Source code

Revision control

Copy as Markdown

Other Tools

/*
*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "av1/common/arm/resize_neon.h"
#include "av1/common/resize.h"
#include "config/aom_scale_rtcd.h"
#include "config/av1_rtcd.h"
static inline void scale_plane_2_to_1_phase_0(const uint8_t *src,
const int src_stride,
uint8_t *dst,
const int dst_stride, int w,
int h) {
assert(w > 0 && h > 0);
do {
const uint8_t *s = src;
uint8_t *d = dst;
int width = w;
do {
const uint8x16x2_t s0 = vld2q_u8(s);
vst1q_u8(d, s0.val[0]);
s += 32;
d += 16;
width -= 16;
} while (width > 0);
src += 2 * src_stride;
dst += dst_stride;
} while (--h != 0);
}
static inline void scale_plane_4_to_1_phase_0(const uint8_t *src,
const int src_stride,
uint8_t *dst,
const int dst_stride, int w,
int h) {
assert(w > 0 && h > 0);
do {
const uint8_t *s = src;
uint8_t *d = dst;
int width = w;
do {
const uint8x16x4_t s0 = vld4q_u8(s);
vst1q_u8(d, s0.val[0]);
s += 64;
d += 16;
width -= 16;
} while (width > 0);
src += 4 * src_stride;
dst += dst_stride;
} while (--h != 0);
}
static inline uint8x16_t scale_plane_bilinear_kernel(
const uint8x16_t s0_even, const uint8x16_t s0_odd, const uint8x16_t s1_even,
const uint8x16_t s1_odd, const uint8x8_t filter0, const uint8x8_t filter1) {
// A shim of 1 << (FILTER_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
uint16x8_t offset = vdupq_n_u16(1 << (FILTER_BITS - 1));
// Horizontal filtering
uint16x8_t h0_lo = vmlal_u8(offset, vget_low_u8(s0_even), filter0);
uint16x8_t h0_hi = vmlal_u8(offset, vget_high_u8(s0_even), filter0);
uint16x8_t h1_lo = vmlal_u8(offset, vget_low_u8(s1_even), filter0);
uint16x8_t h1_hi = vmlal_u8(offset, vget_high_u8(s1_even), filter0);
h0_lo = vmlal_u8(h0_lo, vget_low_u8(s0_odd), filter1);
h0_hi = vmlal_u8(h0_hi, vget_high_u8(s0_odd), filter1);
h1_lo = vmlal_u8(h1_lo, vget_low_u8(s1_odd), filter1);
h1_hi = vmlal_u8(h1_hi, vget_high_u8(s1_odd), filter1);
const uint8x8_t h0_lo_u8 = vshrn_n_u16(h0_lo, FILTER_BITS);
const uint8x8_t h0_hi_u8 = vshrn_n_u16(h0_hi, FILTER_BITS);
const uint8x8_t h1_lo_u8 = vshrn_n_u16(h1_lo, FILTER_BITS);
const uint8x8_t h1_hi_u8 = vshrn_n_u16(h1_hi, FILTER_BITS);
// Vertical filtering
uint16x8_t v_lo = vmlal_u8(offset, h0_lo_u8, filter0);
uint16x8_t v_hi = vmlal_u8(offset, h0_hi_u8, filter0);
v_lo = vmlal_u8(v_lo, h1_lo_u8, filter1);
v_hi = vmlal_u8(v_hi, h1_hi_u8, filter1);
return vcombine_u8(vshrn_n_u16(v_lo, FILTER_BITS),
vshrn_n_u16(v_hi, FILTER_BITS));
}
static inline void scale_plane_2_to_1_bilinear(
const uint8_t *src, const int src_stride, uint8_t *dst,
const int dst_stride, int w, int h, const int16_t f0, const int16_t f1) {
assert(w > 0 && h > 0);
const uint8x8_t filter0 = vdup_n_u8(f0);
const uint8x8_t filter1 = vdup_n_u8(f1);
do {
const uint8_t *s = src;
uint8_t *d = dst;
int width = w;
do {
const uint8x16x2_t s0 = vld2q_u8(s + 0 * src_stride);
const uint8x16x2_t s1 = vld2q_u8(s + 1 * src_stride);
uint8x16_t d0 = scale_plane_bilinear_kernel(
