Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdlib.h>
#include "av1/common/mvref_common.h"
#include "av1/common/warped_motion.h"
// Although we assign 32 bit integers, all the values are strictly under 14
// bits.
static const int div_mult[32] = { 0, 16384, 8192, 5461, 4096, 3276, 2730,
2340, 2048, 1820, 1638, 1489, 1365, 1260,
1170, 1092, 1024, 963, 910, 862, 819,
780, 744, 712, 682, 655, 630, 606,
585, 564, 546, 528 };
// TODO(jingning): Consider the use of lookup table for (num / den)
// altogether.
static inline void get_mv_projection(MV *output, MV ref, int num, int den) {
den = AOMMIN(den, MAX_FRAME_DISTANCE);
num = num > 0 ? AOMMIN(num, MAX_FRAME_DISTANCE)
: AOMMAX(num, -MAX_FRAME_DISTANCE);
const int mv_row =
ROUND_POWER_OF_TWO_SIGNED(ref.row * num * div_mult[den], 14);
const int mv_col =
ROUND_POWER_OF_TWO_SIGNED(ref.col * num * div_mult[den], 14);
const int clamp_max = MV_UPP - 1;
const int clamp_min = MV_LOW + 1;
output->row = (int16_t)clamp(mv_row, clamp_min, clamp_max);
output->col = (int16_t)clamp(mv_col, clamp_min, clamp_max);
}
void av1_copy_frame_mvs(const AV1_COMMON *const cm,
const MB_MODE_INFO *const mi, int mi_row, int mi_col,
int x_mis, int y_mis) {
const int frame_mvs_stride = ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, 1);
MV_REF *frame_mvs =
cm->cur_frame->mvs + (mi_row >> 1) * frame_mvs_stride + (mi_col >> 1);
x_mis = ROUND_POWER_OF_TWO(x_mis, 1);
y_mis = ROUND_POWER_OF_TWO(y_mis, 1);
int w, h;
for (h = 0; h < y_mis; h++) {
MV_REF *mv = frame_mvs;
for (w = 0; w < x_mis; w++) {
mv->ref_frame = NONE_FRAME;
mv->mv.as_int = 0;
for (int idx = 0; idx < 2; ++idx) {
MV_REFERENCE_FRAME ref_frame = mi->ref_frame[idx];
if (ref_frame > INTRA_FRAME) {
int8_t ref_idx = cm->ref_frame_side[ref_frame];
if (ref_idx) continue;
if ((abs(mi->mv[idx].as_mv.row) > REFMVS_LIMIT) ||
(abs(mi->mv[idx].as_mv.col) > REFMVS_LIMIT))
continue;
mv->ref_frame = ref_frame;
mv->mv.as_int = mi->mv[idx].as_int;
}
}
mv++;
}
frame_mvs += frame_mvs_stride;
}
}
static inline void add_ref_mv_candidate(
const MB_MODE_INFO *const candidate, const MV_REFERENCE_FRAME rf[2],
uint8_t *refmv_count, uint8_t *ref_match_count, uint8_t *newmv_count,
CANDIDATE_MV *ref_mv_stack, uint16_t *ref_mv_weight,
int_mv *gm_mv_candidates, const WarpedMotionParams *gm_params,
uint16_t weight) {
if (!is_inter_block(candidate)) return;
assert(weight % 2 == 0);
int index, ref;
if (rf[1] == NONE_FRAME) {
// single reference frame
for (ref = 0; ref < 2; ++ref) {
if (candidate->ref_frame[ref] == rf[0]) {
const int is_gm_block =
is_global_mv_block(candidate, gm_params[rf[0]].wmtype);
const int_mv this_refmv =
is_gm_block ? gm_mv_candidates[0] : get_block_mv(candidate, ref);
for (index = 0; index < *refmv_count; ++index) {
if (ref_mv_stack[index].this_mv.as_int == this_refmv.as_int) {
ref_mv_weight[index] += weight;
break;
}
}
// Add a new item to the list.
if (index == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) {
ref_mv_stack[index].this_mv = this_refmv;
ref_mv_weight[index] = weight;
++(*refmv_count);
}
if (have_newmv_in_inter_mode(candidate->mode)) ++*newmv_count;
++*ref_match_count;
}
}
} else {
// compound reference frame
if (candidate->ref_frame[0] == rf[0] && candidate->ref_frame[1] == rf[1]) {
int_mv this_refmv[2];
for (ref = 0; ref < 2; ++ref) {
if (is_global_mv_block(candidate, gm_params[rf[ref]].wmtype))
this_refmv[ref] = gm_mv_candidates[ref];
else
this_refmv[ref] = get_block_mv(candidate, ref);
}
for (index = 0; index < *refmv_count; ++index) {
if ((ref_mv_stack[index].this_mv.as_int == this_refmv[0].as_int) &&
(ref_mv_stack[index].comp_mv.as_int == this_refmv[1].as_int)) {
ref_mv_weight[index] += weight;
break;
}
}
// Add a new item to the list.
if (index == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) {
ref_mv_stack[index].this_mv = this_refmv[0];
ref_mv_stack[index].comp_mv = this_refmv[1];
ref_mv_weight[index] = weight;
++(*refmv_count);
}
if (have_newmv_in_inter_mode(candidate->mode)) ++*newmv_count;
++*ref_match_count;
}
}
}
static inline void scan_row_mbmi(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int mi_col, const MV_REFERENCE_FRAME rf[2],
int row_offset, CANDIDATE_MV *ref_mv_stack,
uint16_t *ref_mv_weight, uint8_t *refmv_count,
uint8_t *ref_match_count, uint8_t *newmv_count,
int_mv *gm_mv_candidates, int max_row_offset,
int *processed_rows) {
int end_mi = AOMMIN(xd->width, cm->mi_params.mi_cols - mi_col);
end_mi = AOMMIN(end_mi, mi_size_wide[BLOCK_64X64]);
const int width_8x8 = mi_size_wide[BLOCK_8X8];
const int width_16x16 = mi_size_wide[BLOCK_16X16];
int col_offset = 0;
// TODO(jingning): Revisit this part after cb4x4 is stable.
if (abs(row_offset) > 1) {
col_offset = 1;
if ((mi_col & 0x01) && xd->width < width_8x8) --col_offset;
}
const int use_step_16 = (xd->width >= 16);
MB_MODE_INFO **const candidate_mi0 = xd->mi + row_offset * xd->mi_stride;
for (int i = 0; i < end_mi;) {
const MB_MODE_INFO *const candidate = candidate_mi0[col_offset + i];
const int candidate_bsize = candidate->bsize;
const int n4_w = mi_size_wide[candidate_bsize];
int len = AOMMIN(xd->width, n4_w);
if (use_step_16)
len = AOMMAX(width_16x16, len);
else if (abs(row_offset) > 1)
len = AOMMAX(len, width_8x8);
uint16_t weight = 2;
if (xd->width >= width_8x8 && xd->width <= n4_w) {
uint16_t inc = AOMMIN(-max_row_offset + row_offset + 1,
mi_size_high[candidate_bsize]);
// Obtain range used in weight calculation.
weight = AOMMAX(weight, inc);
// Update processed rows.
