_PRED], smooth)
INIT_ALL_SIZES(pred[SMOOTH_V_PRED], smooth_v)
INIT_ALL_SIZES(pred[SMOOTH_H_PRED], smooth_h)
INIT_ALL_SIZES(dc_pred[0][0], dc_128)
INIT_ALL_SIZES(dc_pred[0][1], dc_top)
INIT_ALL_SIZES(dc_pred[1][0], dc_left)
INIT_ALL_SIZES(dc_pred[1][1], dc)
#if CONFIG_AV1_HIGHBITDEPTH
INIT_ALL_SIZES(pred_high[V_PRED], highbd_v)
INIT_ALL_SIZES(pred_high[H_PRED], highbd_h)
INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth)
INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth)
INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v)
INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h)
INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128)
INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top)
INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left)
INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc)
#endif
#undef intra_pred_allsizes
}
// Directional prediction, zone 1: 0 < angle < 90
void av1_dr_prediction_z1_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left,
int upsample_above, int dx, int dy) {
int r, c, x, base, shift, val;
(void)left;
(void)dy;
assert(dy == 1);
assert(dx > 0);
const int max_base_x = ((bw + bh) - 1) << upsample_above;
const int frac_bits = 6 - upsample_above;
const int base_inc = 1 << upsample_above;
x = dx;
for (r = 0; r < bh; ++r, dst += stride, x += dx) {
base = x >> frac_bits;
shift = ((x << upsample_above) & 0x3F) >> 1;
if (base >= max_base_x) {
for (int i = r; i < bh; ++i) {
memset(dst, above[max_base_x], bw * sizeof(dst[0]));
dst += stride;
}
return;
}
for (c = 0; c < bw; ++c, base += base_inc) {
if (base < max_base_x) {
val = above[base] * (32 - shift) + above[base + 1] * shift;
dst[c] = ROUND_POWER_OF_TWO(val, 5);
} else {
dst[c] = above[max_base_x];
}
}
}
}
// Directional prediction, zone 2: 90 < angle < 180
void av1_dr_prediction_z2_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left,
int upsample_above, int upsample_left, int dx,
int dy) {
assert(dx > 0);
assert(dy > 0);
const int min_base_x = -(1 << upsample_above);
const int min_base_y = -(1 << upsample_left);
(void)min_base_y;
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
for (int r = 0; r < bh; ++r) {
for (int c = 0; c < bw; ++c) {
int val;
int y = r + 1;
int x = (c << 6) - y * dx;
const int base_x = x >> frac_bits_x;
if (base_x >= min_base_x) {
const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
} else {
x = c + 1;
y = (r << 6) - x * dy;
const int base_y = y >> frac_bits_y;
assert(base_y >= min_base_y);
const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
}
dst[c] = val;
}
dst += stride;
}
}
// Directional prediction, zone 3: 180 < angle < 270
void av1_dr_prediction_z3_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left,
int upsample_left, int dx, int dy) {
int r, c, y, base, shift, val;
(void)above;
(void)dx;
assert(dx == 1);
assert(dy > 0);
const int max_base_y = (bw + bh - 1) << upsample_left;
const int frac_bits = 6 - upsample_left;
const int base_inc = 1 << upsample_left;
y = dy;
for (c = 0; c < bw; ++c, y += dy) {
base = y >> frac_bits;
shift = ((y << upsample_left) & 0x3F) >> 1;
for (r = 0; r < bh; ++r, base += base_inc) {
if (base < max_base_y) {
val = left[base] * (32 - shift) + left[base + 1] * shift;
dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5);
} else {
for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
break;
}
}
}
}
static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
const uint8_t *above, const uint8_t *left,
int upsample_above, int upsample_left, int angle) {
const int dx = av1_get_dx(angle);
const int dy = av1_get_dy(angle);
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(angle > 0 && angle < 270);
if (angle > 0 && angle < 90) {
av1_dr_prediction_z1(dst, stride, bw, bh, above, left, upsample_above, dx,
dy);
} else if (angle > 90 && angle < 180) {
av1_dr_prediction_z2(dst, stride, bw, bh, above, left, upsample_above,
upsample_left, dx, dy);
} else if (angle > 180 && angle < 270) {
av1_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, dx,
dy);
} else if (angle == 90) {
pred[V_PRED][tx_size](dst, stride, above, left);
} else if (angle == 180) {
pred[H_PRED][tx_size](dst, stride, above, left);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
// Directional prediction, zone 1: 0 < angle < 90
void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int upsample_above,
int dx, int dy, int bd) {
int r, c, x, base, shift, val;
(void)left;
(void)dy;
(void)bd;
assert(dy == 1);
assert(dx > 0);
const int max_base_x = ((bw + bh) - 1) << upsample_above;
const int frac_bits = 6 - upsample_above;
const int base_inc = 1 << upsample_above;
x = dx;
for (r = 0; r < bh; ++r, dst += stride, x += dx) {
base = x >> frac_bits;
shift = ((x << upsample_above) & 0x3F) >> 1;
if (base >= max_base_x) {
for (int i = r; i < bh; ++i) {
aom_memset16(dst, above[max_base_x], bw);
dst += stride;
}
return;
}
for (c = 0; c < bw; ++c, base += base_inc) {
if (base < max_base_x) {
val = above[base] * (32 - shift) + above[base + 1] * shift;
dst[c] = ROUND_POWER_OF_TWO(val, 5);
} else {
dst[c] = above[max_base_x];