s0.val[0], s0.val[1], s1.val[0], s1.val[1], filter0, filter1);
vst1q_u8(d, d0);
s += 32;
d += 16;
width -= 16;
} while (width > 0);
src += 2 * src_stride;
dst += dst_stride;
} while (--h != 0);
}
static inline void scale_plane_4_to_1_bilinear(
const uint8_t *src, const int src_stride, uint8_t *dst,
const int dst_stride, int w, int h, const int16_t f0, const int16_t f1) {
assert(w > 0 && h > 0);
const uint8x8_t filter0 = vdup_n_u8(f0);
const uint8x8_t filter1 = vdup_n_u8(f1);
do {
const uint8_t *s = src;
uint8_t *d = dst;
int width = w;
do {
const uint8x16x4_t s0 = vld4q_u8(s + 0 * src_stride);
const uint8x16x4_t s1 = vld4q_u8(s + 1 * src_stride);
uint8x16_t d0 = scale_plane_bilinear_kernel(
s0.val[0], s0.val[1], s1.val[0], s1.val[1], filter0, filter1);
vst1q_u8(d, d0);
s += 64;
d += 16;
width -= 16;
} while (width > 0);
src += 4 * src_stride;
dst += dst_stride;
} while (--h != 0);
}
static inline void scale_2_to_1_horiz_6tap(const uint8_t *src,
const int src_stride, int w, int h,
uint8_t *dst, const int dst_stride,
const int16x8_t filters) {
do {
uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_elems_inplace_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
const uint8_t *s = src + 6;
uint8_t *d = dst;
int width = w;
do {
uint8x8_t t8, t9, t10, t11, t12, t13;
load_u8_8x8(s, src_stride, &t6, &t7, &t8, &t9, &t10, &t11, &t12, &t13);
transpose_elems_inplace_u8_8x8(&t6, &t7, &t8, &t9, &t10, &t11, &t12,
&t13);
int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7));
int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t8));
int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t9));
int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t10));
int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t11));
int16x8_t s12 = vreinterpretq_s16_u16(vmovl_u8(t12));
int16x8_t s13 = vreinterpretq_s16_u16(vmovl_u8(t13));
uint8x8_t d0 = scale_filter6_8(s0, s1, s2, s3, s4, s5, filters);
uint8x8_t d1 = scale_filter6_8(s2, s3, s4, s5, s6, s7, filters);
uint8x8_t d2 = scale_filter6_8(s4, s5, s6, s7, s8, s9, filters);
uint8x8_t d3 = scale_filter6_8(s6, s7, s8, s9, s10, s11, filters);
transpose_elems_inplace_u8_8x4(&d0, &d1, &d2, &d3);
store_u8x4_strided_x2(d + 0 * dst_stride, 4 * dst_stride, d0);
store_u8x4_strided_x2(d + 1 * dst_stride, 4 * dst_stride, d1);
store_u8x4_strided_x2(d + 2 * dst_stride, 4 * dst_stride, d2);
store_u8x4_strided_x2(d + 3 * dst_stride, 4 * dst_stride, d3);
s0 = s8;
s1 = s9;
s2 = s10;
s3 = s11;
s4 = s12;
s5 = s13;
d += 4;
s += 8;
width -= 4;
} while (width > 0);
dst += 8 * dst_stride;
src += 8 * src_stride;
h -= 8;
} while (h > 0);
}
static inline void scale_plane_2_to_1_6tap(const uint8_t *src,
const int src_stride, uint8_t *dst,
const int dst_stride, const int w,
const int h,
const int16_t *const filter_ptr,
uint8_t *const im_block) {
assert(w > 0 && h > 0);
const int im_h = 2 * h + SUBPEL_TAPS - 3;
const int im_stride = (w + 3) & ~3;
// All filter values are even, halve them to stay in 16-bit elements when
// applying filter.