*processed_rows = inc - row_offset - 1;
}
add_ref_mv_candidate(candidate, rf, refmv_count, ref_match_count,
newmv_count, ref_mv_stack, ref_mv_weight,
gm_mv_candidates, cm->global_motion, len * weight);
i += len;
}
}
static inline void scan_col_mbmi(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int mi_row, const MV_REFERENCE_FRAME rf[2],
int col_offset, CANDIDATE_MV *ref_mv_stack,
uint16_t *ref_mv_weight, uint8_t *refmv_count,
uint8_t *ref_match_count, uint8_t *newmv_count,
int_mv *gm_mv_candidates, int max_col_offset,
int *processed_cols) {
int end_mi = AOMMIN(xd->height, cm->mi_params.mi_rows - mi_row);
end_mi = AOMMIN(end_mi, mi_size_high[BLOCK_64X64]);
const int n8_h_8 = mi_size_high[BLOCK_8X8];
const int n8_h_16 = mi_size_high[BLOCK_16X16];
int i;
int row_offset = 0;
if (abs(col_offset) > 1) {
row_offset = 1;
if ((mi_row & 0x01) && xd->height < n8_h_8) --row_offset;
}
const int use_step_16 = (xd->height >= 16);
for (i = 0; i < end_mi;) {
const MB_MODE_INFO *const candidate =
xd->mi[(row_offset + i) * xd->mi_stride + col_offset];
const int candidate_bsize = candidate->bsize;
const int n4_h = mi_size_high[candidate_bsize];
int len = AOMMIN(xd->height, n4_h);
if (use_step_16)
len = AOMMAX(n8_h_16, len);
else if (abs(col_offset) > 1)
len = AOMMAX(len, n8_h_8);
int weight = 2;
if (xd->height >= n8_h_8 && xd->height <= n4_h) {
int inc = AOMMIN(-max_col_offset + col_offset + 1,
mi_size_wide[candidate_bsize]);
// Obtain range used in weight calculation.
weight = AOMMAX(weight, inc);
// Update processed cols.
*processed_cols = inc - col_offset - 1;
}
add_ref_mv_candidate(candidate, rf, refmv_count, ref_match_count,
newmv_count, ref_mv_stack, ref_mv_weight,
gm_mv_candidates, cm->global_motion, len * weight);
i += len;
}
}
static inline void scan_blk_mbmi(const AV1_COMMON *cm, const MACROBLOCKD *xd,
const int mi_row, const int mi_col,
const MV_REFERENCE_FRAME rf[2], int row_offset,
int col_offset, CANDIDATE_MV *ref_mv_stack,
uint16_t *ref_mv_weight,
uint8_t *ref_match_count, uint8_t *newmv_count,
int_mv *gm_mv_candidates,
uint8_t *refmv_count) {
const TileInfo *const tile = &xd->tile;
POSITION mi_pos;
mi_pos.row = row_offset;
mi_pos.col = col_offset;
if (is_inside(tile, mi_col, mi_row, &mi_pos)) {
const MB_MODE_INFO *const candidate =
xd->mi[mi_pos.row * xd->mi_stride + mi_pos.col];
const int len = mi_size_wide[BLOCK_8X8];
add_ref_mv_candidate(candidate, rf, refmv_count, ref_match_count,
newmv_count, ref_mv_stack, ref_mv_weight,
gm_mv_candidates, cm->global_motion, 2 * len);
} // Analyze a single 8x8 block motion information.
}
static int has_top_right(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int mi_row, int mi_col, int bs) {
const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size];
const int mask_row = mi_row & (sb_mi_size - 1);
const int mask_col = mi_col & (sb_mi_size - 1);
if (bs > mi_size_wide[BLOCK_64X64]) return 0;
// In a split partition all apart from the bottom right has a top right
int has_tr = !((mask_row & bs) && (mask_col & bs));
// bs > 0 and bs is a power of 2
assert(bs > 0 && !(bs & (bs - 1)));
// For each 4x4 group of blocks, when the bottom right is decoded the blocks
// to the right have not been decoded therefore the bottom right does
// not have a top right
while (bs < sb_mi_size) {
if (mask_col & bs) {
if ((mask_col & (2 * bs)) && (mask_row & (2 * bs))) {
has_tr = 0;
break;
}
} else {
break;
}
bs <<= 1;
}
// In a VERTICAL or VERTICAL_4 partition, all partition before the last one
// always have a top right (as the block above will have been decoded).
if (xd->width < xd->height) {
if (!xd->is_last_vertical_rect) has_tr = 1;
}
// In a HORIZONTAL or HORIZONTAL_4 partition, partitions after the first one
// never have a top right (as the block to the right won't have been decoded).
if (xd->width > xd->height) {
if (!xd->is_first_horizontal_rect) has_tr = 0;
}
// The bottom left square of a Vertical A (in the old format) does
// not have a top right as it is decoded before the right hand
// rectangle of the partition
if (xd->mi[0]->partition == PARTITION_VERT_A) {
if (xd->width == xd->height)
if (mask_row & bs) has_tr = 0;
}
return has_tr;
}
static int check_sb_border(const int mi_row, const int mi_col,
const int row_offset, const int col_offset) {
const int sb_mi_size = mi_size_wide[BLOCK_64X64];
const int row = mi_row & (sb_mi_size - 1);
const int col = mi_col & (sb_mi_size - 1);
if (row + row_offset < 0 || row + row_offset >= sb_mi_size ||
col + col_offset < 0 || col + col_offset >= sb_mi_size)
return 0;
return 1;
}
static int add_tpl_ref_mv(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int mi_row, int mi_col, MV_REFERENCE_FRAME ref_frame,
int blk_row, int blk_col, int_mv *gm_mv_candidates,
uint8_t *const refmv_count,
CANDIDATE_MV ref_mv_stack[MAX_REF_MV_STACK_SIZE],
uint16_t ref_mv_weight[MAX_REF_MV_STACK_SIZE],
int16_t *mode_context) {
POSITION mi_pos;
mi_pos.row = (mi_row & 0x01) ? blk_row : blk_row + 1;
mi_pos.col = (mi_col & 0x01) ? blk_col : blk_col + 1;
if (!is_inside(&xd->tile, mi_col, mi_row, &mi_pos)) return 0;
const TPL_MV_REF *prev_frame_mvs =
cm->tpl_mvs +
((mi_row + mi_pos.row) >> 1) * (cm->mi_params.mi_stride >> 1) +
((mi_col + mi_pos.col) >> 1);
if (prev_frame_mvs->mfmv0.as_int == INVALID_MV) return 0;
MV_REFERENCE_FRAME rf[2];
av1_set_ref_frame(rf, ref_frame);
const uint16_t weight_unit = 1; // mi_size_wide[BLOCK_8X8];
const int cur_frame_index = cm->cur_frame->order_hint;
const RefCntBuffer *const buf_0 = get_ref_frame_buf(cm, rf[0]);
const int frame0_index = buf_0->order_hint;
const int cur_offset_0 = get_relative_dist(&cm->seq_params->order_hint_info,
cur_frame_index, frame0_index);
int idx;
const int allow_high_precision_mv = cm->features.allow_high_precision_mv;
const int force_integer_mv = cm->features.cur_frame_force_integer_mv;
int_mv this_refmv;
get_mv_projection(&this_refmv.as_mv, prev_frame_mvs->mfmv0.as_mv,
cur_offset_0, prev_frame_mvs->ref_frame_offset);
lower_mv_precision(&this_refmv.as_mv, allow_high_precision_mv,
force_integer_mv);
if (rf[1] == NONE_FRAME) {
if (blk_row == 0 && blk_col == 0) {