}
}
}
}
// Directional prediction, zone 2: 90 < angle < 180
void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int upsample_above,
int upsample_left, int dx, int dy, int bd) {
(void)bd;
assert(dx > 0);
assert(dy > 0);
const int min_base_x = -(1 << upsample_above);
const int min_base_y = -(1 << upsample_left);
(void)min_base_y;
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
for (int r = 0; r < bh; ++r) {
for (int c = 0; c < bw; ++c) {
int val;
int y = r + 1;
int x = (c << 6) - y * dx;
const int base_x = x >> frac_bits_x;
if (base_x >= min_base_x) {
const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
} else {
x = c + 1;
y = (r << 6) - x * dy;
const int base_y = y >> frac_bits_y;
assert(base_y >= min_base_y);
const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
}
dst[c] = val;
}
dst += stride;
}
}
// Directional prediction, zone 3: 180 < angle < 270
void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int upsample_left,
int dx, int dy, int bd) {
int r, c, y, base, shift, val;
(void)above;
(void)dx;
(void)bd;
assert(dx == 1);
assert(dy > 0);
const int max_base_y = (bw + bh - 1) << upsample_left;
const int frac_bits = 6 - upsample_left;
const int base_inc = 1 << upsample_left;
y = dy;
for (c = 0; c < bw; ++c, y += dy) {
base = y >> frac_bits;
shift = ((y << upsample_left) & 0x3F) >> 1;
for (r = 0; r < bh; ++r, base += base_inc) {
if (base < max_base_y) {
val = left[base] * (32 - shift) + left[base + 1] * shift;
dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5);
} else {
for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
break;
}
}
}
}
static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, int upsample_above,
int upsample_left, int angle, int bd) {
const int dx = av1_get_dx(angle);
const int dy = av1_get_dy(angle);
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(angle > 0 && angle < 270);
if (angle > 0 && angle < 90) {
av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left,
upsample_above, dx, dy, bd);
} else if (angle > 90 && angle < 180) {
av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left,
upsample_above, upsample_left, dx, dy, bd);
} else if (angle > 180 && angle < 270) {
av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left,
dx, dy, bd);
} else if (angle == 90) {
pred_high[V_PRED][tx_size](dst, stride, above, left, bd);
} else if (angle == 180) {
pred_high[H_PRED][tx_size](dst, stride, above, left, bd);
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
DECLARE_ALIGNED(16, const int8_t,
av1_filter_intra_taps[FILTER_INTRA_MODES][8][8]) = {
{
{ -6, 10, 0, 0, 0, 12, 0, 0 },
{ -5, 2, 10, 0, 0, 9, 0, 0 },
{ -3, 1, 1, 10, 0, 7, 0, 0 },
{ -3, 1, 1, 2, 10, 5, 0, 0 },
{ -4, 6, 0, 0, 0, 2, 12, 0 },
{ -3, 2, 6, 0, 0, 2, 9, 0 },
{ -3, 2, 2, 6, 0, 2, 7, 0 },
{ -3, 1, 2, 2, 6, 3, 5, 0 },
},
{
{ -10, 16, 0, 0, 0, 10, 0, 0 },
{ -6, 0, 16, 0, 0, 6, 0, 0 },
{ -4, 0, 0, 16, 0, 4, 0, 0 },
{ -2, 0, 0, 0, 16, 2, 0, 0 },
{ -10, 16, 0, 0, 0, 0, 10, 0 },
{ -6, 0, 16, 0, 0, 0, 6, 0 },
{ -4, 0, 0, 16, 0, 0, 4, 0 },
{ -2, 0, 0, 0, 16, 0, 2, 0 },
},
{
{ -8, 8, 0, 0, 0, 16, 0, 0 },
{ -8, 0, 8, 0, 0, 16, 0, 0 },
{ -8, 0, 0, 8, 0, 16, 0, 0 },
{ -8, 0, 0, 0, 8, 16, 0, 0 },
{ -4, 4, 0, 0, 0, 0, 16, 0 },
{ -4, 0, 4, 0, 0, 0, 16, 0 },
{ -4, 0, 0, 4, 0, 0, 16, 0 },
{ -4, 0, 0, 0, 4, 0, 16, 0 },
},
{
{ -2, 8, 0, 0, 0, 10, 0, 0 },
{ -1, 3, 8, 0, 0, 6, 0, 0 },
{ -1, 2, 3, 8, 0, 4, 0, 0 },
{ 0, 1, 2, 3, 8, 2, 0, 0 },
{ -1, 4, 0, 0, 0, 3, 10, 0 },
{ -1, 3, 4, 0, 0, 4, 6, 0 },
{ -1, 2, 3, 4, 0, 4, 4, 0 },
{ -1, 2, 2, 3, 4, 3, 3, 0 },
},
{
{ -12, 14, 0, 0, 0, 14, 0, 0 },
{ -10, 0, 14, 0, 0, 12, 0, 0 },
{ -9, 0, 0, 14, 0, 11, 0, 0 },
{ -8, 0, 0, 0, 14, 10, 0, 0 },
{ -10, 12, 0, 0, 0, 0, 14, 0 },
{ -9, 1, 12, 0, 0, 0, 12, 0 },
{ -8, 0, 0, 12, 0, 1, 11, 0 },
{ -7, 0, 0, 1, 12, 1, 9, 0 },
},
};
void av1_filter_intra_predictor_c(uint8_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint8_t *above,
const uint8_t *left, int mode) {
int r, c;
uint8_t buffer[33][33];
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(bw <= 32 && bh <= 32);
for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(uint8_t));
for (r = 1; r < bh + 1; r += 2)
for (c = 1; c < bw + 1; c += 4) {
const uint8_t p0 = buffer[r - 1][c - 1];
const uint8_t p1 = buffer[r - 1][c];
const uint8_t p2 = buffer[r - 1][c + 1];
const uint8_t p3 = buffer[r - 1][c + 2];
const uint8_t p4 = buffer[r - 1][c + 3];
const uint8_t p5 = buffer[r][c - 1];
const uint8_t p6 = buffer[r + 1][c - 1];
for (int k = 0; k < 8; ++k) {
int r_offset = k >> 2;
int c_offset = k & 0x03;
int pr = av1_filter_intra_taps[mode][k][0] * p0 +
av1_filter_intra_taps[mode][k][1] * p1 +
av1_filter_intra_taps[mode][k][2] * p2 +
av1_filter_intra_taps[mode][k][3] * p3 +
av1_filter_intra_taps[mode][k][4] * p4 +
av1_filter_intra_taps[mode][k][5] * p5 +
av1_filter_intra_taps[mode][k][6] * p6;
// Section 7.11.2.3 specifies the right-hand side of the assignment as
// Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
// Since Clip1() clips a negative value to 0, it is safe to replace
// Round2Signed() with Round2().