const int16x8_t filters = vshrq_n_s16(vld1q_s16(filter_ptr), 1);
const ptrdiff_t horiz_offset = SUBPEL_TAPS / 2 - 2;
const ptrdiff_t vert_offset = (SUBPEL_TAPS / 2 - 2) * src_stride;
scale_2_to_1_horiz_6tap(src - horiz_offset - vert_offset, src_stride, w, im_h,
im_block, im_stride, filters);
scale_2_to_1_vert_6tap(im_block, im_stride, w, h, dst, dst_stride, filters);
}
static inline void scale_4_to_1_horiz_6tap(const uint8_t *src,
const int src_stride, int w, int h,
uint8_t *dst, const int dst_stride,
const int16x8_t filters) {
do {
uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_elems_u8_4x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3);
int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
const uint8_t *s = src + 4;
uint8_t *d = dst;
int width = w;
do {
uint8x8_t t8, t9, t10, t11;
load_u8_8x8(s, src_stride, &t4, &t5, &t6, &t7, &t8, &t9, &t10, &t11);
transpose_elems_inplace_u8_8x8(&t4, &t5, &t6, &t7, &t8, &t9, &t10, &t11);
int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7));
int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t8));
int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t9));
int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t10));
int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t11));
uint8x8_t d0 = scale_filter6_8(s0, s1, s2, s3, s4, s5, filters);
uint8x8_t d1 = scale_filter6_8(s4, s5, s6, s7, s8, s9, filters);
uint8x8x2_t d01 = vtrn_u8(d0, d1);
store_u8x2_strided_x4(d + 0 * dst_stride, 2 * dst_stride, d01.val[0]);
store_u8x2_strided_x4(d + 1 * dst_stride, 2 * dst_stride, d01.val[1]);
s0 = s8;
s1 = s9;
s2 = s10;
s3 = s11;
d += 2;
s += 8;
width -= 2;
} while (width > 0);
dst += 8 * dst_stride;
src += 8 * src_stride;
h -= 8;
} while (h > 0);
}
static inline void scale_plane_4_to_1_6tap(const uint8_t *src,
const int src_stride, uint8_t *dst,
const int dst_stride, const int w,
const int h,
const int16_t *const filter_ptr,
uint8_t *const im_block) {
assert(w > 0 && h > 0);
const int im_h = 4 * h + SUBPEL_TAPS - 3;
const int im_stride = (w + 1) & ~1;
// All filter values are even, halve them to stay in 16-bit elements when
// applying filter.
const int16x8_t filters = vshrq_n_s16(vld1q_s16(filter_ptr), 1);
const ptrdiff_t horiz_offset = SUBPEL_TAPS / 2 - 2;
const ptrdiff_t vert_offset = (SUBPEL_TAPS / 2 - 2) * src_stride;
scale_4_to_1_horiz_6tap(src - horiz_offset - vert_offset, src_stride, w, im_h,
im_block, im_stride, filters);
scale_4_to_1_vert_6tap(im_block, im_stride, w, h, dst, dst_stride, filters);
}
static inline uint8x8_t scale_filter_bilinear(const uint8x8_t *const s,
const uint8x8_t *const coef) {
const uint16x8_t h0 = vmull_u8(s[0], coef[0]);
const uint16x8_t h1 = vmlal_u8(h0, s[1], coef[1]);
return vrshrn_n_u16(h1, 7);
}
// Notes for 4 to 3 scaling:
//
// 1. 6 rows are calculated in each horizontal inner loop, so width_hor must be
// multiple of 6, and no less than w.
//
// 2. 8 rows are calculated in each vertical inner loop, so width_ver must be
// multiple of 8, and no less than w.
//
// 3. 8 columns are calculated in each horizontal inner loop for further
// vertical scaling, so height_hor must be multiple of 8, and no less than
// 4 * h / 3.
//
// 4. 6 columns are calculated in each vertical inner loop, so height_ver must
// be multiple of 6, and no less than h.