if (abs(this_refmv.as_mv.row - gm_mv_candidates[0].as_mv.row) >= 16 ||
abs(this_refmv.as_mv.col - gm_mv_candidates[0].as_mv.col) >= 16)
mode_context[ref_frame] |= (1 << GLOBALMV_OFFSET);
}
for (idx = 0; idx < *refmv_count; ++idx)
if (this_refmv.as_int == ref_mv_stack[idx].this_mv.as_int) break;
if (idx < *refmv_count) ref_mv_weight[idx] += 2 * weight_unit;
if (idx == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) {
ref_mv_stack[idx].this_mv.as_int = this_refmv.as_int;
ref_mv_weight[idx] = 2 * weight_unit;
++(*refmv_count);
}
} else {
// Process compound inter mode
const RefCntBuffer *const buf_1 = get_ref_frame_buf(cm, rf[1]);
const int frame1_index = buf_1->order_hint;
const int cur_offset_1 = get_relative_dist(&cm->seq_params->order_hint_info,
cur_frame_index, frame1_index);
int_mv comp_refmv;
get_mv_projection(&comp_refmv.as_mv, prev_frame_mvs->mfmv0.as_mv,
cur_offset_1, prev_frame_mvs->ref_frame_offset);
lower_mv_precision(&comp_refmv.as_mv, allow_high_precision_mv,
force_integer_mv);
if (blk_row == 0 && blk_col == 0) {
if (abs(this_refmv.as_mv.row - gm_mv_candidates[0].as_mv.row) >= 16 ||
abs(this_refmv.as_mv.col - gm_mv_candidates[0].as_mv.col) >= 16 ||
abs(comp_refmv.as_mv.row - gm_mv_candidates[1].as_mv.row) >= 16 ||
abs(comp_refmv.as_mv.col - gm_mv_candidates[1].as_mv.col) >= 16)
mode_context[ref_frame] |= (1 << GLOBALMV_OFFSET);
}
for (idx = 0; idx < *refmv_count; ++idx) {
if (this_refmv.as_int == ref_mv_stack[idx].this_mv.as_int &&
comp_refmv.as_int == ref_mv_stack[idx].comp_mv.as_int)
break;
}
if (idx < *refmv_count) ref_mv_weight[idx] += 2 * weight_unit;
if (idx == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) {
ref_mv_stack[idx].this_mv.as_int = this_refmv.as_int;
ref_mv_stack[idx].comp_mv.as_int = comp_refmv.as_int;
ref_mv_weight[idx] = 2 * weight_unit;
++(*refmv_count);
}
}
return 1;
}
static inline void process_compound_ref_mv_candidate(
const MB_MODE_INFO *const candidate, const AV1_COMMON *const cm,
const MV_REFERENCE_FRAME *const rf, int_mv ref_id[2][2],
int ref_id_count[2], int_mv ref_diff[2][2], int ref_diff_count[2]) {
for (int rf_idx = 0; rf_idx < 2; ++rf_idx) {
MV_REFERENCE_FRAME can_rf = candidate->ref_frame[rf_idx];
for (int cmp_idx = 0; cmp_idx < 2; ++cmp_idx) {
if (can_rf == rf[cmp_idx] && ref_id_count[cmp_idx] < 2) {
ref_id[cmp_idx][ref_id_count[cmp_idx]] = candidate->mv[rf_idx];
++ref_id_count[cmp_idx];
} else if (can_rf > INTRA_FRAME && ref_diff_count[cmp_idx] < 2) {
int_mv this_mv = candidate->mv[rf_idx];
if (cm->ref_frame_sign_bias[can_rf] !=
cm->ref_frame_sign_bias[rf[cmp_idx]]) {
this_mv.as_mv.row = -this_mv.as_mv.row;
this_mv.as_mv.col = -this_mv.as_mv.col;
}
ref_diff[cmp_idx][ref_diff_count[cmp_idx]] = this_mv;
++ref_diff_count[cmp_idx];
}
}
}
}
static inline void process_single_ref_mv_candidate(
const MB_MODE_INFO *const candidate, const AV1_COMMON *const cm,
MV_REFERENCE_FRAME ref_frame, uint8_t *const refmv_count,
CANDIDATE_MV ref_mv_stack[MAX_REF_MV_STACK_SIZE],
uint16_t ref_mv_weight[MAX_REF_MV_STACK_SIZE]) {
for (int rf_idx = 0; rf_idx < 2; ++rf_idx) {
if (candidate->ref_frame[rf_idx] > INTRA_FRAME) {
int_mv this_mv = candidate->mv[rf_idx];
if (cm->ref_frame_sign_bias[candidate->ref_frame[rf_idx]] !=
cm->ref_frame_sign_bias[ref_frame]) {
this_mv.as_mv.row = -this_mv.as_mv.row;
this_mv.as_mv.col = -this_mv.as_mv.col;
}
int stack_idx;
for (stack_idx = 0; stack_idx < *refmv_count; ++stack_idx) {
const int_mv stack_mv = ref_mv_stack[stack_idx].this_mv;
if (this_mv.as_int == stack_mv.as_int) break;
}
if (stack_idx == *refmv_count) {
ref_mv_stack[stack_idx].this_mv = this_mv;
// TODO(jingning): Set an arbitrary small number here. The weight
// doesn't matter as long as it is properly initialized.
ref_mv_weight[stack_idx] = 2;
++(*refmv_count);
}
}
}
}
static inline void setup_ref_mv_list(
const AV1_COMMON *cm, const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref_frame,
uint8_t *const refmv_count,
CANDIDATE_MV ref_mv_stack[MAX_REF_MV_STACK_SIZE],
uint16_t ref_mv_weight[MAX_REF_MV_STACK_SIZE],
int_mv mv_ref_list[MAX_MV_REF_CANDIDATES], int_mv *gm_mv_candidates,
int mi_row, int mi_col, int16_t *mode_context) {
const int bs = AOMMAX(xd->width, xd->height);
const int has_tr = has_top_right(cm, xd, mi_row, mi_col, bs);
MV_REFERENCE_FRAME rf[2];
const TileInfo *const tile = &xd->tile;
int max_row_offset = 0, max_col_offset = 0;
const int row_adj = (xd->height < mi_size_high[BLOCK_8X8]) && (mi_row & 0x01);
const int col_adj = (xd->width < mi_size_wide[BLOCK_8X8]) && (mi_col & 0x01);
int processed_rows = 0;
int processed_cols = 0;
av1_set_ref_frame(rf, ref_frame);
mode_context[ref_frame] = 0;
*refmv_count = 0;
// Find valid maximum row/col offset.
if (xd->up_available) {
max_row_offset = -(MVREF_ROW_COLS << 1) + row_adj;
if (xd->height < mi_size_high[BLOCK_8X8])
max_row_offset = -(2 << 1) + row_adj;
max_row_offset = find_valid_row_offset(tile, mi_row, max_row_offset);
}
if (xd->left_available) {
max_col_offset = -(MVREF_ROW_COLS << 1) + col_adj;
if (xd->width < mi_size_wide[BLOCK_8X8])
max_col_offset = -(2 << 1) + col_adj;
max_col_offset = find_valid_col_offset(tile, mi_col, max_col_offset);
}
uint8_t col_match_count = 0;
uint8_t row_match_count = 0;
uint8_t newmv_count = 0;
// Scan the first above row mode info. row_offset = -1;
if (abs(max_row_offset) >= 1)
scan_row_mbmi(cm, xd, mi_col, rf, -1, ref_mv_stack, ref_mv_weight,
refmv_count, &row_match_count, &newmv_count, gm_mv_candidates,
max_row_offset, &processed_rows);
// Scan the first left column mode info. col_offset = -1;
if (abs(max_col_offset) >= 1)
scan_col_mbmi(cm, xd, mi_row, rf, -1, ref_mv_stack, ref_mv_weight,
refmv_count, &col_match_count, &newmv_count, gm_mv_candidates,
max_col_offset, &processed_cols);
// Check top-right boundary
if (has_tr)
scan_blk_mbmi(cm, xd, mi_row, mi_col, rf, -1, xd->width, ref_mv_stack,
ref_mv_weight, &row_match_count, &newmv_count,
gm_mv_candidates, refmv_count);
const uint8_t nearest_match = (row_match_count > 0) + (col_match_count > 0);
const uint8_t nearest_refmv_count = *refmv_count;
// TODO(yunqing): for comp_search, do it for all 3 cases.