buffer[r + r_offset][c + c_offset] =
clip_pixel(ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS));
}
}
for (r = 0; r < bh; ++r) {
memcpy(dst, &buffer[r + 1][1], bw * sizeof(uint8_t));
dst += stride;
}
}
#if CONFIG_AV1_HIGHBITDEPTH
static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size,
const uint16_t *above,
const uint16_t *left, int mode,
int bd) {
int r, c;
uint16_t buffer[33][33];
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(bw <= 32 && bh <= 32);
for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(buffer[0][0]));
for (r = 1; r < bh + 1; r += 2)
for (c = 1; c < bw + 1; c += 4) {
const uint16_t p0 = buffer[r - 1][c - 1];
const uint16_t p1 = buffer[r - 1][c];
const uint16_t p2 = buffer[r - 1][c + 1];
const uint16_t p3 = buffer[r - 1][c + 2];
const uint16_t p4 = buffer[r - 1][c + 3];
const uint16_t p5 = buffer[r][c - 1];
const uint16_t p6 = buffer[r + 1][c - 1];
for (int k = 0; k < 8; ++k) {
int r_offset = k >> 2;
int c_offset = k & 0x03;
int pr = av1_filter_intra_taps[mode][k][0] * p0 +
av1_filter_intra_taps[mode][k][1] * p1 +
av1_filter_intra_taps[mode][k][2] * p2 +
av1_filter_intra_taps[mode][k][3] * p3 +
av1_filter_intra_taps[mode][k][4] * p4 +
av1_filter_intra_taps[mode][k][5] * p5 +
av1_filter_intra_taps[mode][k][6] * p6;
// Section 7.11.2.3 specifies the right-hand side of the assignment as
// Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
// Since Clip1() clips a negative value to 0, it is safe to replace
// Round2Signed() with Round2().
buffer[r + r_offset][c + c_offset] = clip_pixel_highbd(
ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS), bd);
}
}
for (r = 0; r < bh; ++r) {
memcpy(dst, &buffer[r + 1][1], bw * sizeof(dst[0]));
dst += stride;
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static int is_smooth(const MB_MODE_INFO *mbmi, int plane) {
if (plane == 0) {
const PREDICTION_MODE mode = mbmi->mode;
return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
mode == SMOOTH_H_PRED);
} else {
// uv_mode is not set for inter blocks, so need to explicitly
// detect that case.