//
// 5. The physical location of the last row of the 4 to 3 scaled frame is
// decided by phase_scaler, and are always less than 1 pixel below the last row
// of the original image.
static inline void scale_plane_4_to_3_bilinear(
const uint8_t *src, const int src_stride, uint8_t *dst,
const int dst_stride, const int w, const int h, const int phase_scaler,
uint8_t *const temp_buffer) {
static const int step_q4 = 16 * 4 / 3;
const int width_hor = (w + 5) - ((w + 5) % 6);
const int stride_hor = width_hor + 2; // store 2 extra pixels
const int width_ver = (w + 7) & ~7;
// We only need 1 extra row below because there are only 2 bilinear
// coefficients.
const int height_hor = (4 * h / 3 + 1 + 7) & ~7;
const int height_ver = (h + 5) - ((h + 5) % 6);
int x, y = height_hor;
uint8_t *t = temp_buffer;
uint8x8_t s[9], d[8], c[6];
const InterpKernel *interp_kernel =
(const InterpKernel *)av1_interp_filter_params_list[BILINEAR].filter_ptr;
assert(w && h);
c[0] = vdup_n_u8((uint8_t)interp_kernel[phase_scaler][3]);
c[1] = vdup_n_u8((uint8_t)interp_kernel[phase_scaler][4]);
c[2] = vdup_n_u8(
(uint8_t)interp_kernel[(phase_scaler + 1 * step_q4) & SUBPEL_MASK][3]);
c[3] = vdup_n_u8(
(uint8_t)interp_kernel[(phase_scaler + 1 * step_q4) & SUBPEL_MASK][4]);
c[4] = vdup_n_u8(
(uint8_t)interp_kernel[(phase_scaler + 2 * step_q4) & SUBPEL_MASK][3]);
c[5] = vdup_n_u8(
(uint8_t)interp_kernel[(phase_scaler + 2 * step_q4) & SUBPEL_MASK][4]);
d[6] = vdup_n_u8(0);
d[7] = vdup_n_u8(0);
// horizontal 6x8
do {
load_u8_8x8(src, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
&s[6], &s[7]);
src += 1;
transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
&s[6], &s[7]);
x = width_hor;
do {
load_u8_8x8(src, src_stride, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
&s[7], &s[8]);
src += 8;
transpose_elems_inplace_u8_8x8(&s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
&s[7], &s[8]);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
d[0] = scale_filter_bilinear(&s[0], &c[0]);
d[1] =
scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]);
d[2] =
scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]);
d[3] = scale_filter_bilinear(&s[4], &c[0]);
d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)],
&c[2]);
d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)],
&c[4]);
// 00 01 02 03 04 05 xx xx
// 10 11 12 13 14 15 xx xx
// 20 21 22 23 24 25 xx xx
// 30 31 32 33 34 35 xx xx
// 40 41 42 43 44 45 xx xx
// 50 51 52 53 54 55 xx xx
// 60 61 62 63 64 65 xx xx
// 70 71 72 73 74 75 xx xx
transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5],
&d[6], &d[7]);
// store 2 extra pixels
vst1_u8(t + 0 * stride_hor, d[0]);
vst1_u8(t + 1 * stride_hor, d[1]);
vst1_u8(t + 2 * stride_hor, d[2]);
vst1_u8(t + 3 * stride_hor, d[3]);
vst1_u8(t + 4 * stride_hor, d[4]);