for (int idx = 0; idx < nearest_refmv_count; ++idx)
ref_mv_weight[idx] += REF_CAT_LEVEL;
if (cm->features.allow_ref_frame_mvs) {
int is_available = 0;
const int voffset = AOMMAX(mi_size_high[BLOCK_8X8], xd->height);
const int hoffset = AOMMAX(mi_size_wide[BLOCK_8X8], xd->width);
const int blk_row_end = AOMMIN(xd->height, mi_size_high[BLOCK_64X64]);
const int blk_col_end = AOMMIN(xd->width, mi_size_wide[BLOCK_64X64]);
const int tpl_sample_pos[3][2] = {
{ voffset, -2 },
{ voffset, hoffset },
{ voffset - 2, hoffset },
};
const int allow_extension = (xd->height >= mi_size_high[BLOCK_8X8]) &&
(xd->height < mi_size_high[BLOCK_64X64]) &&
(xd->width >= mi_size_wide[BLOCK_8X8]) &&
(xd->width < mi_size_wide[BLOCK_64X64]);
const int step_h = (xd->height >= mi_size_high[BLOCK_64X64])
? mi_size_high[BLOCK_16X16]
: mi_size_high[BLOCK_8X8];
const int step_w = (xd->width >= mi_size_wide[BLOCK_64X64])
? mi_size_wide[BLOCK_16X16]
: mi_size_wide[BLOCK_8X8];
for (int blk_row = 0; blk_row < blk_row_end; blk_row += step_h) {
for (int blk_col = 0; blk_col < blk_col_end; blk_col += step_w) {
int ret = add_tpl_ref_mv(cm, xd, mi_row, mi_col, ref_frame, blk_row,
blk_col, gm_mv_candidates, refmv_count,
ref_mv_stack, ref_mv_weight, mode_context);
if (blk_row == 0 && blk_col == 0) is_available = ret;
}
}
if (is_available == 0) mode_context[ref_frame] |= (1 << GLOBALMV_OFFSET);
for (int i = 0; i < 3 && allow_extension; ++i) {
const int blk_row = tpl_sample_pos[i][0];
const int blk_col = tpl_sample_pos[i][1];
if (!check_sb_border(mi_row, mi_col, blk_row, blk_col)) continue;
add_tpl_ref_mv(cm, xd, mi_row, mi_col, ref_frame, blk_row, blk_col,
gm_mv_candidates, refmv_count, ref_mv_stack, ref_mv_weight,
mode_context);
}
}
uint8_t dummy_newmv_count = 0;
// Scan the second outer area.
scan_blk_mbmi(cm, xd, mi_row, mi_col, rf, -1, -1, ref_mv_stack, ref_mv_weight,
&row_match_count, &dummy_newmv_count, gm_mv_candidates,
refmv_count);
for (int idx = 2; idx <= MVREF_ROW_COLS; ++idx) {
const int row_offset = -(idx << 1) + 1 + row_adj;
const int col_offset = -(idx << 1) + 1 + col_adj;
if (abs(row_offset) <= abs(max_row_offset) &&
abs(row_offset) > processed_rows)
scan_row_mbmi(cm, xd, mi_col, rf, row_offset, ref_mv_stack, ref_mv_weight,
refmv_count, &row_match_count, &dummy_newmv_count,
gm_mv_candidates, max_row_offset, &processed_rows);
if (abs(col_offset) <= abs(max_col_offset) &&
abs(col_offset) > processed_cols)
scan_col_mbmi(cm, xd, mi_row, rf, col_offset, ref_mv_stack, ref_mv_weight,
refmv_count, &col_match_count, &dummy_newmv_count,
gm_mv_candidates, max_col_offset, &processed_cols);
}
const uint8_t ref_match_count = (row_match_count > 0) + (col_match_count > 0);
switch (nearest_match) {
case 0:
if (ref_match_count >= 1) mode_context[ref_frame] |= 1;
if (ref_match_count == 1)
mode_context[ref_frame] |= (1 << REFMV_OFFSET);
else if (ref_match_count >= 2)
mode_context[ref_frame] |= (2 << REFMV_OFFSET);
break;
case 1:
mode_context[ref_frame] |= (newmv_count > 0) ? 2 : 3;
if (ref_match_count == 1)
mode_context[ref_frame] |= (3 << REFMV_OFFSET);
else if (ref_match_count >= 2)
mode_context[ref_frame] |= (4 << REFMV_OFFSET);
break;
case 2:
default:
if (newmv_count >= 1)
mode_context[ref_frame] |= 4;
else
mode_context[ref_frame] |= 5;
mode_context[ref_frame] |= (5 << REFMV_OFFSET);
break;
}
// Rank the likelihood and assign nearest and near mvs.
int len = nearest_refmv_count;
while (len > 0) {
int nr_len = 0;
for (int idx = 1; idx < len; ++idx) {
if (ref_mv_weight[idx - 1] < ref_mv_weight[idx]) {
const CANDIDATE_MV tmp_mv = ref_mv_stack[idx - 1];
const uint16_t tmp_ref_mv_weight = ref_mv_weight[idx - 1];
ref_mv_stack[idx - 1] = ref_mv_stack[idx];
ref_mv_stack[idx] = tmp_mv;
ref_mv_weight[idx - 1] = ref_mv_weight[idx];
ref_mv_weight[idx] = tmp_ref_mv_weight;
nr_len = idx;
}
}
len = nr_len;
}
len = *refmv_count;
while (len > nearest_refmv_count) {
int nr_len = nearest_refmv_count;
for (int idx = nearest_refmv_count + 1; idx < len; ++idx) {
if (ref_mv_weight[idx - 1] < ref_mv_weight[idx]) {
const CANDIDATE_MV tmp_mv = ref_mv_stack[idx - 1];
const uint16_t tmp_ref_mv_weight = ref_mv_weight[idx - 1];
ref_mv_stack[idx - 1] = ref_mv_stack[idx];
ref_mv_stack[idx] = tmp_mv;
ref_mv_weight[idx - 1] = ref_mv_weight[idx];
ref_mv_weight[idx] = tmp_ref_mv_weight;
nr_len = idx;
}
}
len = nr_len;
}
int mi_width = AOMMIN(mi_size_wide[BLOCK_64X64], xd->width);
mi_width = AOMMIN(mi_width, cm->mi_params.mi_cols - mi_col);
int mi_height = AOMMIN(mi_size_high[BLOCK_64X64], xd->height);
mi_height = AOMMIN(mi_height, cm->mi_params.mi_rows - mi_row);
const int mi_size = AOMMIN(mi_width, mi_height);
if (rf[1] > NONE_FRAME) {
// TODO(jingning, yunqing): Refactor and consolidate the compound and
// single reference frame modes. Reduce unnecessary redundancy.