if (is_inter_block(mbmi)) return 0;
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED ||
uv_mode == UV_SMOOTH_H_PRED);
}
}
static int get_intra_edge_filter_type(const MACROBLOCKD *xd, int plane) {
const MB_MODE_INFO *above;
const MB_MODE_INFO *left;
if (plane == 0) {
above = xd->above_mbmi;
left = xd->left_mbmi;
} else {
above = xd->chroma_above_mbmi;
left = xd->chroma_left_mbmi;
}
return (above && is_smooth(above, plane)) || (left && is_smooth(left, plane));
}
static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) {
const int d = abs(delta);
int strength = 0;
const int blk_wh = bs0 + bs1;
if (type == 0) {
if (blk_wh <= 8) {
if (d >= 56) strength = 1;
} else if (blk_wh <= 12) {
if (d >= 40) strength = 1;
} else if (blk_wh <= 16) {
if (d >= 40) strength = 1;
} else if (blk_wh <= 24) {
if (d >= 8) strength = 1;
if (d >= 16) strength = 2;
if (d >= 32) strength = 3;
} else if (blk_wh <= 32) {
if (d >= 1) strength = 1;
if (d >= 4) strength = 2;
if (d >= 32) strength = 3;
} else {
if (d >= 1) strength = 3;
}
} else {
if (blk_wh <= 8) {
if (d >= 40) strength = 1;
if (d >= 64) strength = 2;
} else if (blk_wh <= 16) {
if (d >= 20) strength = 1;
if (d >= 48) strength = 2;
} else if (blk_wh <= 24) {
if (d >= 4) strength = 3;
} else {
if (d >= 1) strength = 3;
}
}
return strength;
}
void av1_filter_intra_edge_c(uint8_t *p, int sz, int strength) {
if (!strength) return;
const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
{ 0, 5, 6, 5, 0 },
{ 2, 4, 4, 4, 2 } };
const int filt = strength - 1;
uint8_t edge[129];
memcpy(edge, p, sz * sizeof(*p));
for (int i = 1; i < sz; i++) {
int s = 0;
for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
int k = i - 2 + j;
k = (k < 0) ? 0 : k;
k = (k > sz - 1) ? sz - 1 : k;
s += edge[k] * kernel[filt][j];
}
s = (s + 8) >> 4;
p[i] = s;
}
}
static void filter_intra_edge_corner(uint8_t *p_above, uint8_t *p_left) {
const int kernel[3] = { 5, 6, 5 };
int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
(p_above[0] * kernel[2]);
s = (s + 8) >> 4;
p_above[-1] = s;
p_left[-1] = s;
}
void av1_upsample_intra_edge_c(uint8_t *p, int sz) {
// interpolate half-sample positions
assert(sz <= MAX_UPSAMPLE_SZ);
uint8_t in[MAX_UPSAMPLE_SZ + 3];
// copy p[-1..(sz-1)] and extend first and last samples
in[0] = p[-1];
in[1] = p[-1];
for (int i = 0; i < sz; i++) {
in[i + 2] = p[i];
}
in[sz + 2] = p[sz - 1];
// interpolate half-sample edge positions
p[-2] = in[0];
for (int i = 0; i < sz; i++) {
int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
s = clip_pixel((s + 8) >> 4);
p[2 * i - 1] = s;
p[2 * i] = in[i + 2];
}
}
static void build_directional_and_filter_intra_predictors(
const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, int p_angle, FILTER_INTRA_MODE filter_intra_mode,
TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
int n_left_px, int n_bottomleft_px, int intra_edge_filter_type) {
int i;
const uint8_t *above_ref = ref - ref_stride;
const uint8_t *left_ref = ref - 1;
DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
uint8_t *const above_row = above_data + 16;
uint8_t *const left_col = left_data + 16;
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
int need_left = extend_modes[mode] & NEED_LEFT;
int need_above = extend_modes[mode] & NEED_ABOVE;
int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
const int is_dr_mode = av1_is_directional_mode(mode);
const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
assert(use_filter_intra || is_dr_mode);
// The left_data, above_data buffers must be zeroed to fix some intermittent
// valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
// path in av1_dr_prediction_z1_avx2()) from left_data, above_data are seen to
// be the potential reason for this issue.
memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS);
memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS);
// The default values if ref pixels are not available:
// 128 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
if (is_dr_mode) {
if (p_angle <= 90)
need_above = 1, need_left = 0, need_above_left = 1;
else if (p_angle < 180)
need_above = 1, need_left = 1, need_above_left = 1;
else
need_above = 0, need_left = 1, need_above_left = 1;
}
if (use_filter_intra) need_left = need_above = need_above_left = 1;
assert(n_top_px >= 0);
assert(n_topright_px >= -1);
assert(n_left_px >= 0);
assert(n_bottomleft_px >= -1);
if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
int val;
if (need_left) {
val = (n_top_px > 0) ? above_ref[0] : 129;
} else {
val = (n_left_px > 0) ? left_ref[0] : 127;
}
for (i = 0; i < txhpx; ++i) {
memset(dst, val, txwpx);
dst += dst_stride;
}
return;
}
// NEED_LEFT
if (need_left) {
const int num_left_pixels_needed =
txhpx + (n_bottomleft_px >= 0 ? txwpx : 0);
i = 0;
if (n_left_px > 0) {
for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
if (n_bottomleft_px > 0) {
assert(i == txhpx);
for (; i < txhpx + n_bottomleft_px; i++)
left_col[i] = left_ref[i * ref_stride];
}
if (i < num_left_pixels_needed)
memset(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
} else if (n_top_px > 0) {
memset(left_col, above_ref[0], num_left_pixels_needed);
}
}
// NEED_ABOVE
if (need_above) {
const int num_top_pixels_needed = txwpx + (n_topright_px >= 0 ? txhpx : 0);
if (n_top_px > 0) {
memcpy(above_row, above_ref, n_top_px);
i = n_top_px;
if (n_topright_px > 0) {
assert(n_top_px == txwpx);
memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px);
i += n_topright_px;
}
if (i < num_top_pixels_needed)
memset(&above_row[i], above_row[i - 1], num_top_pixels_needed - i);
} else if (n_left_px > 0) {
memset(above_row, left_ref[0], num_top_pixels_needed);
}
}
if (need_above_left) {
if (n_top_px > 0 && n_left_px > 0) {
above_row[-1] = above_ref[-1];
} else if (n_top_px > 0) {
above_row[-1] = above_ref[0];
} else if (n_left_px > 0) {
above_row[-1] = left_ref[0];
} else {
above_row[-1] = 128;
}
left_col[-1] = above_row[-1];
}
if (use_filter_intra) {
av1_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
filter_intra_mode);
return;
}
assert(is_dr_mode);
int upsample_above = 0;
int upsample_left = 0;
if (!disable_edge_filter) {
const int need_right = p_angle < 90;
const int need_bottom = p_angle > 180;
if (p_angle != 90 && p_angle != 180) {
assert(need_above_left);
const int ab_le = 1;
if (need_above && need_left && (txwpx + txhpx >= 24)) {
filter_intra_edge_corner(above_row, left_col);
}
if (need_above && n_top_px > 0) {
const int strength = intra_edge_filter_strength(
txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
av1_filter_intra_edge(above_row - ab_le, n_px, strength);
}
if (need_left && n_left_px > 0) {
const int strength = intra_edge_filter_strength(
txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
av1_filter_intra_edge(left_col - ab_le, n_px, strength);
}
}
upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
intra_edge_filter_type);
if (need_above && upsample_above) {
const int n_px = txwpx + (need_right ? txhpx : 0);
av1_upsample_intra_edge(above_row, n_px);
}
upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
intra_edge_filter_type);
if (need_left && upsample_left) {
const int n_px = txhpx + (need_bottom ? txwpx : 0);
av1_upsample_intra_edge(left_col, n_px);
}
}
dr_predictor(dst, dst_stride, tx_size, above_row, left_col, upsample_above,
upsample_left, p_angle);
}
// This function generates the pred data of a given block for non-directional
// intra prediction modes (i.e., DC, SMOOTH, SMOOTH_H, SMOOTH_V and PAETH).