vst1_u8(t + 5 * stride_hor, d[5]);
vst1_u8(t + 6 * stride_hor, d[6]);
vst1_u8(t + 7 * stride_hor, d[7]);
s[0] = s[8];
t += 6;
x -= 6;
} while (x);
src += 8 * src_stride - 4 * width_hor / 3 - 1;
t += 7 * stride_hor + 2;
y -= 8;
} while (y);
// vertical 8x6
x = width_ver;
t = temp_buffer;
do {
load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
&s[7]);
t += stride_hor;
y = height_ver;
do {
load_u8_8x8(t, stride_hor, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
&s[7], &s[8]);
t += 8 * stride_hor;
d[0] = scale_filter_bilinear(&s[0], &c[0]);
d[1] =
scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]);
d[2] =
scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]);
d[3] = scale_filter_bilinear(&s[4], &c[0]);
d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)],
&c[2]);
d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)],
&c[4]);
vst1_u8(dst + 0 * dst_stride, d[0]);
vst1_u8(dst + 1 * dst_stride, d[1]);
vst1_u8(dst + 2 * dst_stride, d[2]);
vst1_u8(dst + 3 * dst_stride, d[3]);
vst1_u8(dst + 4 * dst_stride, d[4]);
vst1_u8(dst + 5 * dst_stride, d[5]);
s[0] = s[8];
dst += 6 * dst_stride;
y -= 6;
} while (y);
t -= stride_hor * (4 * height_ver / 3 + 1);
t += 8;
dst -= height_ver * dst_stride;
dst += 8;
x -= 8;
} while (x);
}
static inline uint8x8_t scale_filter_8(const uint8x8_t *const s,
const int16x8_t filter) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x8_t ss0 = vreinterpretq_s16_u16(vmovl_u8(s[0]));
int16x8_t ss1 = vreinterpretq_s16_u16(vmovl_u8(s[1]));
int16x8_t ss2 = vreinterpretq_s16_u16(vmovl_u8(s[2]));
int16x8_t ss3 = vreinterpretq_s16_u16(vmovl_u8(s[3]));
int16x8_t ss4 = vreinterpretq_s16_u16(vmovl_u8(s[4]));
int16x8_t ss5 = vreinterpretq_s16_u16(vmovl_u8(s[5]));
int16x8_t ss6 = vreinterpretq_s16_u16(vmovl_u8(s[6]));
int16x8_t ss7 = vreinterpretq_s16_u16(vmovl_u8(s[7]));
int16x8_t sum = vmulq_lane_s16(ss0, filter_lo, 0);
sum = vmlaq_lane_s16(sum, ss1, filter_lo, 1);
sum = vmlaq_lane_s16(sum, ss2, filter_lo, 2);
sum = vmlaq_lane_s16(sum, ss5, filter_hi, 1);
sum = vmlaq_lane_s16(sum, ss6, filter_hi, 2);
sum = vmlaq_lane_s16(sum, ss7, filter_hi, 3);
sum = vqaddq_s16(sum, vmulq_lane_s16(ss3, filter_lo, 3));
sum = vqaddq_s16(sum, vmulq_lane_s16(ss4, filter_hi, 0));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
static inline void scale_plane_4_to_3_8tap(const uint8_t *src,
const int src_stride, uint8_t *dst,
const int dst_stride, const int w,
const int h,
const InterpKernel *const coef,
const int phase_scaler,
uint8_t *const temp_buffer) {
static const int step_q4 = 16 * 4 / 3;
const int width_hor = (w + 5) - ((w + 5) % 6);
const int stride_hor = width_hor + 2; // store 2 extra pixels
const int width_ver = (w + 7) & ~7;
// We need (SUBPEL_TAPS - 1) extra rows: (SUBPEL_TAPS / 2 - 1) extra rows
// above and (SUBPEL_TAPS / 2) extra rows below.