if (*refmv_count < MAX_MV_REF_CANDIDATES) {
int_mv ref_id[2][2], ref_diff[2][2];
int ref_id_count[2] = { 0 }, ref_diff_count[2] = { 0 };
for (int idx = 0; abs(max_row_offset) >= 1 && idx < mi_size;) {
const MB_MODE_INFO *const candidate = xd->mi[-xd->mi_stride + idx];
process_compound_ref_mv_candidate(
candidate, cm, rf, ref_id, ref_id_count, ref_diff, ref_diff_count);
idx += mi_size_wide[candidate->bsize];
}
for (int idx = 0; abs(max_col_offset) >= 1 && idx < mi_size;) {
const MB_MODE_INFO *const candidate = xd->mi[idx * xd->mi_stride - 1];
process_compound_ref_mv_candidate(
candidate, cm, rf, ref_id, ref_id_count, ref_diff, ref_diff_count);
idx += mi_size_high[candidate->bsize];
}
// Build up the compound mv predictor
int_mv comp_list[MAX_MV_REF_CANDIDATES][2];
for (int idx = 0; idx < 2; ++idx) {
int comp_idx = 0;
for (int list_idx = 0;
list_idx < ref_id_count[idx] && comp_idx < MAX_MV_REF_CANDIDATES;
++list_idx, ++comp_idx)
comp_list[comp_idx][idx] = ref_id[idx][list_idx];
for (int list_idx = 0;
list_idx < ref_diff_count[idx] && comp_idx < MAX_MV_REF_CANDIDATES;
++list_idx, ++comp_idx)
comp_list[comp_idx][idx] = ref_diff[idx][list_idx];
for (; comp_idx < MAX_MV_REF_CANDIDATES; ++comp_idx)
comp_list[comp_idx][idx] = gm_mv_candidates[idx];
}
if (*refmv_count) {
assert(*refmv_count == 1);
if (comp_list[0][0].as_int == ref_mv_stack[0].this_mv.as_int &&
comp_list[0][1].as_int == ref_mv_stack[0].comp_mv.as_int) {
ref_mv_stack[*refmv_count].this_mv = comp_list[1][0];
ref_mv_stack[*refmv_count].comp_mv = comp_list[1][1];
} else {
ref_mv_stack[*refmv_count].this_mv = comp_list[0][0];
ref_mv_stack[*refmv_count].comp_mv = comp_list[0][1];
}
ref_mv_weight[*refmv_count] = 2;
++*refmv_count;
} else {
for (int idx = 0; idx < MAX_MV_REF_CANDIDATES; ++idx) {
ref_mv_stack[*refmv_count].this_mv = comp_list[idx][0];
ref_mv_stack[*refmv_count].comp_mv = comp_list[idx][1];
ref_mv_weight[*refmv_count] = 2;
++*refmv_count;
}
}
}
assert(*refmv_count >= 2);
for (int idx = 0; idx < *refmv_count; ++idx) {
clamp_mv_ref(&ref_mv_stack[idx].this_mv.as_mv, xd->width << MI_SIZE_LOG2,
xd->height << MI_SIZE_LOG2, xd);
clamp_mv_ref(&ref_mv_stack[idx].comp_mv.as_mv, xd->width << MI_SIZE_LOG2,
xd->height << MI_SIZE_LOG2, xd);
}
} else {
// Handle single reference frame extension
for (int idx = 0; abs(max_row_offset) >= 1 && idx < mi_size &&
*refmv_count < MAX_MV_REF_CANDIDATES;) {
const MB_MODE_INFO *const candidate = xd->mi[-xd->mi_stride + idx];
process_single_ref_mv_candidate(candidate, cm, ref_frame, refmv_count,
ref_mv_stack, ref_mv_weight);
idx += mi_size_wide[candidate->bsize];
}
for (int idx = 0; abs(max_col_offset) >= 1 && idx < mi_size &&
*refmv_count < MAX_MV_REF_CANDIDATES;) {
const MB_MODE_INFO *const candidate = xd->mi[idx * xd->mi_stride - 1];
process_single_ref_mv_candidate(candidate, cm, ref_frame, refmv_count,
ref_mv_stack, ref_mv_weight);
idx += mi_size_high[candidate->bsize];
}
for (int idx = 0; idx < *refmv_count; ++idx) {
clamp_mv_ref(&ref_mv_stack[idx].this_mv.as_mv, xd->width << MI_SIZE_LOG2,
xd->height << MI_SIZE_LOG2, xd);
}
if (mv_ref_list != NULL) {
for (int idx = *refmv_count; idx < MAX_MV_REF_CANDIDATES; ++idx)
mv_ref_list[idx].as_int = gm_mv_candidates[0].as_int;
for (int idx = 0; idx < AOMMIN(MAX_MV_REF_CANDIDATES, *refmv_count);
++idx) {
mv_ref_list[idx].as_int = ref_mv_stack[idx].this_mv.as_int;
}
}
}
}
void av1_find_mv_refs(const AV1_COMMON *cm, const MACROBLOCKD *xd,
MB_MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
uint8_t ref_mv_count[MODE_CTX_REF_FRAMES],
CANDIDATE_MV ref_mv_stack[][MAX_REF_MV_STACK_SIZE],
uint16_t ref_mv_weight[][MAX_REF_MV_STACK_SIZE],
int_mv mv_ref_list[][MAX_MV_REF_CANDIDATES],
int_mv *global_mvs, int16_t *mode_context) {
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
int_mv gm_mv[2];
if (ref_frame == INTRA_FRAME) {
gm_mv[0].as_int = gm_mv[1].as_int = 0;
if (global_mvs != NULL) {
global_mvs[ref_frame].as_int = INVALID_MV;
}
} else {
const BLOCK_SIZE bsize = mi->bsize;
const int allow_high_precision_mv = cm->features.allow_high_precision_mv;
const int force_integer_mv = cm->features.cur_frame_force_integer_mv;
if (ref_frame < REF_FRAMES) {
gm_mv[0] = gm_get_motion_vector(&cm->global_motion[ref_frame],
allow_high_precision_mv, bsize, mi_col,
mi_row, force_integer_mv);
gm_mv[1].as_int = 0;
if (global_mvs != NULL) global_mvs[ref_frame] = gm_mv[0];
} else {
MV_REFERENCE_FRAME rf[2];
av1_set_ref_frame(rf, ref_frame);
gm_mv[0] = gm_get_motion_vector(&cm->global_motion[rf[0]],
allow_high_precision_mv, bsize, mi_col,
mi_row, force_integer_mv);
gm_mv[1] = gm_get_motion_vector(&cm->global_motion[rf[1]],
allow_high_precision_mv, bsize, mi_col,
mi_row, force_integer_mv);
}
}
setup_ref_mv_list(cm, xd, ref_frame, &ref_mv_count[ref_frame],
ref_mv_stack[ref_frame], ref_mv_weight[ref_frame],
mv_ref_list ? mv_ref_list[ref_frame] : NULL, gm_mv, mi_row,
mi_col, mode_context);
}
void av1_find_best_ref_mvs(int allow_hp, int_mv *mvlist, int_mv *nearest_mv,
int_mv *near_mv, int is_integer) {
int i;
// Make sure all the candidates are properly clamped etc
for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) {
lower_mv_precision(&mvlist[i].as_mv, allow_hp, is_integer);
}
*nearest_mv = mvlist[0];
*near_mv = mvlist[1];
}
void av1_setup_frame_buf_refs(AV1_COMMON *cm) {
cm->cur_frame->order_hint = cm->current_frame.order_hint;
cm->cur_frame->display_order_hint = cm->current_frame.display_order_hint;
cm->cur_frame->pyramid_level = cm->current_frame.pyramid_level;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
if (buf != NULL) {
cm->cur_frame->ref_order_hints[ref_frame - LAST_FRAME] = buf->order_hint;
cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME] =
buf->display_order_hint;
}
}
}
void av1_setup_frame_sign_bias(AV1_COMMON *cm) {
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
if (cm->seq_params->order_hint_info.enable_order_hint && buf != NULL) {
const int ref_order_hint = buf->order_hint;
cm->ref_frame_sign_bias[ref_frame] =
(get_relative_dist(&cm->seq_params->order_hint_info, ref_order_hint,
(int)cm->current_frame.order_hint) <= 0)
? 0
: 1;
} else {
cm->ref_frame_sign_bias[ref_frame] = 0;
}
}
}
#define MAX_OFFSET_WIDTH 64
#define MAX_OFFSET_HEIGHT 0
static int get_block_position(AV1_COMMON *cm, int *mi_r, int *mi_c, int blk_row,
int blk_col, MV mv, int sign_bias) {
const int base_blk_row = (blk_row >> 3) << 3;
const int base_blk_col = (blk_col >> 3) << 3;
const int row_offset = (mv.row >= 0) ? (mv.row >> (4 + MI_SIZE_LOG2))
: -((-mv.row) >> (4 + MI_SIZE_LOG2));
const int col_offset = (mv.col >= 0) ? (mv.col >> (4 + MI_SIZE_LOG2))
: -((-mv.col) >> (4 + MI_SIZE_LOG2));
const int row =
(sign_bias == 1) ? blk_row - row_offset : blk_row + row_offset;
const int col =
(sign_bias == 1) ? blk_col - col_offset : blk_col + col_offset;
if (row < 0 || row >= (cm->mi_params.mi_rows >> 1) || col < 0 ||
col >= (cm->mi_params.mi_cols >> 1))
return 0;
if (row < base_blk_row - (MAX_OFFSET_HEIGHT >> 3) ||
row >= base_blk_row + 8 + (MAX_OFFSET_HEIGHT >> 3) ||
col < base_blk_col - (MAX_OFFSET_WIDTH >> 3) ||
col >= base_blk_col + 8 + (MAX_OFFSET_WIDTH >> 3))
return 0;
*mi_r = row;
*mi_c = col;
return 1;
}
// Note: motion_filed_projection finds motion vectors of current frame's
// reference frame, and projects them to current frame. To make it clear,
// let's call current frame's reference frame as start frame.