static void build_non_directional_intra_predictors(
const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_left_px) {
const uint8_t *above_ref = ref - ref_stride;
const uint8_t *left_ref = ref - 1;
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
const int need_left = extend_modes[mode] & NEED_LEFT;
const int need_above = extend_modes[mode] & NEED_ABOVE;
const int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
int i = 0;
assert(n_top_px >= 0);
assert(n_left_px >= 0);
assert(mode == DC_PRED || mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
mode == SMOOTH_H_PRED || mode == PAETH_PRED);
if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
int val = 0;
if (need_left) {
val = (n_top_px > 0) ? above_ref[0] : 129;
} else {
val = (n_left_px > 0) ? left_ref[0] : 127;
}
for (i = 0; i < txhpx; ++i) {
memset(dst, val, txwpx);
dst += dst_stride;
}
return;
}
DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
uint8_t *const above_row = above_data + 16;
uint8_t *const left_col = left_data + 16;
if (need_left) {
memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS);
if (n_left_px > 0) {
for (i = 0; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
if (i < txhpx) memset(&left_col[i], left_col[i - 1], txhpx - i);
} else if (n_top_px > 0) {
memset(left_col, above_ref[0], txhpx);
}
}
if (need_above) {
memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS);
if (n_top_px > 0) {
memcpy(above_row, above_ref, n_top_px);
i = n_top_px;
if (i < txwpx) memset(&above_row[i], above_row[i - 1], txwpx - i);
} else if (n_left_px > 0) {
memset(above_row, left_ref[0], txwpx);
}
}
if (need_above_left) {
if (n_top_px > 0 && n_left_px > 0) {
above_row[-1] = above_ref[-1];
} else if (n_top_px > 0) {
above_row[-1] = above_ref[0];
} else if (n_left_px > 0) {
above_row[-1] = left_ref[0];
} else {
above_row[-1] = 128;
}
left_col[-1] = above_row[-1];
}
if (mode == DC_PRED) {
dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, above_row,
left_col);
} else {
pred[mode][tx_size](dst, dst_stride, above_row, left_col);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
void av1_highbd_filter_intra_edge_c(uint16_t *p, int sz, int strength) {
if (!strength) return;
const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
{ 0, 5, 6, 5, 0 },
{ 2, 4, 4, 4, 2 } };
const int filt = strength - 1;
uint16_t edge[129];
memcpy(edge, p, sz * sizeof(*p));
for (int i = 1; i < sz; i++) {
int s = 0;
for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
int k = i - 2 + j;
k = (k < 0) ? 0 : k;
k = (k > sz - 1) ? sz - 1 : k;
s += edge[k] * kernel[filt][j];
}
s = (s + 8) >> 4;
p[i] = s;
}
}
static void highbd_filter_intra_edge_corner(uint16_t *p_above,
uint16_t *p_left) {
const int kernel[3] = { 5, 6, 5 };
int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
(p_above[0] * kernel[2]);
s = (s + 8) >> 4;
p_above[-1] = s;
p_left[-1] = s;
}
void av1_highbd_upsample_intra_edge_c(uint16_t *p, int sz, int bd) {
// interpolate half-sample positions
assert(sz <= MAX_UPSAMPLE_SZ);
uint16_t in[MAX_UPSAMPLE_SZ + 3];
// copy p[-1..(sz-1)] and extend first and last samples
in[0] = p[-1];
in[1] = p[-1];
for (int i = 0; i < sz; i++) {
in[i + 2] = p[i];
}
in[sz + 2] = p[sz - 1];
// interpolate half-sample edge positions
p[-2] = in[0];
for (int i = 0; i < sz; i++) {
int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
s = (s + 8) >> 4;
s = clip_pixel_highbd(s, bd);
p[2 * i - 1] = s;
p[2 * i] = in[i + 2];
}
}
static void highbd_build_directional_and_filter_intra_predictors(
const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride,
PREDICTION_MODE mode, int p_angle, FILTER_INTRA_MODE filter_intra_mode,
TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
int n_left_px, int n_bottomleft_px, int intra_edge_filter_type,
int bit_depth) {
int i;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
const uint16_t *const ref = CONVERT_TO_SHORTPTR(ref8);
DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
uint16_t *const above_row = above_data + 16;
uint16_t *const left_col = left_data + 16;
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
int need_left = extend_modes[mode] & NEED_LEFT;
int need_above = extend_modes[mode] & NEED_ABOVE;
int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
const uint16_t *above_ref = ref - ref_stride;
const uint16_t *left_ref = ref - 1;
const int is_dr_mode = av1_is_directional_mode(mode);
const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
assert(use_filter_intra || is_dr_mode);
const int base = 128 << (bit_depth - 8);
// The left_data, above_data buffers must be zeroed to fix some intermittent
// valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
// path in av1_highbd_dr_prediction_z2_avx2()) from left_data, above_data are
// seen to be the potential reason for this issue.
aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
// The default values if ref pixels are not available:
// base base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1
// base+1 A B .. Y Z
// base+1 C D .. W X
// base+1 E F .. U V
// base+1 G H .. S T T T T T
if (is_dr_mode) {
if (p_angle <= 90)
need_above = 1, need_left = 0, need_above_left = 1;
else if (p_angle < 180)
need_above = 1, need_left = 1, need_above_left = 1;
else
need_above = 0, need_left = 1, need_above_left = 1;
}
if (use_filter_intra) need_left = need_above = need_above_left = 1;
assert(n_top_px >= 0);
assert(n_topright_px >= -1);
assert(n_left_px >= 0);
assert(n_bottomleft_px >= -1);
if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
int val;
if (need_left) {
val = (n_top_px > 0) ? above_ref[0] : base + 1;
} else {
val = (n_left_px > 0) ? left_ref[0] : base - 1;
}
for (i = 0; i < txhpx; ++i) {
aom_memset16(dst, val, txwpx);
dst += dst_stride;
}
return;
}
// NEED_LEFT
if (need_left) {
const int num_left_pixels_needed =
txhpx + (n_bottomleft_px >= 0 ? txwpx : 0);
i = 0;
if (n_left_px > 0) {
for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
if (n_bottomleft_px > 0) {
assert(i == txhpx);
for (; i < txhpx + n_bottomleft_px; i++)
left_col[i] = left_ref[i * ref_stride];
}
if (i < num_left_pixels_needed)
aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
} else if (n_top_px > 0) {
aom_memset16(left_col, above_ref[0], num_left_pixels_needed);
}
}
// NEED_ABOVE
if (need_above) {
const int num_top_pixels_needed = txwpx + (n_topright_px >= 0 ? txhpx : 0);
if (n_top_px > 0) {
memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0]));
i = n_top_px;
if (n_topright_px > 0) {
assert(n_top_px == txwpx);
memcpy(above_row + txwpx, above_ref + txwpx,
n_topright_px * sizeof(above_ref[0]));
i += n_topright_px;
}
if (i < num_top_pixels_needed)
aom_memset16(&above_row[i], above_row[i - 1],
num_top_pixels_needed - i);
} else if (n_left_px > 0) {
aom_memset16(above_row, left_ref[0], num_top_pixels_needed);
}
}
if (need_above_left) {
if (n_top_px > 0 && n_left_px > 0) {
above_row[-1] = above_ref[-1];
} else if (n_top_px > 0) {
above_row[-1] = above_ref[0];
} else if (n_left_px > 0) {
above_row[-1] = left_ref[0];
} else {
above_row[-1] = base;
}
left_col[-1] = above_row[-1];
}
if (use_filter_intra) {
highbd_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
filter_intra_mode, bit_depth);
return;
}
assert(is_dr_mode);
int upsample_above = 0;
int upsample_left = 0;
if (!disable_edge_filter) {
const int need_right = p_angle < 90;
const int need_bottom = p_angle > 180;
if (p_angle != 90 && p_angle != 180) {
assert(need_above_left);
const int ab_le = 1;
if (need_above && need_left && (txwpx + txhpx >= 24)) {
highbd_filter_intra_edge_corner(above_row, left_col);
}
if (need_above && n_top_px > 0) {
const int strength = intra_edge_filter_strength(
txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
av1_highbd_filter_intra_edge(above_row - ab_le, n_px, strength);
}
if (need_left && n_left_px > 0) {
const int strength = intra_edge_filter_strength(
txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
av1_highbd_filter_intra_edge(left_col - ab_le, n_px, strength);
}
}
upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
intra_edge_filter_type);
if (need_above && upsample_above) {
const int n_px = txwpx + (need_right ? txhpx : 0);
av1_highbd_upsample_intra_edge(above_row, n_px, bit_depth);
}
upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
intra_edge_filter_type);
if (need_left && upsample_left) {
const int n_px = txhpx + (need_bottom ? txwpx : 0);
av1_highbd_upsample_intra_edge(left_col, n_px, bit_depth);
}
}
highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col,
upsample_above, upsample_left, p_angle, bit_depth);
}
// For HBD encode/decode, this function generates the pred data of a given
// block for non-directional intra prediction modes (i.e., DC, SMOOTH, SMOOTH_H,
// SMOOTH_V and PAETH).