const int height_hor = (4 * h / 3 + SUBPEL_TAPS - 1 + 7) & ~7;
const int height_ver = (h + 5) - ((h + 5) % 6);
const int16x8_t filters0 = vld1q_s16(
(const int16_t *)&coef[(phase_scaler + 0 * step_q4) & SUBPEL_MASK]);
const int16x8_t filters1 = vld1q_s16(
(const int16_t *)&coef[(phase_scaler + 1 * step_q4) & SUBPEL_MASK]);
const int16x8_t filters2 = vld1q_s16(
(const int16_t *)&coef[(phase_scaler + 2 * step_q4) & SUBPEL_MASK]);
int x, y = height_hor;
uint8_t *t = temp_buffer;
uint8x8_t s[15], d[8];
assert(w > 0 && h > 0);
src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2;
d[6] = vdup_n_u8(0);
d[7] = vdup_n_u8(0);
// horizontal 6x8
do {
load_u8_8x8(src + 1, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
&s[6], &s[7]);
transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
&s[6], &s[7]);
x = width_hor;
do {
src += 8;
load_u8_8x8(src, src_stride, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12],
&s[13], &s[14]);
transpose_elems_inplace_u8_8x8(&s[7], &s[8], &s[9], &s[10], &s[11],
&s[12], &s[13], &s[14]);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
d[0] = scale_filter_8(&s[0], filters0);
d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1);
d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2);
d[3] = scale_filter_8(&s[4], filters0);
d[4] =
scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1);
d[5] =
scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2);
// 00 01 02 03 04 05 xx xx
// 10 11 12 13 14 15 xx xx
// 20 21 22 23 24 25 xx xx
// 30 31 32 33 34 35 xx xx
// 40 41 42 43 44 45 xx xx
// 50 51 52 53 54 55 xx xx
// 60 61 62 63 64 65 xx xx
// 70 71 72 73 74 75 xx xx
transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5],
&d[6], &d[7]);
// store 2 extra pixels
vst1_u8(t + 0 * stride_hor, d[0]);
vst1_u8(t + 1 * stride_hor, d[1]);
vst1_u8(t + 2 * stride_hor, d[2]);
vst1_u8(t + 3 * stride_hor, d[3]);
vst1_u8(t + 4 * stride_hor, d[4]);
vst1_u8(t + 5 * stride_hor, d[5]);
vst1_u8(t + 6 * stride_hor, d[6]);
vst1_u8(t + 7 * stride_hor, d[7]);
s[0] = s[8];
s[1] = s[9];
s[2] = s[10];
s[3] = s[11];
s[4] = s[12];
s[5] = s[13];
s[6] = s[14];
t += 6;
x -= 6;
} while (x);
src += 8 * src_stride - 4 * width_hor / 3;
t += 7 * stride_hor + 2;
y -= 8;
} while (y);
// vertical 8x6
x = width_ver;
t = temp_buffer;
do {
load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
&s[7]);
t += 7 * stride_hor;
y = height_ver;
do {
load_u8_8x8(t, stride_hor, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12],
&s[13], &s[14]);
t += 8 * stride_hor;
d[0] = scale_filter_8(&s[0], filters0);
d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1);
d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2);
d[3] = scale_filter_8(&s[4], filters0);
d[4] =
scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1);
d[5] =
scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2);
vst1_u8(dst + 0 * dst_stride, d[0]);
vst1_u8(dst + 1 * dst_stride, d[1]);
vst1_u8(dst + 2 * dst_stride, d[2]);
vst1_u8(dst + 3 * dst_stride, d[3]);
vst1_u8(dst + 4 * dst_stride, d[4]);
vst1_u8(dst + 5 * dst_stride, d[5]);
s[0] = s[8];
s[1] = s[9];
s[2] = s[10];
s[3] = s[11];
s[4] = s[12];
s[5] = s[13];
s[6] = s[14];
dst += 6 * dst_stride;
y -= 6;
} while (y);
t -= stride_hor * (4 * height_ver / 3 + 7);
t += 8;
dst -= height_ver * dst_stride;
dst += 8;
x -= 8;
} while (x);
}
// There's SIMD optimizations for 1/4, 1/2 and 3/4 downscaling in NEON.