// Call Start frame's reference frames as reference frames.
// Call ref_offset as frame distances between start frame and its reference
// frames.
static int motion_field_projection(AV1_COMMON *cm,
MV_REFERENCE_FRAME start_frame, int dir) {
TPL_MV_REF *tpl_mvs_base = cm->tpl_mvs;
int ref_offset[REF_FRAMES] = { 0 };
const RefCntBuffer *const start_frame_buf =
get_ref_frame_buf(cm, start_frame);
if (start_frame_buf == NULL) return 0;
if (start_frame_buf->frame_type == KEY_FRAME ||
start_frame_buf->frame_type == INTRA_ONLY_FRAME)
return 0;
if (start_frame_buf->mi_rows != cm->mi_params.mi_rows ||
start_frame_buf->mi_cols != cm->mi_params.mi_cols)
return 0;
const int start_frame_order_hint = start_frame_buf->order_hint;
const unsigned int *const ref_order_hints =
&start_frame_buf->ref_order_hints[0];
const int cur_order_hint = cm->cur_frame->order_hint;
int start_to_current_frame_offset = get_relative_dist(
&cm->seq_params->order_hint_info, start_frame_order_hint, cur_order_hint);
for (MV_REFERENCE_FRAME rf = LAST_FRAME; rf <= INTER_REFS_PER_FRAME; ++rf) {
ref_offset[rf] = get_relative_dist(&cm->seq_params->order_hint_info,
start_frame_order_hint,
ref_order_hints[rf - LAST_FRAME]);
}
if (dir == 2) start_to_current_frame_offset = -start_to_current_frame_offset;
MV_REF *mv_ref_base = start_frame_buf->mvs;
const int mvs_rows = (cm->mi_params.mi_rows + 1) >> 1;
const int mvs_cols = (cm->mi_params.mi_cols + 1) >> 1;
for (int blk_row = 0; blk_row < mvs_rows; ++blk_row) {
for (int blk_col = 0; blk_col < mvs_cols; ++blk_col) {
MV_REF *mv_ref = &mv_ref_base[blk_row * mvs_cols + blk_col];
MV fwd_mv = mv_ref->mv.as_mv;
if (mv_ref->ref_frame > INTRA_FRAME) {
int_mv this_mv;
int mi_r, mi_c;
const int ref_frame_offset = ref_offset[mv_ref->ref_frame];
int pos_valid =
abs(ref_frame_offset) <= MAX_FRAME_DISTANCE &&
ref_frame_offset > 0 &&
abs(start_to_current_frame_offset) <= MAX_FRAME_DISTANCE;
if (pos_valid) {
get_mv_projection(&this_mv.as_mv, fwd_mv,
start_to_current_frame_offset, ref_frame_offset);
pos_valid = get_block_position(cm, &mi_r, &mi_c, blk_row, blk_col,
this_mv.as_mv, dir >> 1);
}
if (pos_valid) {
const int mi_offset = mi_r * (cm->mi_params.mi_stride >> 1) + mi_c;
tpl_mvs_base[mi_offset].mfmv0.as_mv.row = fwd_mv.row;
tpl_mvs_base[mi_offset].mfmv0.as_mv.col = fwd_mv.col;
tpl_mvs_base[mi_offset].ref_frame_offset = ref_frame_offset;
}
}
}
}
return 1;
}
// cm->ref_frame_side is calculated here, and will be used in
// av1_copy_frame_mvs() to affect how mvs are copied.
void av1_calculate_ref_frame_side(AV1_COMMON *cm) {
const OrderHintInfo *const order_hint_info = &cm->seq_params->order_hint_info;
memset(cm->ref_frame_side, 0, sizeof(cm->ref_frame_side));
if (!order_hint_info->enable_order_hint) return;
const int cur_order_hint = cm->cur_frame->order_hint;
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
int order_hint = 0;
if (buf != NULL) order_hint = buf->order_hint;
if (get_relative_dist(order_hint_info, order_hint, cur_order_hint) > 0)
cm->ref_frame_side[ref_frame] = 1;
else if (order_hint == cur_order_hint)
cm->ref_frame_side[ref_frame] = -1;
}
}
void av1_setup_motion_field(AV1_COMMON *cm) {
const OrderHintInfo *const order_hint_info = &cm->seq_params->order_hint_info;
if (!order_hint_info->enable_order_hint) return;
TPL_MV_REF *tpl_mvs_base = cm->tpl_mvs;
int size = ((cm->mi_params.mi_rows + MAX_MIB_SIZE) >> 1) *
(cm->mi_params.mi_stride >> 1);
for (int idx = 0; idx < size; ++idx) {
tpl_mvs_base[idx].mfmv0.as_int = INVALID_MV;
tpl_mvs_base[idx].ref_frame_offset = 0;
}
const int cur_order_hint = cm->cur_frame->order_hint;
const RefCntBuffer *ref_buf[INTER_REFS_PER_FRAME];
int ref_order_hint[INTER_REFS_PER_FRAME];
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
const int ref_idx = ref_frame - LAST_FRAME;
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
int order_hint = 0;
if (buf != NULL) order_hint = buf->order_hint;
ref_buf[ref_idx] = buf;
ref_order_hint[ref_idx] = order_hint;
}
int ref_stamp = MFMV_STACK_SIZE - 1;
if (ref_buf[LAST_FRAME - LAST_FRAME] != NULL) {
const int alt_of_lst_order_hint =
ref_buf[LAST_FRAME - LAST_FRAME]
->ref_order_hints[ALTREF_FRAME - LAST_FRAME];
const int is_lst_overlay =
(alt_of_lst_order_hint == ref_order_hint[GOLDEN_FRAME - LAST_FRAME]);
if (!is_lst_overlay) motion_field_projection(cm, LAST_FRAME, 2);
--ref_stamp;
}
if (get_relative_dist(order_hint_info,
ref_order_hint[BWDREF_FRAME - LAST_FRAME],
cur_order_hint) > 0) {
if (motion_field_projection(cm, BWDREF_FRAME, 0)) --ref_stamp;
}
if (get_relative_dist(order_hint_info,
ref_order_hint[ALTREF2_FRAME - LAST_FRAME],
cur_order_hint) > 0) {
if (motion_field_projection(cm, ALTREF2_FRAME, 0)) --ref_stamp;
}
if (get_relative_dist(order_hint_info,
ref_order_hint[ALTREF_FRAME - LAST_FRAME],
cur_order_hint) > 0 &&
ref_stamp >= 0)
if (motion_field_projection(cm, ALTREF_FRAME, 0)) --ref_stamp;
if (ref_stamp >= 0) motion_field_projection(cm, LAST2_FRAME, 2);
}
static inline void record_samples(const MB_MODE_INFO *mbmi, int *pts,
int *pts_inref, int row_offset, int sign_r,
int col_offset, int sign_c) {
const int bw = block_size_wide[mbmi->bsize];
const int bh = block_size_high[mbmi->bsize];
const int x = col_offset * MI_SIZE + sign_c * bw / 2 - 1;
const int y = row_offset * MI_SIZE + sign_r * bh / 2 - 1;
pts[0] = GET_MV_SUBPEL(x);
pts[1] = GET_MV_SUBPEL(y);
pts_inref[0] = pts[0] + mbmi->mv[0].as_mv.col;
pts_inref[1] = pts[1] + mbmi->mv[0].as_mv.row;
}
// Select samples according to the motion vector difference.
uint8_t av1_selectSamples(MV *mv, int *pts, int *pts_inref, int len,
BLOCK_SIZE bsize) {
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const int thresh = clamp(AOMMAX(bw, bh), 16, 112);
uint8_t ret = 0;
assert(len <= LEAST_SQUARES_SAMPLES_MAX);
// Only keep the samples with MV differences within threshold.