static void highbd_build_non_directional_intra_predictors(
const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_left_px,
int bit_depth) {
int i = 0;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
const uint16_t *const ref = CONVERT_TO_SHORTPTR(ref8);
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
int need_left = extend_modes[mode] & NEED_LEFT;
int need_above = extend_modes[mode] & NEED_ABOVE;
int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
const uint16_t *above_ref = ref - ref_stride;
const uint16_t *left_ref = ref - 1;
const int base = 128 << (bit_depth - 8);
assert(n_top_px >= 0);
assert(n_left_px >= 0);
assert(mode == DC_PRED || mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
mode == SMOOTH_H_PRED || mode == PAETH_PRED);
if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
int val = 0;
if (need_left) {
val = (n_top_px > 0) ? above_ref[0] : base + 1;
} else {
val = (n_left_px > 0) ? left_ref[0] : base - 1;
}
for (i = 0; i < txhpx; ++i) {
aom_memset16(dst, val, txwpx);
dst += dst_stride;
}
return;
}
DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
uint16_t *const above_row = above_data + 16;
uint16_t *const left_col = left_data + 16;
if (need_left) {
aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
if (n_left_px > 0) {
for (i = 0; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
if (i < txhpx) aom_memset16(&left_col[i], left_col[i - 1], txhpx - i);
} else if (n_top_px > 0) {
aom_memset16(left_col, above_ref[0], txhpx);
}
}
if (need_above) {
aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
if (n_top_px > 0) {
memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0]));
i = n_top_px;
if (i < txwpx) aom_memset16(&above_row[i], above_row[i - 1], (txwpx - i));
} else if (n_left_px > 0) {
aom_memset16(above_row, left_ref[0], txwpx);
}
}
if (need_above_left) {
if (n_top_px > 0 && n_left_px > 0) {
above_row[-1] = above_ref[-1];
} else if (n_top_px > 0) {
above_row[-1] = above_ref[0];
} else if (n_left_px > 0) {
above_row[-1] = left_ref[0];
} else {
above_row[-1] = base;
}
left_col[-1] = above_row[-1];
}
if (mode == DC_PRED) {
dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size](
dst, dst_stride, above_row, left_col, bit_depth);
} else {
pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, bit_depth);
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static inline BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
int subsampling_y) {
assert(subsampling_x >= 0 && subsampling_x < 2);
assert(subsampling_y >= 0 && subsampling_y < 2);
BLOCK_SIZE bs = bsize;
switch (bsize) {
case BLOCK_4X4:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X4;
else if (subsampling_y == 1)
bs = BLOCK_4X8;
break;
case BLOCK_4X8:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X8;
else if (subsampling_y == 1)
bs = BLOCK_4X8;
break;
case BLOCK_8X4:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X4;
else if (subsampling_y == 1)
bs = BLOCK_8X8;
break;
case BLOCK_4X16:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X16;
else if (subsampling_x == 1)
bs = BLOCK_8X16;
else if (subsampling_y == 1)
bs = BLOCK_4X16;
break;
case BLOCK_16X4:
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_16X8;
else if (subsampling_x == 1)
bs = BLOCK_16X4;
else if (subsampling_y == 1)
bs = BLOCK_16X8;
break;
default: break;
}
return bs;
}
void av1_predict_intra_block(const MACROBLOCKD *xd, BLOCK_SIZE sb_size,
int enable_intra_edge_filter, int wpx, int hpx,
TX_SIZE tx_size, PREDICTION_MODE mode,
int angle_delta, int use_palette,
FILTER_INTRA_MODE filter_intra_mode,
const uint8_t *ref, int ref_stride, uint8_t *dst,
int dst_stride, int col_off, int row_off,
int plane) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
const int x = col_off << MI_SIZE_LOG2;
const int y = row_off << MI_SIZE_LOG2;
const int is_hbd = is_cur_buf_hbd(xd);
assert(mode < INTRA_MODES);
if (use_palette) {
int r, c;
const uint8_t *const map = xd->plane[plane != 0].color_index_map +
xd->color_index_map_offset[plane != 0];
const uint16_t *const palette =
mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE;
if (is_hbd) {
uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
for (r = 0; r < txhpx; ++r) {
for (c = 0; c < txwpx; ++c) {
dst16[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]];
}
}
} else {
for (r = 0; r < txhpx; ++r) {
for (c = 0; c < txwpx; ++c) {
dst[r * dst_stride + c] =
(uint8_t)palette[map[(r + y) * wpx + c + x]];
}
}
}
return;
}
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const int have_top =
row_off || (ss_y ? xd->chroma_up_available : xd->up_available);
const int have_left =
col_off || (ss_x ? xd->chroma_left_available : xd->left_available);
// Distance between the right edge of this prediction block to
// the frame right edge
const int xr = (xd->mb_to_right_edge >> (3 + ss_x)) + wpx - x - txwpx;
// Distance between the bottom edge of this prediction block to
// the frame bottom edge
const int yd = (xd->mb_to_bottom_edge >> (3 + ss_y)) + hpx - y - txhpx;
const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
const int is_dr_mode = av1_is_directional_mode(mode);
// The computations in this function, as well as in build_intra_predictors(),
// are generalized for all intra modes. Some of these operations are not
// required since non-directional intra modes (i.e., DC, SMOOTH, SMOOTH_H,
// SMOOTH_V, and PAETH) specifically require left and top neighbors. Hence, a
// separate function build_non_directional_intra_predictors() is introduced
// for these modes to avoid redundant computations while generating pred data.