static inline bool has_normative_scaler_neon(const int src_width,
const int src_height,
const int dst_width,
const int dst_height) {
const bool has_normative_scaler =
(2 * dst_width == src_width && 2 * dst_height == src_height) ||
(4 * dst_width == src_width && 4 * dst_height == src_height) ||
(4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height);
return has_normative_scaler;
}
void av1_resize_and_extend_frame_neon(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst,
const InterpFilter filter,
const int phase, const int num_planes) {
assert(filter == BILINEAR || filter == EIGHTTAP_SMOOTH ||
filter == EIGHTTAP_REGULAR);
bool has_normative_scaler =
has_normative_scaler_neon(src->y_crop_width, src->y_crop_height,
dst->y_crop_width, dst->y_crop_height);
if (num_planes > 1) {
has_normative_scaler =
has_normative_scaler &&
has_normative_scaler_neon(src->uv_crop_width, src->uv_crop_height,
dst->uv_crop_width, dst->uv_crop_height);
}
if (!has_normative_scaler) {
av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes);
return;
}
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
int malloc_failed = 0;
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
const int is_uv = i > 0;
const int src_w = src->crop_widths[is_uv];
const int src_h = src->crop_heights[is_uv];
const int dst_w = dst->crop_widths[is_uv];
const int dst_h = dst->crop_heights[is_uv];
const int dst_y_w = (dst->crop_widths[0] + 1) & ~1;
const int dst_y_h = (dst->crop_heights[0] + 1) & ~1;
if (2 * dst_w == src_w && 2 * dst_h == src_h) {
if (phase == 0) {
scale_plane_2_to_1_phase_0(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h);
} else if (filter == BILINEAR) {
const int16_t c0 = av1_bilinear_filters[phase][3];
const int16_t c1 = av1_bilinear_filters[phase][4];
scale_plane_2_to_1_bilinear(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, c0, c1);
} else {
const int buffer_stride = (dst_y_w + 3) & ~3;
const int buffer_height = (2 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7;
uint8_t *const temp_buffer =
(uint8_t *)malloc(buffer_stride * buffer_height);
if (!temp_buffer) {
malloc_failed = 1;
break;
}
const InterpKernel *interp_kernel =
(const InterpKernel *)av1_interp_filter_params_list[filter]
.filter_ptr;
scale_plane_2_to_1_6tap(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, interp_kernel[phase], temp_buffer);
free(temp_buffer);
}
} else if (4 * dst_w == src_w && 4 * dst_h == src_h) {
if (phase == 0) {
scale_plane_4_to_1_phase_0(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h);
} else if (filter == BILINEAR) {
const int16_t c0 = av1_bilinear_filters[phase][3];
const int16_t c1 = av1_bilinear_filters[phase][4];
scale_plane_4_to_1_bilinear(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, c0, c1);
} else {
const int buffer_stride = (dst_y_w + 1) & ~1;
const int buffer_height = (4 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7;
uint8_t *const temp_buffer =
(uint8_t *)malloc(buffer_stride * buffer_height);
if (!temp_buffer) {
malloc_failed = 1;
break;
}
const InterpKernel *interp_kernel =
(const InterpKernel *)av1_interp_filter_params_list[filter]
.filter_ptr;
scale_plane_4_to_1_6tap(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, interp_kernel[phase], temp_buffer);
free(temp_buffer);
}
} else {
assert(4 * dst_w == 3 * src_w && 4 * dst_h == 3 * src_h);
// 4 to 3
const int buffer_stride = (dst_y_w + 5) - ((dst_y_w + 5) % 6) + 2;
const int buffer_height = (4 * dst_y_h / 3 + SUBPEL_TAPS - 1 + 7) & ~7;
uint8_t *const temp_buffer =
(uint8_t *)malloc(buffer_stride * buffer_height);
if (!temp_buffer) {
malloc_failed = 1;
break;
}
if (filter == BILINEAR) {
scale_plane_4_to_3_bilinear(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, phase, temp_buffer);
} else {
const InterpKernel *interp_kernel =
(const InterpKernel *)av1_interp_filter_params_list[filter]
.filter_ptr;
scale_plane_4_to_3_8tap(src->buffers[i], src->strides[is_uv],
dst->buffers[i], dst->strides[is_uv], dst_w,
dst_h, interp_kernel, phase, temp_buffer);
}
free(temp_buffer);
}
}
if (malloc_failed) {
av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes);
} else {
aom_extend_frame_borders(dst, num_planes);
}
}