for (int i = 0; i < len; ++i) {
const int diff = abs(pts_inref[2 * i] - pts[2 * i] - mv->col) +
abs(pts_inref[2 * i + 1] - pts[2 * i + 1] - mv->row);
if (diff > thresh) continue;
if (ret != i) {
memcpy(pts + 2 * ret, pts + 2 * i, 2 * sizeof(pts[0]));
memcpy(pts_inref + 2 * ret, pts_inref + 2 * i, 2 * sizeof(pts_inref[0]));
}
++ret;
}
// Keep at least 1 sample.
return AOMMAX(ret, 1);
}
// Note: Samples returned are at 1/8-pel precision
// Sample are the neighbor block center point's coordinates relative to the
// left-top pixel of current block.
uint8_t av1_findSamples(const AV1_COMMON *cm, MACROBLOCKD *xd, int *pts,
int *pts_inref) {
const MB_MODE_INFO *const mbmi0 = xd->mi[0];
const int ref_frame = mbmi0->ref_frame[0];
const int up_available = xd->up_available;
const int left_available = xd->left_available;
uint8_t np = 0;
int do_tl = 1;
int do_tr = 1;
const int mi_stride = xd->mi_stride;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// scan the nearest above rows
if (up_available) {
const int mi_row_offset = -1;
const MB_MODE_INFO *mbmi = xd->mi[mi_row_offset * mi_stride];
uint8_t superblock_width = mi_size_wide[mbmi->bsize];
if (xd->width <= superblock_width) {
// Handle "current block width <= above block width" case.
const int col_offset = -mi_col % superblock_width;
if (col_offset < 0) do_tl = 0;
if (col_offset + superblock_width > xd->width) do_tr = 0;
if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) {
record_samples(mbmi, pts, pts_inref, 0, -1, col_offset, 1);
pts += 2;
pts_inref += 2;
if (++np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX;
}
} else {
// Handle "current block width > above block width" case.
for (int i = 0; i < AOMMIN(xd->width, cm->mi_params.mi_cols - mi_col);
i += superblock_width) {
mbmi = xd->mi[i + mi_row_offset * mi_stride];
superblock_width = mi_size_wide[mbmi->bsize];
if (mbmi->ref_frame[0] == ref_frame &&
mbmi->ref_frame[1] == NONE_FRAME) {
record_samples(mbmi, pts, pts_inref, 0, -1, i, 1);
pts += 2;
pts_inref += 2;
if (++np >= LEAST_SQUARES_SAMPLES_MAX)
return LEAST_SQUARES_SAMPLES_MAX;
}
}
}
}
assert(np <= LEAST_SQUARES_SAMPLES_MAX);
// scan the nearest left columns
if (left_available) {
const int mi_col_offset = -1;
const MB_MODE_INFO *mbmi = xd->mi[mi_col_offset];
uint8_t superblock_height = mi_size_high[mbmi->bsize];
if (xd->height <= superblock_height) {
// Handle "current block height <= above block height" case.
const int row_offset = -mi_row % superblock_height;
if (row_offset < 0) do_tl = 0;
if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) {
record_samples(mbmi, pts, pts_inref, row_offset, 1, 0, -1);
pts += 2;
pts_inref += 2;
np++;
if (np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX;
}
} else {
// Handle "current block height > above block height" case.
for (int i = 0; i < AOMMIN(xd->height, cm->mi_params.mi_rows - mi_row);
i += superblock_height) {
mbmi = xd->mi[mi_col_offset + i * mi_stride];
superblock_height = mi_size_high[mbmi->bsize];
if (mbmi->ref_frame[0] == ref_frame &&
mbmi->ref_frame[1] == NONE_FRAME) {
record_samples(mbmi, pts, pts_inref, i, 1, 0, -1);
pts += 2;
pts_inref += 2;
if (++np >= LEAST_SQUARES_SAMPLES_MAX)
return LEAST_SQUARES_SAMPLES_MAX;
}
}
}
}
assert(np <= LEAST_SQUARES_SAMPLES_MAX);
// Top-left block
if (do_tl && left_available && up_available) {
const int mi_row_offset = -1;
const int mi_col_offset = -1;
MB_MODE_INFO *mbmi = xd->mi[mi_col_offset + mi_row_offset * mi_stride];
if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) {
record_samples(mbmi, pts, pts_inref, 0, -1, 0, -1);
pts += 2;
pts_inref += 2;
if (++np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX;
}
}
assert(np <= LEAST_SQUARES_SAMPLES_MAX);
// Top-right block
if (do_tr &&
has_top_right(cm, xd, mi_row, mi_col, AOMMAX(xd->width, xd->height))) {
const POSITION trb_pos = { -1, xd->width };
const TileInfo *const tile = &xd->tile;
if (is_inside(tile, mi_col, mi_row, &trb_pos)) {
const int mi_row_offset = -1;
const int mi_col_offset = xd->width;
const MB_MODE_INFO *mbmi =
xd->mi[mi_col_offset + mi_row_offset * mi_stride];
if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) {
record_samples(mbmi, pts, pts_inref, 0, -1, xd->width, 1);
if (++np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX;
}
}
}
assert(np <= LEAST_SQUARES_SAMPLES_MAX);
return np;
}
void av1_setup_skip_mode_allowed(AV1_COMMON *cm) {
const OrderHintInfo *const order_hint_info = &cm->seq_params->order_hint_info;
SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info;
skip_mode_info->skip_mode_allowed = 0;
skip_mode_info->ref_frame_idx_0 = INVALID_IDX;
skip_mode_info->ref_frame_idx_1 = INVALID_IDX;
if (!order_hint_info->enable_order_hint || frame_is_intra_only(cm) ||
cm->current_frame.reference_mode == SINGLE_REFERENCE)
return;
const int cur_order_hint = cm->current_frame.order_hint;
int ref_order_hints[2] = { -1, INT_MAX };
int ref_idx[2] = { INVALID_IDX, INVALID_IDX };
// Identify the nearest forward and backward references.
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, LAST_FRAME + i);
if (buf == NULL) continue;
const int ref_order_hint = buf->order_hint;
if (get_relative_dist(order_hint_info, ref_order_hint, cur_order_hint) <
0) {
// Forward reference
if (ref_order_hints[0] == -1 ||
get_relative_dist(order_hint_info, ref_order_hint,
ref_order_hints[0]) > 0) {
ref_order_hints[0] = ref_order_hint;
ref_idx[0] = i;
}
} else if (get_relative_dist(order_hint_info, ref_order_hint,
cur_order_hint) > 0) {
// Backward reference
if (ref_order_hints[1] == INT_MAX ||
get_relative_dist(order_hint_info, ref_order_hint,
ref_order_hints[1]) < 0) {
ref_order_hints[1] = ref_order_hint;
ref_idx[1] = i;
}
}
}
if (ref_idx[0] != INVALID_IDX && ref_idx[1] != INVALID_IDX) {
// == Bi-directional prediction ==
skip_mode_info->skip_mode_allowed = 1;
skip_mode_info->ref_frame_idx_0 = AOMMIN(ref_idx[0], ref_idx[1]);
skip_mode_info->ref_frame_idx_1 = AOMMAX(ref_idx[0], ref_idx[1]);
} else if (ref_idx[0] != INVALID_IDX && ref_idx[1] == INVALID_IDX) {
// == Forward prediction only ==
// Identify the second nearest forward reference.
ref_order_hints[1] = -1;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, LAST_FRAME + i);
if (buf == NULL) continue;
const int ref_order_hint = buf->order_hint;
if ((ref_order_hints[0] != -1 &&
get_relative_dist(order_hint_info, ref_order_hint,
ref_order_hints[0]) < 0) &&
(ref_order_hints[1] == -1 ||
get_relative_dist(order_hint_info, ref_order_hint,
ref_order_hints[1]) > 0)) {
// Second closest forward reference
ref_order_hints[1] = ref_order_hint;
ref_idx[1] = i;
}
}
if (ref_order_hints[1] != -1) {
skip_mode_info->skip_mode_allowed = 1;
skip_mode_info->ref_frame_idx_0 = AOMMIN(ref_idx[0], ref_idx[1]);
skip_mode_info->ref_frame_idx_1 = AOMMAX(ref_idx[0], ref_idx[1]);
}
}
}
typedef struct {
int map_idx; // frame map index
RefCntBuffer *buf; // frame buffer
int sort_idx; // index based on the offset to be used for sorting
} REF_FRAME_INFO;
// Compares the sort_idx fields. If they are equal, then compares the map_idx
// fields to break the tie. This ensures a stable sort.