const int n_top_px = have_top ? AOMMIN(txwpx, xr + txwpx) : 0;
const int n_left_px = have_left ? AOMMIN(txhpx, yd + txhpx) : 0;
if (!use_filter_intra && !is_dr_mode) {
#if CONFIG_AV1_HIGHBITDEPTH
if (is_hbd) {
highbd_build_non_directional_intra_predictors(
ref, ref_stride, dst, dst_stride, mode, tx_size, n_top_px, n_left_px,
xd->bd);
return;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
build_non_directional_intra_predictors(ref, ref_stride, dst, dst_stride,
mode, tx_size, n_top_px, n_left_px);
return;
}
const int txw = tx_size_wide_unit[tx_size];
const int txh = tx_size_high_unit[tx_size];
const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
const int right_available =
mi_col + ((col_off + txw) << ss_x) < xd->tile.mi_col_end;
const int bottom_available =
(yd > 0) && (mi_row + ((row_off + txh) << ss_y) < xd->tile.mi_row_end);
const PARTITION_TYPE partition = mbmi->partition;
BLOCK_SIZE bsize = mbmi->bsize;
// force 4x4 chroma component block size.
if (ss_x || ss_y) {
bsize = scale_chroma_bsize(bsize, ss_x, ss_y);
}
int p_angle = 0;
int need_top_right = extend_modes[mode] & NEED_ABOVERIGHT;
int need_bottom_left = extend_modes[mode] & NEED_BOTTOMLEFT;
if (use_filter_intra) {
need_top_right = 0;
need_bottom_left = 0;
}
if (is_dr_mode) {
p_angle = mode_to_angle_map[mode] + angle_delta;
need_top_right = p_angle < 90;
need_bottom_left = p_angle > 180;
}
// Possible states for have_top_right(TR) and have_bottom_left(BL)
// -1 : TR and BL are not needed
// 0 : TR and BL are needed but not available
// > 0 : TR and BL are needed and pixels are available
const int have_top_right =
need_top_right ? has_top_right(sb_size, bsize, mi_row, mi_col, have_top,
right_available, partition, tx_size,
row_off, col_off, ss_x, ss_y)
: -1;
const int have_bottom_left =
need_bottom_left ? has_bottom_left(sb_size, bsize, mi_row, mi_col,
bottom_available, have_left, partition,
tx_size, row_off, col_off, ss_x, ss_y)
: -1;
const int disable_edge_filter = !enable_intra_edge_filter;
const int intra_edge_filter_type = get_intra_edge_filter_type(xd, plane);
const int n_topright_px =
have_top_right > 0 ? AOMMIN(txwpx, xr) : have_top_right;
const int n_bottomleft_px =
have_bottom_left > 0 ? AOMMIN(txhpx, yd) : have_bottom_left;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_hbd) {
highbd_build_directional_and_filter_intra_predictors(
ref, ref_stride, dst, dst_stride, mode, p_angle, filter_intra_mode,
tx_size, disable_edge_filter, n_top_px, n_topright_px, n_left_px,
n_bottomleft_px, intra_edge_filter_type, xd->bd);
return;
}
#endif
build_directional_and_filter_intra_predictors(
ref, ref_stride, dst, dst_stride, mode, p_angle, filter_intra_mode,
tx_size, disable_edge_filter, n_top_px, n_topright_px, n_left_px,
n_bottomleft_px, intra_edge_filter_type);
}
void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, int blk_col, int blk_row,
TX_SIZE tx_size) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int dst_stride = pd->dst.stride;
uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
const PREDICTION_MODE mode =
(plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0;
const FILTER_INTRA_MODE filter_intra_mode =
(plane == AOM_PLANE_Y && mbmi->filter_intra_mode_info.use_filter_intra)
? mbmi->filter_intra_mode_info.filter_intra_mode
: FILTER_INTRA_MODES;
const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP;
const SequenceHeader *seq_params = cm->seq_params;
#if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) {
#if CONFIG_DEBUG
assert(is_cfl_allowed(xd));
const BLOCK_SIZE plane_bsize =
get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
(void)plane_bsize;
assert(plane_bsize < BLOCK_SIZES_ALL);
if (!xd->lossless[mbmi->segment_id]) {
assert(blk_col == 0);
assert(blk_row == 0);
assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
}
#endif
CFL_CTX *const cfl = &xd->cfl;
CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane);
if (!cfl->dc_pred_is_cached[pred_plane]) {
av1_predict_intra_block(xd, seq_params->sb_size,
seq_params->enable_intra_edge_filter, pd->width,
pd->height, tx_size, mode, angle_delta,
use_palette, filter_intra_mode, dst, dst_stride,
dst, dst_stride, blk_col, blk_row, plane);
if (cfl->use_dc_pred_cache) {
cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]);
cfl->dc_pred_is_cached[pred_plane] = true;
}
} else {
cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane);
}
av1_cfl_predict_block(xd, dst, dst_stride, tx_size, plane);
return;
}
#endif // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
av1_predict_intra_block(
xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width,
pd->height, tx_size, mode, angle_delta, use_palette, filter_intra_mode,
dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane);
}
void av1_init_intra_predictors(void) {
aom_once(init_intra_predictors_internal);
}