static int compare_ref_frame_info(const void *arg_a, const void *arg_b) {
const REF_FRAME_INFO *info_a = (REF_FRAME_INFO *)arg_a;
const REF_FRAME_INFO *info_b = (REF_FRAME_INFO *)arg_b;
const int sort_idx_diff = info_a->sort_idx - info_b->sort_idx;
if (sort_idx_diff != 0) return sort_idx_diff;
return info_a->map_idx - info_b->map_idx;
}
static inline void set_ref_frame_info(int *remapped_ref_idx, int frame_idx,
REF_FRAME_INFO *ref_info) {
assert(frame_idx >= 0 && frame_idx < INTER_REFS_PER_FRAME);
remapped_ref_idx[frame_idx] = ref_info->map_idx;
}
void av1_set_frame_refs(AV1_COMMON *const cm, int *remapped_ref_idx,
int lst_map_idx, int gld_map_idx) {
int lst_frame_sort_idx = -1;
int gld_frame_sort_idx = -1;
assert(cm->seq_params->order_hint_info.enable_order_hint);
assert(cm->seq_params->order_hint_info.order_hint_bits_minus_1 >= 0);
const int cur_order_hint = (int)cm->current_frame.order_hint;
const int cur_frame_sort_idx =
1 << cm->seq_params->order_hint_info.order_hint_bits_minus_1;
REF_FRAME_INFO ref_frame_info[REF_FRAMES];
int ref_flag_list[INTER_REFS_PER_FRAME] = { 0, 0, 0, 0, 0, 0, 0 };
for (int i = 0; i < REF_FRAMES; ++i) {
const int map_idx = i;
ref_frame_info[i].map_idx = map_idx;
ref_frame_info[i].sort_idx = -1;
RefCntBuffer *const buf = cm->ref_frame_map[map_idx];
ref_frame_info[i].buf = buf;
if (buf == NULL) continue;
// If this assertion fails, there is a reference leak.
assert(buf->ref_count > 0);
const int offset = (int)buf->order_hint;
ref_frame_info[i].sort_idx =
(offset == -1) ? -1
: cur_frame_sort_idx +
get_relative_dist(&cm->seq_params->order_hint_info,
offset, cur_order_hint);
assert(ref_frame_info[i].sort_idx >= -1);
if (map_idx == lst_map_idx) lst_frame_sort_idx = ref_frame_info[i].sort_idx;
if (map_idx == gld_map_idx) gld_frame_sort_idx = ref_frame_info[i].sort_idx;
}
// Confirm both LAST_FRAME and GOLDEN_FRAME are valid forward reference
// frames.
if (lst_frame_sort_idx == -1 || lst_frame_sort_idx >= cur_frame_sort_idx) {
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests a look-ahead frame as LAST");
}
if (gld_frame_sort_idx == -1 || gld_frame_sort_idx >= cur_frame_sort_idx) {
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests a look-ahead frame as GOLDEN");
}
// Sort ref frames based on their frame_offset values.
qsort(ref_frame_info, REF_FRAMES, sizeof(REF_FRAME_INFO),
compare_ref_frame_info);
// Identify forward and backward reference frames.
// Forward reference: offset < order_hint
// Backward reference: offset >= order_hint
int fwd_start_idx = 0, fwd_end_idx = REF_FRAMES - 1;
for (int i = 0; i < REF_FRAMES; i++) {
if (ref_frame_info[i].sort_idx == -1) {
fwd_start_idx++;
continue;
}
if (ref_frame_info[i].sort_idx >= cur_frame_sort_idx) {
fwd_end_idx = i - 1;
break;
}
}
int bwd_start_idx = fwd_end_idx + 1;
int bwd_end_idx = REF_FRAMES - 1;
// === Backward Reference Frames ===
// == ALTREF_FRAME ==
if (bwd_start_idx <= bwd_end_idx) {
set_ref_frame_info(remapped_ref_idx, ALTREF_FRAME - LAST_FRAME,
&ref_frame_info[bwd_end_idx]);
ref_flag_list[ALTREF_FRAME - LAST_FRAME] = 1;
bwd_end_idx--;
}
// == BWDREF_FRAME ==
if (bwd_start_idx <= bwd_end_idx) {
set_ref_frame_info(remapped_ref_idx, BWDREF_FRAME - LAST_FRAME,
&ref_frame_info[bwd_start_idx]);
ref_flag_list[BWDREF_FRAME - LAST_FRAME] = 1;
bwd_start_idx++;
}
// == ALTREF2_FRAME ==
if (bwd_start_idx <= bwd_end_idx) {
set_ref_frame_info(remapped_ref_idx, ALTREF2_FRAME - LAST_FRAME,
&ref_frame_info[bwd_start_idx]);
ref_flag_list[ALTREF2_FRAME - LAST_FRAME] = 1;
}
// === Forward Reference Frames ===
for (int i = fwd_start_idx; i <= fwd_end_idx; ++i) {
// == LAST_FRAME ==
if (ref_frame_info[i].map_idx == lst_map_idx) {
set_ref_frame_info(remapped_ref_idx, LAST_FRAME - LAST_FRAME,
&ref_frame_info[i]);
ref_flag_list[LAST_FRAME - LAST_FRAME] = 1;
}
// == GOLDEN_FRAME ==
if (ref_frame_info[i].map_idx == gld_map_idx) {
set_ref_frame_info(remapped_ref_idx, GOLDEN_FRAME - LAST_FRAME,
&ref_frame_info[i]);
ref_flag_list[GOLDEN_FRAME - LAST_FRAME] = 1;
}
}
assert(ref_flag_list[LAST_FRAME - LAST_FRAME] == 1 &&
ref_flag_list[GOLDEN_FRAME - LAST_FRAME] == 1);
// == LAST2_FRAME ==
// == LAST3_FRAME ==
// == BWDREF_FRAME ==
// == ALTREF2_FRAME ==
// == ALTREF_FRAME ==
// Set up the reference frames in the anti-chronological order.
static const MV_REFERENCE_FRAME ref_frame_list[INTER_REFS_PER_FRAME - 2] = {
LAST2_FRAME, LAST3_FRAME, BWDREF_FRAME, ALTREF2_FRAME, ALTREF_FRAME
};
int ref_idx;
for (ref_idx = 0; ref_idx < (INTER_REFS_PER_FRAME - 2); ref_idx++) {
const MV_REFERENCE_FRAME ref_frame = ref_frame_list[ref_idx];
if (ref_flag_list[ref_frame - LAST_FRAME] == 1) continue;
while (fwd_start_idx <= fwd_end_idx &&
(ref_frame_info[fwd_end_idx].map_idx == lst_map_idx ||
ref_frame_info[fwd_end_idx].map_idx == gld_map_idx)) {
fwd_end_idx--;
}
if (fwd_start_idx > fwd_end_idx) break;
set_ref_frame_info(remapped_ref_idx, ref_frame - LAST_FRAME,
&ref_frame_info[fwd_end_idx]);
ref_flag_list[ref_frame - LAST_FRAME] = 1;
fwd_end_idx--;
}
// Assign all the remaining frame(s), if any, to the earliest reference
// frame.
for (; ref_idx < (INTER_REFS_PER_FRAME - 2); ref_idx++) {
const MV_REFERENCE_FRAME ref_frame = ref_frame_list[ref_idx];
if (ref_flag_list[ref_frame - LAST_FRAME] == 1) continue;
set_ref_frame_info(remapped_ref_idx, ref_frame - LAST_FRAME,
&ref_frame_info[fwd_start_idx]);
ref_flag_list[ref_frame - LAST_FRAME] = 1;
}
for (int i = 0; i < INTER_REFS_PER_FRAME; i++) {
assert(ref_flag_list[i] == 1);
}
}